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In this file, we supplement the following materials to support the findings and observations in the1

main body of this paper:2

• Section A elaborates on additional implementation details to ensure reproduction.3

• Section B provides additional quantitative and qualitative Results for better comparisons.4

• Section C discusses the broader impact and some limitations of this work.5

• Section D acknowledges the public resources used during the course of this work.6

A Implementation Details7

In this section, we provide more implementation details including the I3D feature extraction proce-8

dure, the concrete model architecture, and the hyperparameter selection in our proposed TranSVAE9

framework. We also provide detailed instructions for our anonymous live demo.10

A.1 I3D Feature Extractions11

We extract the I3D RGB features following the routine described in SAVA [1]. Given a video12

sequence, 16 frames along clips are sampled by sliding a temporal window with a temporal stride of13

1. Specifically, for each frame in the video, the temporal window consists of its previous 7 frames and14

the following 8 frames. Zero padding is used for the beginning and the end of the video. We then feed15

the sliding windows to the I3D backbone to extract features, which results in a 1,024-dimensional16

feature vector for each frame of the video.17

A.2 Model Architecture18

We now provide the detailed model architecture of our TranSVAE. In Fig. A, we show the model19

with the image as the input, where the encoder and decoder are more complex convolutional and20

deconvolutional layers. For the model with the RGB features as the input, we can simply replace21

the encoder and decoder with fully-connected linear layers. Note that the dimensionality of all the22

modules shown above is uniformly applied in all the experiments.23

A.3 Hyperparameter Selection24

There are several hyperparameters used in TranSVAE, including the balancing weights λ1, λ2, λ3, λ4,25

the number of the video frames T , and the confidence threshold η for generating target pseudo-labels.26

For λ1 to λ4, we select from the value set {1e−3, 1e−2, 1e−1, 0.5, 1, 5, 10, 50, 100, 1000}. For T , we27

select from {5, 6, 7, 8, 9, 10}. For η, we set its value range from 0.9 to 1.0 with a step of 0.01.28
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Table A: Summary of the best-possible hyperparameter values for each UDA task in our experiments
after an extensive grid search.

Task Backbone T η λ1 λ2 λ3 λ4

U → H I3D 8 0.93 50 1 1 1

H → U I3D 9 0.96 0.5 0.1 10 1

JS → JT I3D 6 0.95 0.001 10 100 10

D1 → D2 I3D 9 0.96 50 10 5 100

D1 → D3 I3D 10 1 1 0.5 0.1 100

D2 → D1 I3D 8 0.93 100 10 5 100

D2 → D3 I3D 10 0.91 0.5 10 50 100

D3 → D1 I3D 8 0.91 100 10 50 100

D3 → D2 I3D 9 0.91 1000 1 0.1 100

We set a high-value range of η to ensure a high confidence score on the correctness of the target29

pseudo-labels. Following the common protocol used in video-based UDA, we conduct an extensive30

grid search regarding these hyperparameters on the validation set of each transfer task. Tab. A31

summarizes the exact used values of these hyperparameters for the UCF-HMDB [2, 3], Jester [4],32

and Epic-Kitchens [5] UDA benchmarks. For the Sprites [6] dataset, we do not do a hyperparameter33

search as the data is quite simple. We simply set T as 8, which is the original length of the video34

sequence. The confidence threshold is set to be 0.99, and λ1 to λ4 are all set to be 1.35

A.4 Demo Instruction36

As mentioned in the main body, we include an anonymous live demo for our TranSVAE frame-37

work. This demo can be accessed via: https://huggingface.co/spaces/anonymous-demo/38

Anonymous-TranSVAE-Demo. Here we include the detailed instructions for playing with this demo.39

This demo is built upon Hugging Face Spaces1, which provides concise and easy-to-use live demo40

interfaces. Our demo consists of one input interface and one output interface as shown in Fig. B.41

