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Abstract

Coping with noise in computing is an important problem to consider in large systems. With ap-

plications in fault tolerance (Hastad et al., 1987; Pease et al., 1980; Pippenger et al., 1991), noisy

sorting (Shah and Wainwright, 2018; Agarwal et al., 2017; Falahatgar et al., 2017; Heckel et al.,

2019; Wang et al., 2024a; Gu and Xu, 2023; Kunisky et al., 2024), noisy searching (Berlekamp,

1964; Horstein, 1963; Burnashev and Zigangirov, 1974; Pelc, 1989; Karp and Kleinberg, 2007),

among many others, the goal is to devise algorithms with the minimum number of queries that are

robust enough to detect and correct the errors that can happen during the computation.

In this work, we consider the noisy computing of the threshold-k function. For n Boolean

variables x = (x1, . . . , xn) ∈ {0, 1}n, the threshold-k function THk(·) computes whether the

number of 1’s in x is at least k or not, i.e.,

THk(x) ,

{

1 if
∑n

i=1
xi ≥ k;

0 if
∑n

i=1
xi < k.

The noisy queries correspond to noisy readings of the bits, where at each time step, the agent

queries one of the bits, and with probability p, the wrong value of the bit is returned. It is assumed

that the constant p ∈ (0, 1/2) is known to the agent. Our goal is to characterize the optimal query

complexity for computing the THk function with error probability at most δ.

This model for noisy computation of the THk function has been studied by Feige et al. (1994),

where the order of the optimal query complexity is established; however, the exact tight charac-

terization of the optimal number of queries is still open. In this paper, our main contribution is

tightening this gap by providing new upper and lower bounds for the computation of the THk

function, which simultaneously improve the existing upper and lower bounds.

The main result of this paper can be stated as follows: for any 1 ≤ k ≤ n, there exists an

algorithm that computes the THk function with an error probability at most δ = o(1), and the

algorithm uses at most

(1 + o(1))
n log m

δ

DKL(p‖1− p)
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queries in expectation. Here we define m , min{k, n − k + 1} and denote the Kullback-Leibler

divergence between Bern(p) and Bern(1−p) distributions by DKL(p‖1−p). Conversely, we prove

that to achieve an error probability of δ = o(1), any algorithm must make at least

(1− o(1))
(n−m) log m

δ

DKL(p‖1− p)

queries in expectation. When m = o(n), the ratio between these upper and lower bounds is 1+o(1),
and hence we provide an asymptotically tight characterization for the optimal number of queries.

For general m, these bounds are tight within a multiplicative factor of 2. When specialized to the

case of k = 1, our results recover the optimal bounds for computing the logic OR function found

by Zhu et al. (2024).
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