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A LIMITATIONS AND FUTUREWORK.
As this paper is the first attempt at novel LiDAR view synthesis,
there remains room for improvement. Our LiDAR-NeRF draws
inspiration from the original NeRF formalism. As such, it is bet-
ter suited to static scenes, and requires per-scene optimization.
Fortunately, much progress is being made in handling dynamic
scenes [2, 8, 9] and generalization [10, 12] in image-based NeRF,
and we expect these advances to facilitate the development of coun-
terparts for novel LiDAR view synthesis. Note that, in this work,
we have considered the problem of synthesizing LiDAR data only,
but jointly rendering LiDAR and images is a natural step forward.
We therefore plan to extend our NeRF-MVL dataset to a multimodal
one. Moreover, we are integrating various LiDAR renderers, includ-
ing LiDAR simulators and our proposed LiDAR-NeRF framework,
with the goal of developing a unified Codebase for novel LiDAR
view synthesis that can benefit the community. Altogether, we hope
that our work will inspire other researchers to contribute to the
development of novel LiDAR view synthesis.

B ADDITIONAL DETAILS
B.1 Ablation details
All ablation experiments were conducted on the seq-1908-1971 of
the KITTI-360 dataset, which is a large, clear scene with numerous
objects, making it an ideal sequence for comparison.

B.2 Baseline details
As generating novel LiDAR views remains unexplored, we moder-
ately adapt existing model-based LiDAR simulators as our baseline.
Given a sequence of LiDAR frames, the objective is to generate
novel LiDAR scenes with realistic geometry. In essence, the base-
line, summarized in Fig. 1, follows the physics-based, multi-step
approach of existing simulation pipelines [6, 7]. In short, they first
gather a set of LiDAR frames, which are transformed into the global
world coordinate system. The resulting aligned dense 3D scene or
mesh is projected to the novel view via ray-casting. Finally, the
problem of LiDAR ray-dropping is simulated to improve realism.
Because the official codes of LiDARsim [7] and PCGen [6] are not
publicly available, we re-implemented them following the papers as
closely as possible. Below, we discuss the implementation in more
detail.

B.2.1 LiDARsim. Point cloud meshing and mesh-ray intersec-
tion. Following LiDARsim [7], our pipeline also consists of two
steps: point cloud meshing and mesh-ray intersection. The point
cloud meshing step is implemented based on the Poisson surface
reconstruction algorithm [3], which is a modification from the
original author’s Surfel-based meshing. The mesh-ray intersection
step is implemented based on Intel Embree using the Open3D li-
brary [14]. The performance of Poisson surface reconstruction is
sensitive to hyperparameters, namely the maximum depth of the

tree and the weight threshold for selecting mesh vertices. For each
dataset, we perform grid search of these two parameters on the
training set and select the best-performing one on the test set.
Ray-drop network. To train the ray-drop network, following
LiDARsim [7], we concatenate range, intensity, incidence angle (in
cosine), and the normal of surface hit as inputs. We then train a
U-Net with 4 down-sampling (with 64, 128, 256, and 512 channels
respectively) and 4 up-sampling layers (with 1024, 512, 256, and 128
channels respectively) to predict the ray-drop mask. We train on
the training frames for 10 epochs. The final range image prediction
is the ray-casted results multiplied by the ray-drop mask. We use
this final range image for evaluation.

B.2.2 PCGen. Ray-casting. Ray-casting defines the intersections
between the laser beams and the dense point cloud. The standard
approach is closest-point (CP) ray-casting [5], which projects the
dense point cloud to a range image , and, for each ray, selects the
point with the smallest measured distance, as is commonly done
in rendering pipelines with the so-called z-buffer. In real-world
scenarios, however, the calibration, sensor synchronization, and
other properties [13] are affected by different noise sources, and
the points in the dense point cloud do not strictly lie on the scene
surface. Thus, considering only the closest point tends to render
noisy ray-casted point clouds and more points in the z-buffer need
to be taken into account. PCGen [6] propose the first peak averaging
(FPA) raycasting, averaging the points within a certain threshold
near the closest point, and weighting them by their inverse distance.
Ray-drop network. Ray-casting yields a nearly perfect point cloud
in the novel view. However, the laser returns of a real LiDAR sensor
are affected bymany factors, such as the distance to the scene, the in-
cidence angle, and the material texture and reflectivity. To improve
realism, we follow from PCGen [6] to employ a small surrogate MLP
to learn the ray-drop, which we dub ray-drop MLP. Specifically, we
model a ray’s return probability as 𝑝 = 𝑀𝐿𝑃 (𝜽 ′, 𝑑, 𝑖), where 𝜽 ′, 𝑑 ,
and 𝑖 are the viewing direction in the local coordinate system, the
distance, and the intensity of the ray. For the implementation of
ray-drop MLP, it has 4 layers with a width of 128. It is trained with
Adam [4] with a learning rate of 5e-3, and supervised with MSE
loss for 10k iterations with a batch size of 2048.

