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LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance
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Figure 1: (Left) We introduce the task of novel view synthesis for LiDAR sensors. Given multiple LiDAR viewpoints of an object,
novel LiDAR view synthesis aims to render a point cloud of the object from an arbitrary new viewpoint. (Right, Top) The
mostly-closed related approaches to generating new LiDAR point clouds are some LiDAR simulators, which su�er from limited
scalability and applicability, and fails to produce realistic LiDAR patterns. Furthermore, traditional NeRFs are not directly
applicable to point clouds. (Right, Bottom) By contrast, we propose a novel di�erentiable framework, LiDAR-NeRF, with an
associated neural radiance �eld, to avoid explicit 3D reconstruction and game engine usage. Our method enables end-to-end
optimization and encompasses the 3D point attributes into the learnable �eld.

ABSTRACT
We introduce a new task, novel view synthesis for LiDAR sensors.
While traditional model-based LiDAR simulators with style-transfer
neural networks can be applied to render novel views, they fall
short of producing accurate and realistic LiDAR patterns because
the renderers rely on explicit 3D reconstruction and exploit game
engines, that ignore important attributes of LiDAR points. We ad-
dress this challenge by formulating, to the best of our knowledge,
the �rst di�erentiable end-to-end LiDAR rendering framework,
LiDAR-NeRF, leveraging a neural radiance �eld (NeRF) to facili-
tate the joint learning of geometry and the attributes of 3D points.
However, simply employing NeRF cannot achieve satisfactory re-
sults, as it only focuses on learning individual pixels while ignoring
local information, especially at low texture areas, resulting in poor
geometry. To this end, we have taken steps to address this issue
by introducing a structural regularization method to preserve local
structural details. To evaluate the e�ectiveness of our approach,
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we establish an object-centricmulti-view LiDAR dataset, dubbed
NeRF-MVL. It contains observations of objects from 9 categories
seen from 360-degree viewpoints captured with multiple LiDAR
sensors. Our extensive experiments on the scene-level KITTI-360
dataset, and on our object-level NeRF-MVL show that our LiDAR-
NeRF surpasses the model-based algorithms signi�cantly.

CCS CONCEPTS
• Computing methodologies! Rendering.

KEYWORDS
LiDAR-NeRF, NeRF-MVL, LiDAR View Synthesis

1 INTRODUCTION
Synthesizing novel views of a scene from a given camera has been a
longstanding and prominent subject of research. A recent milestone
in this area has been to combine di�erentiable renderingwith neural
radiance �elds (NeRF) [21], resulting in a de-facto standard to render
photo-realistic novel views by leveraging only a hundred or fewer
input images with known camera poses. Impressively, this has
already been shown to positively impact downstream tasks such
as autonomous driving [25, 28, 31, 37]. In such an autonomous
driving scenario, however, practical systems typically exploit not
only images but also LiDAR sensors, which provide reliable 3D
measurements of the environment. As such, it seems natural to
seek to generate novel views not only in the image domain but

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: A comparison of novel view LiDAR point clouds generated from LiDARsim [20], PCGen [17], and our LiDAR-NeRF.
LiDARsim su�ers from inaccuracies in explicit 3D mesh reconstruction. PCGen overestimates object surfaces. Speci�cally,
laser beams emitted by the LiDAR sensor can be in�uenced by surface material and normal direction, resulting in some beams
penetrating car glass and reaching the seats (car1 and car2), while others are lost (car3). Although an additional style-transfer
net can alleviate the problem of beam loss, it does not take into account special attributes like the transmission. As opposed to
prior arts, our proposed method, LiDAR-NeRF, e�ectively encodes 3D information and multiple attributes, achieving high
�delity with ground truth. We encourage readers to zoom in for better observations.

also in the LiDAR one. However, the only methods that consider
LiDAR point clouds for novel view synthesis [28, 37] only do so
to boost training, thus still producing images as output. In other
words, generating novel LiDAR views remains unexplored. Despite
the 3D nature of this modality, this task remains challenging, as
LiDARs only provide a partial view of the scene, corrupted by
various attributes related to the LiDAR physical modeling.

On the other hand, the mostly-closed related approaches are
some LiDAR simulators [17, 20], which adopt a multi-step approach
that reconstructs a 3D mesh from the input point clouds and uti-
lizes game engines to simulate a new point cloud. Nevertheless, the
intricacy of this approach can limit its practicality and scalability.
Moreover, as shown in Fig. 2, this strategy tends to produce unreal-
istic LiDAR patterns, as its explicit reconstruction and ray-casting
overlook certain crucial features of LiDAR points.