Specifically, the appearances of the Sprites avatars are fully controlled by four attributes, i.e., body,42

hair color, top wear, and bottom wear. We construct two domains, P1 and P2. P1 uses the43

“Human” body while P1 uses the “Alien" body. The attribute pools of “Human" and “Alien" are44

non-overlapping across domains, resulting in completely heterogeneous P1 and P2. Each video45

sequence contains 8 frames in total.46

For conducting domain disentanglement and transfer with TranSVAE, users are free to choose the47

action and the appearance of the avatars on the left-hand side of the interface. Next, simply click the48

“Submit" button and the adaptation results will display on the right-hand side of the interface in a few49

seconds. The outputs include:50

• The 1st column: The original input of the “Human" and “Alien" avatars, i.e., {xP1
1 , ...,xP1

8 }51

and {xP2
1 , ...,xP2

8 };52

• The 2nd column: The reconstructed “Human" and “Alien" avatars {x̃P1
1 , ..., x̃P1

8 } and53

{x̃P2
1 , ..., x̃P2

8 };54

• The 3rd column: The reconstructed “Human" and “Alien" avatars using only {zD1 , ..., zD8 },55

D ∈ {P1,P2}, which are domain-invariant;56

• The 4th column: The reconstructed “Human" and “Alien" avatars by exchanging zDd , which57

results in two sequences with the same actions but exchanged appearance, i.e., domain58

disentanglement and transfer.59

B Additional Experimental Results60

In this section, we provide additional quantitative and qualitative results for our TranSVAE framework.61

1https://huggingface.co.
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TranSVAE(
(encoder): encoder(

(c1): dcgan_conv(
(main): Sequential(

(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(c2): dcgan_conv( (main): Sequential(
(0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(c3): dcgan_conv( (main): Sequential(
(0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(c4): dcgan_conv( (main): Sequential(
(0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(c5): Sequential(
(0): Conv2d(512, 1024, kernel_size=(4, 4), stride=(1, 1))
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
(2): Tanh())

)
(decoder): decoder_woSkip

(upc1): Sequential(
(0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(1, 1))
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) 

(upc2): dcgan_upconv( (main): Sequential(
(0): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(upc3): dcgan_upconv( (main): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(upc4): dcgan_upconv( (main): Sequential(
(0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.2, inplace=True) ) )

(upc5): Sequential(
(0): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(1): Sigmoid() ) 

)
(relu): LeakyReLU(negative_slope=0.1) 
(dropout_f): Dropout(p=0.5, inplace=False) 
(dropout_v): Dropout(p=0.5, inplace=False) 
(z_prior_lstm_ly1): LSTMCell(512, 512) 
(z_prior_lstm_ly2): LSTMCell(512, 512) 
(z_prior_mean): Linear(in_features=512, out_features=512, bias=True) 
(z_prior_logvar): Linear(in_features=512, out_features=512, bias=True) 
(z_lstm): LSTM(1024, 512, batch_first=True, bidirectional=True) 
(f_mean): Linear(in_features=1024, out_features=512, bias=True) 
(f_logvar): Linear(in_features=1024, out_features=512, bias=True) 
(z_rnn): RNN(1024, 512, batch_first=True) 
(z_mean): Linear(in_features=512, out_features=512, bias=True) 
(z_logvar): Linear(in_features=512, out_features=512, bias=True) 
(fc_feature_domain_frame): Linear(in_features=512, out_features=512, bias=True) 
(fc_classifier_domain_frame): Linear(in_features=512, out_features=2, bias=True) 
(TRN)
(bn_trn_S): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
(bn_trn_T): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc_feature_domain_video): Linear(in_features=256, out_features=256, bias=True) 
(fc_classifier_domain_video): Linear(in_features=256, out_features=2, bias=True)
(relation_domain_classifier_all): ModuleList(

(0): Sequential(
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) ) 

(1): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) )

(2): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) ) 

(3): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) ) 

(4): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) )

(5): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) ) 