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 More ablations of LiDAR-NeRF.
LiDAR-NeRF (w NeRF). We ablate the training strategies of our
LiDAR-NeRF (w NeRF) in Table 1. In the training process, we scale
(Scale) the scene frames with a factor such that the region of interest
falls within a unit cube. There is also a parameterization function
(contract) used in [1, 11] as:

contract(𝑥) =
{

𝑥/𝑟, if ∥𝑥 ∥ ≤ 𝑟,

(1 + 𝑏 − 𝑏𝑟
∥𝑥 ∥ )

𝑥
∥𝑥 ∥ , otherwise. (1)
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Figure 1: Baseline multi-step LiDAR simulator pipeline.

Table 1: Ablation of LiDAR-NeRF (w NeRF) training strategies.

Scale Contract Cos-lr C-D↓ F-score↑ RMSE↓ 𝛿1↑ 𝛿2↑ 𝛿3↑ SSIM↑ MAE↓

✗ ✗ ✓ 132.4 00.19 9.910 00.07 00.62 2.087 0.296 0.491
✗ ✓ ✓ 0.129 87.08 3.849 79.63 81.09 81.64 0.575 0.231
✓ ✗ ✗ 0.146 84.07 3.978 77.81 79.33 79.81 0.549 0.225
✓ ✗ ✓ 0.126 87.64 3.948 78.26 79.57 80.09 0.555 0.226

Where 𝑟 and 𝑏 are the radius parameters to decide the mapping
boundary. We set 𝑟 = 10 and 𝑏 = 1 for the scene point clouds. As
expected, without the parameterization function, the model hardly
learned anything.While the ’Scale’ and ’Contract’ functions achieve
comparable results. Moreover, we employ a cosine schedule with
one thousand iterations to warm up the learning rate (Cos-lr) to
stable training, which slightly improves the performance.

C.2 More ablations of baseline.
For exhaustive evaluation and fair comparisons, we also validate
different settings of the baseline methods as follows. In Table 2, we
investigate the different components of baseline simulators.
LiDARsim. For LiDARsim [7], the ray-drop U-Net can both boost
the performance and demonstrate its effectiveness.
PCGen. For PCGen [6], the FPA z-buffer ray-casting and ray-drop
MLP can both boost the performance and demonstrate their effec-
tiveness.

It is worth noting that training the ray-drop network necessitates
considerable effort, entailing the initial rendering of training sets,
followed by the construction of paired training sets for the ray-drop
network, comprising the rendered outcomes and their correspond-
ing ground truth. Subsequently, it is imperative to meticulously
adjust the model’s architecture and training parameters to achieve
superior results for each scene or object.

C.3 More results.
KITTI-360 dataset. We report detailed results on the four se-
quences of the KITTI-360 dataset in Table 3. Our LiDAR-NeRF
consistently outperforms the baseline over all sequences in all met-
rics.
NeRF-MVL dataset. We report detailed results on nine object
categories of NeRF-MVL dataset in Table 4. Our LiDAR-NeRF con-
sistently outperforms the baseline over all categories in all metrics.

w/o Struc-Reg

w/ Struc-Reg

Figure 2: Our structural regularization significantly improves
the geometry estimation and produces more realistic LiDAR
patterns.

D ADDITIONAL QUALITATIVE
VISUALIZATION.

Structural regularization. Our structural regularization signifi-
cantly improves the geometry estimation and produces more real-
istic LiDAR patterns as shown in Fig. 2
Scene editing. As our LiDAR-NeRF can effectively synthesize
novel LiDAR views at both scene level and object level, it can be
exploited to achieve scene editing. We provide an example for novel
scene arrangements, which corresponds to editing the scene from
the KITTI-360 dataset by fusing novel objects from our NeRF-MVL
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Table 2: Ablation of baseline simulators.