In this paper, we hereby present the pioneering di�erentiable
rendering method for novel LiDAR view synthesis. Unlike RGB
view synthesis, the output of a free viewpoint LiDAR sensor is a
point cloud sampled from the surrounding 3D scene according to
the given LiDAR sensor-speci�c pattern, as illustrated in Fig. 1.
Consequently, the direct application of the NeRF formalism which
relies on a photometric loss, is infeasible in this context. To over-
come this challenge, we �rst convert point clouds with respect
to a surface plane, serving as a 360-degree range pseudo image
in which each pseudo pixel represents the distance between the
LiDAR receiver and a world point hit by a laser beam. We then
use a neural network to encode the 3D information and predict
multiple attributes for each pseudo-pixel. Speci�cally, we regress
the distance of each pseudo pixel, which represents their 3D coor-
dinate, its intensity, which encodes the amount of re�ected light
that reaches the sensor at a pseudo pixel, and an attribute that we
dub ray-drop, which encodes the probability of dropping a pseudo
pixel. This last attribute re�ects our observation that, in the real
world, some laser beams of the LiDAR sensor are simply lost, due to
the surface material and normal direction. As image-based NeRFs,
our LiDAR-NeRF leverages multi-view consistency, thus enabling
the network to produce accurate geometry. Despite these e�orts,
the performance remains suboptimal, as NeRFs concentrate solely
on learning individual pixels while neglecting local information,
particularly in low-texture regions of large-scale scenes, resulting

in subpar geometry. To address this issue, we propose a structural
regularization to preserve local structural details, which in turn
serve as a guide for NeRFs geometry to produce more accurate
estimations.

Validating the e�ectiveness of our approach can be achieved
by leveraging the existing autonomous driving datasets [2, 18, 30]
that provide LiDAR data. However, as these datasets were acquired
from a vehicle moving along the street, the objects they depict are
observed with limited viewpoint variations, thus making them best
suited for scene-level synthesis. This contrasts with object-level
synthesis, as is more common in image novel-view synthesis [15,
19, 21]. We, therefore, establish an object-centricmulti-view LiDAR
dataset, which we dub the NeRF-MVL dataset, containing carefully
calibrated sensor poses, acquired from multi-LiDAR sensor data
from real autonomous vehicles. It contains more than 76k frames
covering two types of collecting vehicles, three LiDAR settings, two
collecting paths, and nine object categories.

We evaluate our model’s scene-level and object-level synthesis
ability on scenes from the challenging KITTI-360 dataset [18] and
from our NeRF-MVL dataset both quantitatively and qualitatively.
Our results demonstrate the superior performance of our approach
compared to the baseline renderer in various metrics and visual
quality, showcasing its e�ectiveness in LiDAR novel view synthesis.

Overall, we make the following contributions:

• We formulate the �rst di�erentiable framework, LiDAR-
NeRF, for novel LiDAR view synthesis, which can render
novel point clouds with point intensity and ray-drop proba-
bility without explicit 3D reconstruction.

• We propose a structural regularization method to e�ectively
preserve local structural details, thereby guiding the model
towards more precise geometry estimations, leading to more
faithful novel LiDAR view synthesis.

• We establish the NeRF-MVL dataset from LiDAR sensors
of real autonomous vehicles to evaluate the object-centric
novel LiDAR view synthesis.