(6): Sequential( 
(0): Linear(in_features=256, out_features=256, bias=True) 
(1): ReLU() 
(2): Linear(in_features=256, out_features=2, bias=True) ) 

)
(pred_classifier_video): Linear(in_features=256, out_features=15, bias=True) 
(fc_feature_domain_latent): Linear(in_features=512, out_features=512, bias=True) 
(fc_classifier_doamin_latent): Linear(in_features=512, out_features=2, bias=True)

)

Figure A: The neural network structure (left) and a Netron graph (right) of the proposed TranSVAE
framework. Zoom-ed in for the details.
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Figure B: The input (left) and output (right) interfaces of our live demo. Users are free to customize
the actions and appearances of the source and target inputs (i.e., the “Human" and “Alien" avatars) in
the left-hand side and use them for domain disentanglement and transfer as shown in the right-hand
side.

Table B: Ablation results for the frame number T .

Task 5 6 7 8 9 10 12 14 16 20

U → H 84.44 86.11 84.17 87.78 84.72 85.28 83.89 84.44 82.78 85.00

H → U 96.85 94.22 98.42 94.75 98.95 93.70 93.87 94.40 94.05 94.40

B.1 Additional Ablation Studies62

Number of Frames T . Tab. B shows the transfer performance with the variation of the number of63

frames T on the UCF-HMDB dataset. As can be seen, the two tasks achieve the optimal performance64

with different T , specifically T = 8 for U → H and T = 9 for H → U. Based on this observation,65

we apply a grid search on the validation set to obtain the optimal T for each task in our experiments.66

Target Pseudo-Label Threshold η. We show the sensitivity analyses of the transfer performance67

with respect to the target pseudo label threshold η on the UCF-HMDB dataset in Tab. C. The results68

show that different tasks yield the best transfer result with different η, specifically η = 0.93 for69

U → H and η = 0.96 for H → U. Thus, we also apply the grid search on the validation set to70

obtain the optimal η for each task.71

B.2 Additional Qualitative Results72

For those who cannot access our live demo, we have included more qualitative examples for domain73

disentanglement and transfer in Fig. C. We also provide an anonymous link2 for GIFs demonstrating74

various disentanglement and reconstruction results.75

In the GIFs link, we show two cases, first two columns for the first one and last two columns for the76

second one. Each case contain a source and a target cartoon character performing an action. For each77

row, we have the following remark:78

• The second row shows the reconstructed results of TranSVAE, i.e., zDd and zDt . As can be79

seen, TranSVAE reconstructs the image with a high quality.80

2https://github.com/anonymousRevievv/TranSVAE
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Table C: Ablation results for the pseudo-label threshold η.

Task w/o 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

U → H 87.22 (−0.56) 86.94 87.22 87.50 87.78 86.11 86.67 86.94 86.39 86.11 86.39

H → U 94.40 (−4.55) 98.42 97.37 98.77 98.60 98.25 98.25 98.95 97.90 97.72 95.27

Input Sequence
• Left: “Human”, slash, 𝐱𝐏!

• Right: “Alien”, walk, 𝐱𝐏"

Reconstruction
• Left: “Human”, slash, "𝐱𝐏!

• Right: “Alien”, walk, "𝐱𝐏"

Domain Disentanglement
• Left: “Null”, slash
• Right: “Null”, walk

Domain Transfer
• Left: “Alien”, slash
• Right: “Human”, walk

Input Sequence
• Left: “Human”, spellcard, 𝐱𝐏!

• Right: “Alien”, slash, 𝐱𝐏"

Reconstruction
• Left: “Human”, spellcard, "𝐱𝐏!

• Right: “Alien”, slash, "𝐱𝐏"

Domain Disentanglement
• Left: “Null”, spellcard
• Right: “Null”, slash

Domain Transfer
• Left: “Alien”, spellcard
• Right: “Human”, slash

Figure C: Additional qualitative results for illustrating the domain disentanglement and transfer
properties in our TranSVAE framework.