Method Component C-D↓ F-score↑ RMSE↓ 𝛿1↑ 𝛿2↑ 𝛿3↑ SSIM↑ MAE↓

LiDARsim [7] Mesh ray-casting 1.026 64.62 5.674 52.09 57.90 60.15 0.592 0.156
+ Ray-drop U-Net 0.981 66.77 5.404 67.33 72.70 74.76 0.711 0.122

PCGen [6]
CP ray-casting 0.259 83.87 4.312 65.06 67.86 69.09 0.153 0.274
+ FPA ray-casting 0.248 85.43 4.332 65.21 67.93 69.13 0.155 0.280
+ Ray-drop MLP 0.220 87.75 4.029 77.35 79.95 81.05 0.220 0.238

Table 3: More results of novel LiDAR view synthesis on KITTI-360. LiDAR-NeRF outperforms the baseline over all sequences
in all metrics.

Sequence C-D↓ F-score↑ RMSE↓ 𝛿1↑ 𝛿2↑ 𝛿3↑ SSIM↑ MAE↓
LiDARsim [7]

Seq 1538–1601 0.794 72.13 5.455 67.49 73.68 78.17 0.719 0.125
Seq 1728–1791 0.819 65.38 6.083 67.20 70.86 74.11 0.694 0.122
Seq 1908–1971 0.981 66.77 5.404 67.33 72.70 74.76 0.711 0.122
Seq 3353–3416 1.211 63.29 6.038 63.35 67.20 70.64 0.660 0.133

Average 0.951 66.89 5.745 66.34 71.11 74.42 0.696 0.126

PCGen [6]

Seq 1538–1601 0.159 88.64 4.091 75.64 79.62 82.08 0.558 0.254
Seq 1728–1791 0.194 83.87 4.560 76.19 79.37 81.35 0.545 0.243
Seq 1908–1971 0.220 87.75 4.029 77.35 79.95 81.05 0.559 0.238
Seq 3353–3416 0.173 88.37 4.633 78.40 79.92 81.05 0.536 0.244

Average 0.187 87.16 4.328 76.90 79.72 81.38 0.550 0.245

LiDAR-NeRF (w/ NeRF)

Seq 1538–1601 0.148 84.88 4.007 76.66 79.09 79.85 0.527 0.242
Seq 1728–1791 0.148 83.88 4.207 78.44 80.35 81.09 0.549 0.239
Seq 1908–1971 0.126 87.64 3.948 78.26 79.57 80.09 0.555 0.226
Seq 3353–3416 0.150 87.31 4.039 79.15 80.14 80.63 0.550 0.233

Average 0.143 85.93 4.050 78.13 79.79 80.42 0.545 0.235

LiDAR-NeRF (w/ iNGP and StrucReg)

Seq 1538–1601 0.073 92.55 3.530 80.76 82.71 83.52 0.597 0.102
Seq 1728–1791 0.088 90.95 3.766 82.91 84.26 84.91 0.646 0.091
Seq 1908–1971 0.077 92.98 3.511 82.25 83.28 83.73 0.635 0.096
Seq 3353–3416 0.086 93.46 3.654 82.78 83.36 83.71 0.625 0.094

Average 0.081 92.49 3.615 82.18 83.40 83.97 0.626 0.096

dataset. Given the 6D pose (3D translation and yaw, pitch, and roll
rotations) of the new object, we first render the corresponding novel
view of the object, and then paste it to the desired position in the
scene. Furthermore, it is worth mentioning that our method has the
capability to adjust the intrinsics of LiDAR, thereby addressing the
issue of inconsistent LiDAR patterns resulting from the use of dif-
ferent LiDAR devices in the NeRF-MVL and KITTI-360 datasets. As
illustrated in Fig. 3, our LiDAR-NeRF can render the corresponding
novel view, and the yield augmented scene has realistic occlusion
effects and a consistent LiDAR pattern, compared with the common

cope-paste strategy. We provide more visualizations in the video in
the supplementary material.
Qualitative results on KITTI-360.We provide more qualitative
results on KITTI-360 dataset in Fig. 4, which shows that our LiDAR-
NeRF produces high-quality point clouds fidelity with the ground
truth.
Video demo. In addition to the figures, we have attached a video
demo in the supplementary materials, which consists of hundreds
of frames that provide a more comprehensive evaluation of our
proposed approach.
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Table 4: Novel LiDAR view synthesis on NeRF-MVL. Our LiDAR-NeRF outperforms the baseline in all metrics.