• We demonstrate the e�ectiveness of our LiDAR-NeRF quanti-
tatively and qualitatively in both scene-level and object-level
novel LiDAR view synthesis.
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2 RELATEDWORK
Novel RGB view synthesis. Synthesizing novel RGB views of
a scene from a set of captured images is a long-lasting problem.
In particular, recent advances in NeRF have demonstrated their
superior performance in synthesizing images, thanks to the pio-
neering work of NeRF [21]. Following this, many NeRF strategies
have been proposed for acceleration [3, 22, 39] and generaliza-
tion [13, 24, 40]. Noticeably, notions of depth have been used for
novel RGB view synthesis [4, 23, 29]. In parallel, great progress has
beenmade to handle complex environments, such as large-scale out-
door scenes [28, 31, 37], demonstrating the tremendous potential of
NeRFs for real-world applications. Nevertheless, while these works
improve quality and convergence speed, they still produce RGB
images. In practical scenarios where multiple sensors, such as RGB
cameras and LiDARs, are used, only synthesizing the image view is
insu�cient. In this work, drawing inspiration from NeRF [21], we
introduce the �rst di�erentiable framework for novel LiDAR view
synthesis.
Model-based LiDAR simulators. There are model-based LiDAR
simulators that can also be regarded as LiDAR renderers. In this
context, early works [5, 35, 36, 42] employ graphics engines, such as
CARLA [6] , to simulate LiDAR sensors. However, this yields a large
sim-to-real domain gap, as their virtual worlds use handcrafted 3D
assets andmake simpli�ed physics assumptions. More recent works,
e.g., LiDARsim [20] and PCGen [17], employ a multi-step, data-
driven approach to simulate point clouds from real data. They �rst
leverage real data to reconstruct the 3D scene, and then utilize the
reconstructed 3D scene to render novel LiDAR data via ray-casting.
To close the sim-to-real gap, they further train a network to model
the physics of LiDAR ray-dropping. However, the multiple steps
involved in this approach a�ect its applicability and scalability.
Additionally, this approach typically fails to generate authentic
LiDAR patterns since its explicit reconstruction and ray-casting
disregard some crucial attributes of LiDAR points. By contrast, as
the �rst di�erentiable LiDAR renderer, our approach is simple and
e�ective, yet produces realistic LiDAR data.
Comparison with concurrent works. Two concurrent works [10,
43] also employ NeRF for generating LiDAR-related features, simi-
lar to our LiDAR-NeRF. However, NeRF-LiDAR [43] focuses solely
on generating single LiDAR frames corresponding to image inputs,
without considering novel LiDAR view synthesis task and disre-
garding LiDAR inherent attributes, e.g., intensity. NLF [10] directly
applies NeRF without adequately considering local information,
especially in areas with low texture, resulting in inadequate geome-
try reconstruction. In contrast, our work introduces a di�erentiable
framework with structural regularization and demonstrates its ef-
fectiveness in di�erent con�gurations. Additionally, we contribute
to the research community by establishing the �rst object-centric
multi-view LiDAR dataset, NeRF-MVL.

3 NOVEL LIDAR VIEW SYNTHESIS
In this section, we �rst give a formal problem de�nition of novel
LiDAR view synthesis, and introduce our LiDAR-NeRF in detail.
Finally, we describe our object-level multi-view LiDAR dataset.

Laser beam

Spinning

LiDAR Sensor

!e same tree

Range image

Realistic point clouds

Figure 3: LiDARmodel and range image representation. (Top)
The physical model of a LiDAR can be described as follow:
each laser beam originates from the sensor origin and shoot
outwards to a point in the real world or vanishes. One com-
mon pattern of laser beams is spinning in a 360-degree fash-
ion. (Bottom)We convert the point clouds into a range image,
where each pixel corresponds to a laser beam. Note that we
highlight one object in the di�erent views to facilitate the
visualization.

Problem de�nition. Novel LiDAR view synthesis aims to render
an object or scene from an arbitrary new viewpoint given a set of
existing observations acquired from other viewpoints. Formally,
given a setD = {(%8 ,⌧8 )}, where %8 is the LiDAR pose and⌧8 is the
corresponding observed point cloud, we aim to de�ne a rendering
function 5 that can generate a new point cloud from an arbitrary
new pose % 0, i.e., ⌧ 0 = 5D(% 0). To produce accurate and realistic
novel LiDAR views, we draw inspiration from the NeRF formalism.
We therefore �rst review image-based NeRF below.
NeRF revisited. NeRF represents a scene as a continuous volumet-
ric radiance �eld. For a given 3D point x 2 R3 and a viewing direc-
tion ) , NeRF learns an implicit function 5 that estimates the di�eren-
tial density f and view-dependent RGB color c as (f, c) = 5 (x, ) ).

Speci�cally, NeRF uses volumetric rendering to render image
pixels. Given a pose P, it casts rays r originating from P’s center of
projection o in direction d, i.e., r(C) = o + Cd. The implicit radiance
�eld is then integrated along this ray, and the color is approximated
by integrating over samples lying along the ray. This is expressed
as

⇠̂ (r) =
#’
8=1

)8
�
1 � exp(�f8X8 )

�
c8 , (1)

where )8 = exp
⇣
�Õ8�1

9=1 f 9X 9
⌘
indicates the accumulated transmit-

tance along ray r to the sampled point C8 , c8 and f8 are the corre-
sponding color and density at C8 , and X8 = C8+1 � C8 is the distance
between adjacent samples.

