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A APPENDIX

Figure 1: Similarity measurement between
original and reconstructed in-the-wild images
(LFW (Huang et al., 2008)).

Figure 2: Similarity measurement between origi-
nal and reconstructed Hadrian images (Wu et al.,
2024).

A.1 COMPARISON WITH DIFFUSION MODEL

Training a diffusion model conditioned with image feature vectors is a similar approach to Vec2Face.
Thus, we evaluate both architectures by measuring the performance on open-set image reconstruction.
For model choice, Arc2Face (Papantoniou et al., 2024) model, which fine-tunes the stable-diffusion-
v1-5 on WebFace42M, is used to represent the diffusion models. For test set choices, the images in an
in-the-wild dataset, LFW (Huang et al., 2008), and an indoor dataset, Hadrian (Wu et al., 2024) are
used. Since both model use face feature as input, we extract image features by using a FR model and
feed to both models for image reconstruction. Because both dataset are trained/fine-tuned on the
cropped and aligned FR datasets, no image cropping and alignment are used in this evaluation.
Fig. 1 and Fig. 2 show the similarity distribution between the original images and reconstructed
images. The observations are: 1) both models can preserve the identity for the in-door images, 2)
Vec2Face has better performance on open-set image reconstruction on both datasets, 3) the diffusion
model conditioned with image/identity features do not always preserve the identity, especially for
in-the-wild images. Since both model use the features of the same set of images and the variation
of the images generated by Arc2Face are only dependent on the initial noise image, we speculate
the failed cases of identity preservation are caused by the initial noise image. Hence, the proposed
architecture is better than the conventional diffusion model conditioned with image features on
identity preservation. Examples are shown in Fig. 11.

A.2 ABLATION STUDY OF LOSS FUNCTIONS

This section presents the effects of identity loss Lid, perceptual loss, Llpips and GAN loss LGAN on
image reconstruction. The observations in Fig. 3 are: 1) without perceptual loss, the reconstructed
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Effect of perceptual loss at epoch 138

Effect of GAN loss at epoch 34

Effect of identity loss
Figure 3: Examples of loss effect during training. The reconstructed examples with corresponding
loss involved are on the left, otherwise on the right. For identity loss, odd rows are reconstructed
images and even rows are original images.

face edges are smoothed, 2) involving GAN loss at an early training stage causes a glitch effect on
image reconstruction, 3) without identity loss, Vec2Face performs well on near-frontal images but
not on images with large pose variations.
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Figure 4: Similarity distributions of available synthetic datasets (Qiu et al., 2021; Boutros et al., 2022;
Bae et al., 2023; Boutros et al., 2023; Kim et al., 2023) and ours. The results indicate that our dataset
has the largest separability and smallest overlap / Equal Error Rate between genuine (same ID) and
impostor (different ID) pairs.

(a) Intra-class Similarity Distributions (b) Inter-class Similarity Distributions

Figure 5: The inter-class and intra-class similarity distributions of the available synthetic datasets (Qiu
et al., 2021; Boutros et al., 2023; Bae et al., 2023; Kim et al., 2023; Boutros et al., 2022) and ours.

A.3 SYNTHETIC FR DATASET NOISE ANALYSIS

Dataset noise could be categorized as: i) images from different identities are in the same identity
folder, and ii) images from the same identity are in different identity folders. For synthetic datasets,
there is no ground truth for identities, so we used the labels provided by the corresponding work.

Following the metric used in previous works (Cao et al., 2018; Wu & Bowyer, 2023; Zhu et al., 2023;
Deng et al., 2022), we evaluate the dataset noise using two hard threshold values: one for detecting the
outliers within each folder (intra-class noise), and another for detecting similar identities but marked
as different in the dataset (inter-class noise). Figure 5a shows the cosine similarity distributions of
the available synthetic datasets in situation one. Since greater similarity means images are more
likely from the same identity, the results show that our dataset has the highest identity consistency
within each identity folder. Moreover, if the similarity value of an image feature and its identity
feature is less than 0.3, it can be regarded as an outlier/noise (Deng et al., 2022). With this metric, the
available synthetic datasets contain greater intra-class noise than ours. Figure 5b shows the similarity
distributions of available synthetic datasets in situation two. WebFace260M (Zhu et al., 2023) is
the only work discussing the details of inter-class denoising. It merged two identity folders if their
identities have higher than 0.7 similarity, so if the identity similarity is larger than 0.7, we regard it
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Figure 6: Pose and age variation across five test sets and HSFace10k (ours).

as an inter-class noise. The results show that, except for DCFace and ours, the other datasets have
inter-class noise to some extent.

Generally, our proposed dataset has the lowest intra-class noise and inter-class noise. Moreover,
Figure 4 shows that the proposed dataset has the lowest overlapped area / Equal Error Rate (EER),
showing the best dataset quality on separability between genuine (same people) and impostor
(different people) pairs. It promises more reliable identity labels for the FR algorithm to learn better
representations.

A.4 THE EFFECT OF AGE AND POSE VARIATION OF DATASETS IN FR ACCURACY

To estimate the distribution of age and pose, we use img2pose (Albiero et al., 2021) and an age
estimator (Albiero et al., 2020) to obtain the data. Fig. 6 shows the distributions of pose and age of
five available synthetic datasets and HSFace10k. Since roll is controlled by face detectors, only pitch
and yaw angles are estimated. The results show that all the datasets have large variations on both
pose and age, suggesting the accuracy difference is not mainly caused by the attribute variation but
by identity consistency. Having large variations but losing the identity consistency results in lower
accuracy.