• The third row shows the reconstructed results only using the static latent factors, i.e., zDd81

and 0D
t , where we replace zDt with zero vectors. As can be seen, the reconstructed results82

are basically static containing the appearance of the character which is the main domain83

difference in the Sprite dataset. Specifically, we find they generally lack arms. This is84

reasonable as the target action is slashing or spelling cards with arms moving, and such85

dynamic information on the arm is captured by zDt .86

• The fourth row shows the reconstructed results only using the dynamic latent factors, i.e.,87

0D
d and zDt , where we replace zDd with zero vectors. As can be seen, the reconstructed88

results are performing the right action but the appearance is mixed-up. This shows that zDt89

are indeed domain-invaraint and contain the semantic information.90

• The last row shows the reconstructed results of exchanging the dynamic latent factors91

between domains, i.e., (0S
d , zTt ) and (0T

d , zSt ). As can be seen, the reconstructed results92

are with the original apprearance but performing the transferred action. This indicates the93

potential of TranSVAE for some style-transfer tasks.94

C Broader Impact95

This paper provides a novel transfer method to use cross-domain video data, which effectively helps96

reduce the annotation efforts in related video applications. Although the main empirical evaluation is97

on the video action recognition task, the model structure proposed in this paper is also applicable98

to other video-related tasks, such as action segmentation, video semantic segmentation, etc. More99

generally, the idea of disentangling domain information sheds the light on other data modality style100

transfer tasks, e.g., voice conversion. The negative impacts of this work are difficult to predict.101

However, as a deep model, our method shares some common pitfalls of the standard deep learning102

models, e.g., demand for powerful computing resources, and vulnerability to adversarial attacks.103
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D Public Resources Used104

We acknowledge the use of the following public resources, during the course of this work:105

• UCF101
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown106

• HMDB51
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY 4.0107

• Jester5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown108

• Epic-Kitchens6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC 4.0109

• Sprites7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC-BY-SA-3.0110

• I3D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0111

• TRN9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BSD 2-Clause License112

• Netron10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License113

References114

[1] Jinwoo Choi, Gaurav Sharma, Samuel Schulter, and Jia-Bin Huang. Shuffle and attend: Video domain115

adaptation. In European Conference on Computer Vision, pages 678–695. Springer, 2020.116

[2] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes117

from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.118

[3] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large119

video database for human motion recognition. In IEEE/CVF International Conference on Computer Vision,120

pages 2556–2563. IEEE, 2011.121

[4] Joanna Materzynska, Guillaume Berger, Ingo Bax, and Roland Memisevic. The jester dataset: A large-scale122

video dataset of human gestures. In IEEE/CVF International Conference on Computer Vision Workshops,123

pages 1–12, 2019.124

[5] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos,125

Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric vision: The epic-126

kitchens dataset. In European Conference on Computer Vision, pages 720–736, 2018.127

[6] Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder. In International Conference on128

Machine Learning, pages 5670–5679. PMLR, 2018.129

3https://www.crcv.ucf.edu/data/UCF101.php
4https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
5https://20bn.com/datasets/jester
6https://epic-kitchens.github.io/2021
7https://github.com/YingzhenLi/Sprites
8https://github.com/piergiaj/pytorch-i3d
9https://github.com/zhoubolei/TRN-pytorch

10https://github.com/lutzroeder/netron

6

https://www.crcv.ucf.edu/data/UCF101.php
https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
https://20bn.com/datasets/jester
https://epic-kitchens.github.io/2021
https://github.com/YingzhenLi/Sprites
https://github.com/piergiaj/pytorch-i3d
https://github.com/zhoubolei/TRN-pytorch
https://github.com/lutzroeder/netron

	Implementation Details
	I3D Feature Extractions
	Model Architecture
	Hyperparameter Selection
	Demo Instruction

	Additional Experimental Results
	Additional Ablation Studies
	Additional Qualitative Results

	Broader Impact
	Public Resources Used