However, one cannot directly apply the traditional NeRFs, which
leverage a per-pixel photometric error measure, to novel LiDAR
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laser beam

view 1

view n
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Multi-view Consistency

Radiance Field 

Multi-view rays

Distance 

Intensity 

Ray-drop 

Sample and Volume Rendering Rendered novel LiDAR view

A!ributes 
MLP

Geometry 
MLP

Point cloud

Horizontal gradient

Vertical gradient

Range image

(a) LiDAR-NeRF  framework (b) Structural characteristics

Figure 4: (a) Takingmulti-viewLiDAR range imageswith associated sensor poses as input, ourmodel produces 3D representations
of the distance, the intensity, and the ray-drop probability at each pseudo-pixel. We exploit multi-view consistency of the
3D scene to help our network produce accurate geometry. (b) The physical nature of LiDAR models results in point clouds
exhibiting recognizable patterns, such as the ground primarily appearing as continuous straight lines. This pattern is also
evident in the transformed range images, which display signi�cant structural features, such as their horizontal gradient being
almost zero in �at areas. As a result, these structural characteristics are essential for the network to learn. To provide a clearer
visual representation, we utilize the front view.

view synthesis, where the observations are 3D points. To address
this, we investigate the LiDAR model and convert point clouds into
a range representation.

3.1 LiDAR Model and Range Representation
Let us start with the LiDAR model as shown in the top of Fig. 3,
which works by emitting a laser beam and measuring the time it
takes for the re�ected light to return to the sensor. For a LiDAR
with � laser beams in a vertical plane and, horizontal emissions,
the returned attributes (e.g., distance 3 and intensity 8) form an
� ⇥, range pseudo image. The Cartesian coordinates (G,~, I) of
3D point can then be computed from polar coordinates as

©≠
´
G
~
I

™Æ
¨
= 3

©≠
´
cos(U) cos(V)
cos(U) sin(V)

sin(U)
™Æ
¨
= 3) , (2)

where U is the vertical rotation, i.e., the pitch angle, V is the hor-
izontal rotation, i.e., the yaw angle, and ) denotes the viewing
direction in the local sensor coordinate system. Speci�cally, for the
2D coordinates (⌘,F) in the range pseudo image, we have✓

U
V

◆
=
✓

|5up | � ⌘5E��1

� (2F �, ) c, �1

◆
, (3)

where 5E = |5down | + |5up | is the vertical �eld-of-view of the LiDAR
sensor. Conversely, each 3D point (G,~, I) in a LiDAR frame can be
projected on a range pseudo image of size � ⇥, as

✓
⌘
F

◆
=
✓ �
1 � (arcsin(I,3) + |5down |) 5 �1E

�
�

1
2
�
1 � arctan(~, G)c�1�,

◆
. (4)

Note that if more than one point projects to the same pseudo-
pixel, only the point with the smallest distance is kept. The pixels
with no projected points are �lled with zeros. In addition to the
distance, the range image can also encode other point features, such
as intensity.

3.2 LiDAR-NeRF Framework
Motivated by the impressive results of NeRF [21] for novel RGB
view synthesis, we therefore introduce the �rst di�erentiable novel
LiDAR view synthesis framework.
Implicit �elds to represent LiDAR sensor. As discussed in Sec-
tion 3.1, LiDAR sensors use an active imaging system that di�ers
from the passive imaging principle of cameras, requiring speci�c
modeling of the sensor’s characteristics. Additionally, each pseudo
pixel in the LiDAR range image corresponds to a real laser beam,
which is more consistent with the rays in NeRF. Therefore, we refor-
mulated NeRF to achieve novel LiDAR view synthesis. For a given
LiDAR range image, the laser’s viewing directions ) of a pseudo
pixel can be calculated using Eq. (3). The viewing directions in our
proposed LiDAR-NeRF framework form a radial pattern, closely
matching physical reality as depicted in Fig. 4 (a). The expected
depth can be obtained by integrating over samples as

⇡̂ (r) =
#’
8=1

)8
�
1 � exp(�f8X8 )

�
C8 . (5)

The expected depth represents the distance from the LiDAR sensor,
which is also represented by a pseudo pixel in the range image.
Moreover, both the origin o and viewing direction ) of the ray are



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

transformed to the global world coordinate system, allowing the
sampled points C to be actual points in the real world and consistent
across multiple LiDAR frames/range images, as shown in the top-
right portion of Fig. 4 (a).