A.5 FEATURE INTERPOLATION AND FEATURE VALUE IMPACT ON GENERATED IMAGES

We analyze the impact of feature values on the generated images in two ways: 1) interpolating six
feature vectors between two image features and 2) proportionally changing the values in the feature
vector. Figure 7 shows the results of feature interpolation between two images. It indicates that the
interpolation in the feature domain can be smoothly presented in the image domain, showcasing
Vec2Face’s capability of understanding the vector characteristics in the feature domain. Figure 8
shows the results of proportionally changing the values in the feature. The observations are: 1) As
the values in a feature vector increase to a large extent, the image stops changing but the quality
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Figure 7: Feature interpolation results. These show that Vec2Face can smoothly convert one image to
another by simply changing the feature values.
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Figure 8: Impact of feature values analysis. The first row shows images generated with feature values,
from left to right, of {0, 1, 1.5, 2, 3, 10, 100, 200}. The second row shows images generated with
feature values of {-0.5, -1, -1.5, -2, -3, -10, -100, -200}. The last row shows images generated with
feature values of {1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0}.

decreases, for both negative and positive directions; 2) As the values in a feature vector become close
to zero, the face attributes are erased and eventually disappeared.

A.6 IMPACT OF VALUES AT DIMENSIONS

Vec2Face generates an image based on the values in a feature vector, which motivates an intriguing
investigation of how values in dimensions impact the output image. We start at changing the value
in one dimension. Fig. 13 shows the cases where some obvious patterns occurring. For each of the
four identities, the value at index 15 is related to the hair volume, pose angle, age and expression; the
value at index 26 have a high correlation with the bangs, facial hair and age, eyeglasses presence, and
expression; increasing the value at index 32 changes the age, head pose, hair color, and expression.
The observation is that changing values in a single dimension may change the face attribute but it is
not consistent for all identities. In fact, changing value at a single dimension does a negligible change
on the generated image in most dimensions.

We then change the values in fixed-length (i.e., 8) of dimension chunks and there are some noticeable
patterns. Fig. 12 shows the generated images when the values at specific dimensions increases. A
general conclusion is that changing values at dimension chunks varies the facial attributes but the
patterns are also inconsistent across identities. For instance, dimension [40:48] changes the age for
the first identity, no obvious pattern for the second, the expression for the third, and head pose for the
fourth; dimension [56:64] changes the hairstyle for the first identity, facial hair for the second, age
and eyeglasses for the third, age and facial hair for the fourth; dimension [96:104] changes the gender
for the first identity, age and hairstyle for the second, face exposure level for the third, and facial hair
for the fourth. Therefore, it is hard to control the attributes by handcrafting the features. AttrOP is
much more efficient and effective.

A.7 DISCUSSION OF PRIVACY ISSUE AND FUTURE DATASET USAGE

Datasets HSFace300K WebFace4M (50K) Glint360K
Accuracy 93.52 96.61 97.63

Table 1: FR accuracy comparison of the model trained with
the largest proposed data HSFace300K, the 50K identities
used for Vec2Face training, and the pretrained FR model
used for feature extraction.

The privacy issue of using images
from real identities is the main con-
cern in face recognition technique de-
velopment. As a result, governments
publish regulations (Voigt & Von dem
Bussche, 2017) to restrict the biomet-
ric data usage. Before the possible
fully restrictions on real face data usage, although no achieving as good performance as using datasets
of real data (see in Table 1), this work provides several datasets for continuing the development
of face recognition techniques without violating the regulations. Moreover, the unique design of
Vec2Face can be inspired for generating better synthetic datasets in the future.
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A.8 OTHER MATERIAL

The architecture of fMAE is in 10. The FR training configuration is in Table 2. The examples of the
effect of stochasticity in fMAE on generated images is in Figure 9.

Figure 9: Examples of the effect of the stochasticity of fMAE. Each vectors is processed 8 times for
image generation. The changes on images are negligible.
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Feature
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768

IM feature
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Figure 10: Architecture of the proposed feature masked autoencoder (fMAE).

Face Recognition Model Training Configurations
Head ArcFace

Backbone SE-IR50
Input Size 112×112
Batch Size 128

Learning Rate 0.1
Weight Decay 5e-4

Momentum 0.9
Epochs 26
Margin 0.5
FP16 True

Sample Rate 1.0
Reduce Learning Rate [12, 20, 24]

Augmentation Random aug. and Random erase
Optimizer SGD
Workers 2

GPU RTX6000

Table 2: Configurations used for synthetic dataset training.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Hadrian LFW

Figure 11: Examples of reconstructed Hadrian and LFW images by Arc2Face and Vec2Face. The
images in each three-image group, from left to right, are the original, from Arc2Face, and from
Vec2Face.
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Changes happen in [40:48]

Changes happen in [56:64]

Changes happen in [96:104]

Figure 12: Examples of changing values in a single dimension. From left to right, the value gradually
increases in the target dimensions. The raw images are in low quality, so we use AttrOP to increase
the image quality.
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Changes happen in [15]

Changes happen in [26]

Changes happen in [32]

Figure 13: Examples of changing values in a single dimension. From left to right, the value gradually
increases in the target dimensions. The raw images are in low quality, so we use AttrOP to increase
the image quality.
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