Object-Category C-D↓ F-score↑ RMSE↓ 𝛿1↑ 𝛿2↑ 𝛿3↑ SSIM↑ MAE↓

LiDARsim [7]

Bollard 0.011 98.92 5.751 84.64 84.64 84.64 0.518 2.172
Car 0.067 94.06 6.331 82.35 82.37 82.37 0.645 1.426
Pedestrian 0.011 97.91 4.788 90.20 90.20 90.20 0.748 4.353
Pier 0.016 95.33 6.606 78.67 78.67 78.67 0.510 2.541
Plant 0.018 93.81 5.315 86.45 86.45 86.45 0.667 0.852
Safety barrier 0.015 97.95 6.697 78.29 78.29 78.29 0.565 5.801
Tire 0.021 95.45 6.936 75.53 75.53 75.53 0.566 0.457
Traffic cone 0.013 99.59 5.861 88.14 88.14 88.14 0.628 19.14
Warning sign 0.024 91.05 5.569 86.57 86.57 86.57 0.663 0.546

Average 0.022 96.01 5.984 83.43 83.43 83.43 0.612 4.143

PCGen [6]

Bollard 0.021 96.71 9.928 57.43 57.43 57.43 0.082 4.046
Car 0.446 72.23 5.829 86.37 86.37 86.37 0.331 0.123
Pedestrian 0.063 92.43 4.364 92.61 92.61 92.61 0.472 6.073
Pier 0.017 96.92 9.534 58.11 58.11 58.11 0.088 4.557
Plant 0.021 91.33 6.729 76.26 76.26 76.26 0.280 1.475
Safety barrier 0.070 74.88 5.382 87.33 87.33 87.33 0.207 5.689
Tire 0.026 94.84 8.748 62.58 62.58 62.58 0.095 0.714
Traffic cone 0.014 98.52 8.698 71.80 71.80 71.80 0.223 32.26
Warning sign 0.020 95.77 8.810 65.72 65.72 65.72 0.171 1.472

Average 0.078 90.40 7.558 73.13 73.13 73.13 0.217 6.268

LiDAR-NeRF (w/ NeRF)

Bollard 0.028 90.48 3.805 93.56 93.56 93.56 0.245 0.426
Car 0.033 92.77 4.044 93.14 93.14 93.14 0.544 0.457
Pedestrian 0.018 96.33 3.299 95.70 95.70 95.70 0.627 6.454
Pier 0.014 96.68 3.701 93.52 93.52 93.52 0.353 0.837
Plant 0.019 96.30 3.349 95.02 95.02 95.02 0.571 0.472
Safety barrier 0.045 89.59 3.693 93.87 93.87 93.87 0.517 4.070
Tire 0.039 89.52 3.640 93.27 93.27 93.27 0.448 0.100
Traffic cone 0.026 92.72 4.747 92.66 92.66 92.66 0.428 10.88
Warning sign 0.033 90.87 4.296 92.62 92.62 92.62 0.424 0.082

Average 0.028 92.81 3.864 93.65 93.65 93.65 0.462 2.642

LiDAR-NeRF (w/ iNGP)

Bollard 0.007 98.54 0.974 99.13 99.13 99.13 0.786 0.723
Car 0.005 99.33 2.256 97.85 97.85 97.85 0.842 0.436
Pedestrian 0.001 99.97 1.381 99.24 99.24 99.24 0.941 1.650
Pier 0.004 98.14 1.047 99.08 99.08 99.08 0.889 0.671
Plant 0.001 99.36 0.415 99.80 99.80 99.80 0.976 0.464
Safety barrier 0.018 92.41 2.624 96.63 96.63 96.63 0.622 2.640
Tire 0.001 100.0 0.563 99.64 99.64 99.64 0.965 0.174
Traffic cone 0.002 100.0 1.221 99.32 99.32 99.32 0.949 2.493
Warning sign 0.006 98.77 1.266 99.13 99.13 99.13 0.948 0.259

Average 0.005 98.50 1.305 98.86 98.86 98.86 0.879 1.057
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Figure 3: Scene editing. The augmented scene from our LiDAR-NeRF has realistic occlusion effects and consistent LiDAR
pattern thanks to our differentiable LiDAR rendering formalism, compared with the common cope-paste strategy.
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Figure 4: Qualitative results on KITTI-360. The high quality of the results from different view-points demonstrates the
effectiveness of our method.
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