With these geometry aspects in mind, we developed a framework
that can: 1) synthesize a novel LiDAR frame with realistic geometry;
2) estimate LiDAR intensities over the scene; and 3) predict a binary
ray-drop mask that speci�es where rays will be dropped. Both ray-
drop and intensity can be recorded as color features of LiDAR [26],
and both are view-dependent. For the radiance �eld, we follow
the traditional NeRFs, which use two successive MLPs. We utilize
the �rst MLP to estimate the density f and the expected distance
3 . The second MLP predicts a two-channel feature map as in [9]:
Intensities i and ray-drop probabilities p, respectively. Then, in the
same way as for color, we can compute the per-view intensity and
ray-drop probability by integrating along a ray r as

�̂ (r) =
#’
8=1

)8
�
1 � exp(�f8X8 )

�
i8 ,

%̂ (r) =
#’
8=1

)8
�
1 � exp(�f8X8 )

�
p8 . (6)

Altogether, our LiDAR-NeRF can be formalized as a function (f, i, p) =
5 (x, ) ), and is summarized in Fig. 4 (a).
Structural regularization. Despite the success in learning individ-
ual pixels, NeRFs tend to overlook local information, particularly
in low-texture regions, leading to poor geometry, as evidenced in
Fig. 8. Therefore, it is crucial to identify a suitable regularization
technique to guide NeRF geometry. Notably, LiDAR point clouds
exhibit clear patterns, and the transformed range images display
signi�cant structural features, which are essential for the network
to learn, as illustrated in Fig. 4 (b).

Initially, we attempted to apply the prevalent geometry regu-
larization techniques, such as the smoothness-loss used in RegN-
eRF [24] and the TV-loss used in Plenoxels [39] , which aims to
smooth neighboring points. However, we found that these tech-
niques were not e�ective in large-scale scenes, where the di�er-
ences between neighboring points can be signi�cant. Subsequently,
we explored learning structural information from the ground truth
through the gradient loss. However, we observed that this approach
was still insu�cient, as the gradient loss was dominated by the
rich-texture areas where the NeRF model excels. Consequently, we
propose a novel structural regularization strategy based on the
gradient loss, where we restrict regularization to low-texture areas,
such as the ground. Consequently, the structural regularization is
de�ned as:

Lreg =
�� ˆ⌧" (R) �⌧" (R)

��
1 , (7)

where ' is the set of training rays of local patches, and ⌧" (·)
denotes the gradient operation with low-texture areas mask.
Loss function. Our loss function includes four objectives

LC>C0; = Ldistance + _1Lintensity (r)+
_2Lraydrop (r) + _3Lreg , (8)

Table 1: LiDAR sensor con�gurations.

Sensor Details

LiDAR
LiDAR-F

Spinning, 64 beams, 10Hz capture frequency, 360°
horizontal FOV, 0.6° horizontal resolution, -52.1° to
+52.1° vertical FOV,  60< range, ±3cm accuracy.

LiDAR-T Spinning, 64 beams, 20Hz capture frequency, 360°
horizontal FOV, 0.4° horizontal resolution, -25° to
+15° vertical FOV,  200< range, ±2cm accuracy.

Sensor location: F: front. T: top.

with

Ldistance (r) =
’��⇡̂ (r) � ⇡ (r)

��
1 ,

Lintensity (r) =
’���̂ (r) � � (r)

��2
2 ,

Lraydrop (r) =
’
r2'

��%̂ (r) � % (r)
��2
2 , (9)

where ' is the set of training rays, and _ are weight coe�cients for
each term.

3.3 NeRF-MVL Dataset
As will be shown in our experiments, our approach can be applied
to existing autonomous driving datasets [2, 18, 30] that have LiDAR
sensors data. However, these datasets focus on scene-level LiDAR
observations and thus depict views acquired from the vehicle driv-
ing along the scene, with fairly low diversity. In other words, they
lack the challenging diversity of object-centric data similar to that
used for novel RGB view synthesis. To facilitate future research
in novel LiDAR view synthesis and verify the e�ectiveness of our
LiDAR-NeRF, we therefore establish an object-centric multi-view
LiDAR dataset, NeRF-MVL, with carefully calibrated sensor poses
and gathering multi-LiDAR sensor data from real autonomous ve-
hicles.
Data collection. We collect the dataset in an enclosed area, em-
ploying self-driving vehicles with multiple LiDAR sensors. The
vehicles drive around the object in a square path twice, one large
square and one small square, as shown in Fig. 5 (a). To provide more
diverse perspectives, we use various types of vehicles with di�erent
sensor placements and speci�cations. See Table 1 for sensor details.
Data preparation. As shown in Fig. 5 (b), our NeRF-MVL dataset
consists of nine objects from di�erent common tra�c categories.
After collecting multi-path, multi-sensor data, for each object, we
crop out the region of interest, i.e., the object1.We carefully calibrate
the LiDAR extrinsic parameters for every sensor, i.e., the relative
location of the LiDAR to the ego body. The transformation matrix
from the body coordinate system to the global world coordinate
system is provided from the vehicle location based on GPS and
IMU. Hence, in the dataset, we �nally provide the calibration of the
LiDAR to the global world, i.e., the lidar2world matrix, to align all
the frames. Altogether, our NeRF-MVL dataset contains more than
76k frames covering two types of collecting vehicles, three LiDAR
settings, two collecting paths, and nine objects.
1The raw data will also be released to the community.
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Figure 5: (a) We design two square paths of collection, small and large with 7 and 15 meters in length respectively. (b) Our NeRF-
MVL dataset encompasses 9 objects from common tra�c categories. We align multiple frames here for better visualization.

Table 2: Novel LiDAR view synthesis on scene-level KITTI-360 dataset. LiDAR-NeRF outperforms the baseline in all metrics.

Method C-D# F-score" RMSE# X1" X2" X3" SSIM" MAE#
LiDARsim [20] 0.951 66.89 5.745 66.34 71.11 74.42 0.696 0.126
PCGen [17] 0.187 87.16 4.328 76.90 79.72 81.38 0.550 0.245

Ours-NeRF 0.143 85.93 4.050 78.13 79.79 80.42 0.545 0.235
Ours-iNGP (w/ SR) 0.081 92.49 3.615 82.18 83.40 83.97 0.626 0.096

Ground Truth LiDARsim PCGen LiDAR-NeRF

0

Figure 6: Qualitative comparison on KITTI-360. Our LiDAR-NeRF produces more realistic LiDAR patterns with highly detailed
structure and geometry (zoom-in for the best of views).

4 EXPERIMENTS
We evaluate the scene-level and object-level synthesis ability of
our LiDAR-NeRF both quantitatively and qualitatively. Additional
results and details are provided in the supplementary material.
Baseline renderers.As generating novel LiDAR views remains un-
explored, we moderately adapt existing model-based LiDAR simula-
tors, i.e., LiDARsim [20] and PCGen [17], as the baseline renderers.
For exhaustive evaluation and comparisons, we also validate dif-
ferent settings of the baseline methods in Appendix B.2 and report
the best value in the following sections.
Dataset.We conduct scene-scale experiments on the challenging
KITTI-360 [18] dataset, which was collected in suburban areas.
We evaluate LiDAR-NeRF on LiDAR frames from 4 static suburb
sequences as [7]. Each sequence contains 64 frames, with 4 equidis-
tant frames for evaluation. We conduct the object-level experiments
on our NeRF-MVL dataset. For fast validation, we extract a pocket
version of the dataset with only 7.3k frames covering the nine
categories.

Metrics. For the novel LiDAR range images, we compute the usual
metrics in depth estimation [8]: Root mean squared error (RMSE),
and threshold accuracies (X1, X2, X3). Moreover, we measure the
structural quality using the SSIM [34]. To further evaluate the novel
LiDAR view quality, we convert the rendered LiDAR range image
to a point cloud between the original and the novel point clouds
⌧1,⌧2. It is computed as

C-D (⌧1,⌧2 ) =
1

|⌧1 |
’
G 2⌧1

min
~2⌧2

kG � ~ k22+

1
|⌧2 |

’
~2⌧2

min
G 2⌧1

k~ � G k22 . (10)

We also report the F-Score between the two point clouds with
a threshold of 5cm. For the novel intensity image, it is evaluated
using mean absolute error (MAE).
Implementation details. Our LiDAR-NeRF-iNGP is implemented
based on torch-ngp [32], which introduces a hybrid 3D grid struc-
ture with a multi-resolution hash encoding and lightweight MLPs.
We optimize our LiDAR-NeRF model per scene using a single
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Table 3: Novel LiDAR view synthesis on object-level NeRF-MVL dataset. LiDAR-NeRF outperforms the baseline in all metrics.
Note that on the object-centric NeRF-MVL with rich texture information, there is no need to apply structural regularization.

Method C-D# F-score" RMSE# X1" X2" X3" SSIM" MAE#
LiDARsim [20] 0.022 96.01 5.984 83.43 83.43 83.43 0.612 4.143
PCGen [17] 0.078 90.40 7.558 73.13 73.13 73.13 0.217 6.268

Ours-NeRF 0.028 92.81 3.864 93.65 93.65 93.65 0.462 2.642
Ours-iNGP 0.005 98.50 1.305 98.86 98.86 98.86 0.879 1.057

Ground Truth LiDAR-NeRF

GT point
Novel point

Results from different viewpoints

seats

Figure 7: Qualitative results on NeRF-MVL dataset. LiDAR-NeRF can e�ectively encode 3D information and multiple attributes,
enabling it to accurately model the behavior of beams as they penetrate car glass and reach seats. Moreover, the high quality of
the results obtained from di�erent viewpoints serves as compelling evidence of our method’s e�ectiveness.

NVIDIA GeForce RTX 3090 GPU. For each scene, we center the
LiDAR point clouds by subtracting the origin of the global world
coordinate system from the scene’s central frame. Then, the scene
frames are scaled by a factor such that the region of interest falls
within a unit cube, which is required by most positional encodings
used in NeRFs. We use Adam [14] with a learning rate of 1e-2 to
train our models. The coarse and �ne networks are sampled 768 and
64 samples per ray, respectively. The �nest resolution of the hash
encoding is set to 32768. For structural regularization, we employ
patch-wise training with a patch size of 2x8 and mask gradients
smaller than the threshold of 0.1. The optimization process consists
of a total of 30k steps, with _1 = 1, _2 = 1, and _3 = 142. For
our NeRF-MVL dataset, we �rst get the 3D box of each object, and
then project to the range view. Only a few rays within the box are
trained, so the network converges quickly. Our LiDAR-NeRF-NeRF
is implemented based on nerf-pytorch [38]. The coarse and �ne
networks are sampled 64 and 128 times, respectively, during train-
ing. The highest frequency of the coordinates is set to 215. We use
Adam [14] with a learning rate of 5e-4 to train our models. We
optimize the total loss LC>C0; for 400k iterations with a batch size
of 2048.

4.1 Scene-level Synthesis
We �rst evaluate the e�ectiveness of our LiDAR-NeRF on scene-
level novel LiDAR view synthesis. The results are provided at the top
of Table 2. Our LiDAR-NeRF signi�cantly outperforms the baseline
renderers over all metrics. To be speci�c, LiDAR-NeRF is superior
to the baseline renderers with a comfortable margin in terms of

C-D (0.081 vs 0.187, 0.951) and X1 (82.18 vs 76.90, 66.34). In Fig. 6,
we provide qualitative results. Both methods are able to render
general scene structures. While our LiDAR-NeRF produces more
realistic LiDAR patterns and highly detailed structure and geometry.
The baseline LiDAR simulator mimics the physical LiDAR model
through explicit 3D reconstruction and ray-tracing via traditional
renderers.

As shown in Fig. 2 and Fig. 6, the explicit 3D mesh reconstruction
of LiDAR point clouds su�ers from inaccuracy and tends to over-
estimate the object’s surface. Consequently, these methods often
produce unrealistic LiDAR patterns, as their explicit reconstruction
and ray-casting neglect certain crucial features of LiDAR points.
Speci�cally, the laser beams emitted by the LiDAR sensor can be
a�ected by the surface material and normal direction, leading to
the penetration of some beams through car glass and the loss of
other beams. These e�ects are not fully considered in the explicit
reconstruction process.

4.2 Object-level Synthesis
We conduct object-level synthesis experiments on the nine common
tra�c objects in our NeRF-MVL dataset. As shown in Table 3, our
LiDAR-NeRF still signi�cantly outperforms the baseline renderers
by a large margin over all the metrics on all nine categories.

Furthermore, the qualitative visualization presented in Fig. 7 pro-
vides evidence that our approach yields signi�cantly high-quality
point clouds. The LiDAR-NeRF model e�ciently encodes 3D infor-
mation and multiple attributes, allowing it to accurately simulate
the behavior of beams as they penetrate car windows and reach
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Table 4: Ablations of our LiDAR-NeRF. We ablate di�erent architectures and regularization.

Component C-D# F-score" RMSE# X1" X2" X3" SSIM" MAE#
Architecture

w/ NeRF [21] 0.126 87.64 3.948 78.26 79.57 80.09 0.555 0.226
w/ iNGP [22] 0.088 92.00 3.577 80.40 81.47 81.87 0.605 0.101

Regularization (w/ iNGP)

w/o Reg 0.088 92.00 3.577 80.40 81.47 81.87 0.605 0.101
Smooth loss 0.085 92.91 3.576 80.48 81.50 81.92 0.606 0.104
Gradient loss 0.080 92.91 3.601 80.67 81.65 82.06 0.607 0.103
Struc-Reg 0.077 92.98 3.511 82.25 83.28 83.73 0.635 0.096

w/ NeRF w/ iNGP (w/o Struc-Reg)Ground Truth w/ iNGP (w/ Struc-Reg)

Figure 8: Qualitative evaluation of various con�gurations. The iNGP’s hybrid grid architecture achieves more detailed structures.
Our structural regularization signi�cantly improves the geometry estimation and produces more realistic LiDAR patterns
(zoom-in for the best of views).

LiDAR-NeRFOriginal scene

Figure 9: Scene editing. The augmented scene from our
LiDAR-NeRF has realistic occlusion e�ects and consistent
LiDAR pattern.

seats. Additionally, the high quality of the results obtained from
various viewpoints evidences the e�ectiveness of our approach.

4.3 Ablations
Our investigation into various con�gurations within the LiDAR-
NeRF framework includes an exploration of di�erent architectures
and regularization. As shown in Table 4 and Fig. 8, we examine
the widely used NeRF [21] and the best performing Instance-NGP
(iNGP) [22]. iNGP introduces a hybrid 3D grid structure with a
multi-resolution hash encoding and lightweight MLPs that is more
expressive than the vanilla NeRF and achieves better performance.
Thus we chose to use iNGP as our base architecture.

Additionally, we compare the structural regularization (Struc-
Reg) of our LiDAR-NeRF with the aforementioned regularization
in Section 3.2. The results in Table 4 and Fig. 8 demonstrate the
e�ectiveness of our structural regularization both quantitatively
and qualitatively.

4.4 Scene Editing
As our LiDAR-NeRF can e�ectively synthesize novel LiDAR views
at both scene level and object level, it can be exploited to achieve
scene editing. We provide an example for novel scene arrangements,
which corresponds to editing the scene from the KITTI-360 dataset
by fusing novel objects from our NeRF-MVL dataset. Given the 6D
pose (3D translation and yaw, pitch, and roll rotations) of the new
object, we �rst render the corresponding novel view of the object,
and then paste it to the desired position in the scene. Furthermore,
it is worth mentioning that our method has the capability to adjust
the intrinsics of LiDAR, thereby addressing the issue of inconsistent
LiDAR patterns resulting from the use of di�erent LiDAR devices
in the NeRF-MVL and KITTI-360 datasets. As illustrated in Fig. 9,
our LiDAR-NeRF can render the corresponding novel view, and
the yield augmented scene has realistic occlusion e�ects and a
consistent LiDAR pattern.

5 CONCLUSION
We have introduced the new task of novel LiDAR view synthesis
and proposed the �rst di�erentiable LiDAR renderer. Our proposed
method, LiDAR-NeRF, jointly learns the geometry and attributes of
3D points with structural regularization, resulting in more accurate
and realistic LiDAR patterns. We further established the NeRF-MVL
dataset, which contains 9 objects over 360-degree LiDAR view-
points acquired with multiple sensors. Our experiments on both
scene-level and our object-level data have evidenced the superior-
ity of our approach over model-based simulators. Importantly, our
approach is simple and does not rely on explicit 3D reconstruction
and rendering engines. We hope that our work can shed light on
novel LiDAR view synthesis and inspire future research in this �eld.
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