
A Datasets & Preprocessing

We perform our experiments using three datasets from three different domains: MIMIC-III, ETTm1
and Taskonomy. The description of these three datasets are as follows:

Taskonomy Taskonomy is currently the largest multi-task dataset in the computer vision domain.
It’s a diverse dataset with data collected from the 3D scans of near 600 buildings. There are more
than 4 million instances in the dataset. we follow [4, 1] to conduct the splits of train, validation, and
test sets within 3, 923, 543 training instances, 45, 715 validation instances and 48, 362 test instances.
Additionally. All labels used in the Taskonomy dataset were normalized to have zero mean and unit
standard deviation. The five vision tasks on the Taskonomy dataset are: Semantic Segmentation,
Depth Estimation, Surface Normal, Keypoint Detection, and Canny Edge Detection. Though the
number of combinations is limited for the Taskonomy dataset, due to over ten million parameters in
the network and about four million images for training, it is still time-consuming to finish all MTL
procedures, which take 5, 472 GPU hours in total.

ETTm1 ETTm1 dataset contains the data collected from an electricity transformer from a region
of China. It contains 6 power load series and an oil temperature series that are recorded every 15
minutes range from July 2016 to July 2018. The 6 power load series are: HF (High useFul load),
HL (High useLess load), MF (Middle useFul load), ML (Middle useLess load), LF (Low useFul
load), LL (Low useLess load). We use the observations from all series as input, and treat a specific
series output as a single forecasting task. We follow [6] to split the dataset into training, validation
and test set in chronological order by the ratio of 6 : 2 : 2. In total, the construction processes of the
meta-learning data (C, Y) on Taskonomy cost 346 GPU hours.

MIMIC-III The Medical Information Mart for Intensive Care (MIMIC-III) dataset collects the
de-identified electronic heal records (EHRs) of patients admitted to critical care units at a Boston-area
hospital from 2001–2012. Regarding the MIMIC-III dataset, as noted by [2, 3], the medical scenarios
usually did not hold enough data compared with machine learning applications in natural language or
computer vision. Accordingly, MTL can play a key role in those scenarios to boost the performance
of machine learning models. Therefore, we follow the few-shot setup in [2, 3] to construct the training
data. In total, we evaluated the experiments on EHR records collected from patients. We divided the
dataset into 1755 training instances, 500 validation instances, and 500 test instances. We follow [2, 3]
to extract the data from MIMIC-III and construct the train, validation, and test sets correspondingly.
[3] defined 12 task categories, each of which includes one or multiple specific tasks. For instance,
there are 19 major icd codes, and each one corresponds to a binary prediction task. We conduct MTL
procedures for 27 one-task combinations, 351 two-task combinations (for HOA-based methods), and
3, 000 randomly selected high-order combinations (as an approximation to C). The selected tasks are
provided in Table 1. A task that has a name with format icd [diagosename] means this is a task for
predicting the icd code diagose’s presence. Other tasks’ definitions are all follow [2, 3]. In total, the
construction processes of the meta-learning data (C, Y) on MIMIC-III cost 4, 138 GPU hours.

We denote the processed datasets as Taskonomy-5, ETTm1-7, and MIMIC-III-27, respectively. We
conduct all corresponding MTL procedures to collect the transferring gains on the validation set and
record the final performance on the test set. During the MTL procedure for each task combination,
we restart the training with five random seeds and report the average performance to eliminate the
randomness in neural network training.

B MTL Backbone Models & Hyperparameters

In this section, we provide our experimental details for reproducibility, including the backbone models
used for different datasets and their hyperparameter settings. All experiments are implemented in
PyTorch and conducted on a single NVIDIA V100 16GB GPU.

For MIMIC-III-27, we use the model proposed in [3]. It leverages a two-layer GRU encoder for all
tasks while each task has a task-specific fully-connected layer as the decoder. The input sequence
length is set to 48. The number of GRU layers is 2, and the hidden size of the GRU layer is 512.
The learning rate is set to 0.001. The dropout rate of GRU layers is 0.1. The batch size is 512.
We leverage an early stopping strategy to train the model and the early stopping patience is 5. The
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Datasets Selected Tasks

Taskonomy-5 Semantic Segmentation (s) , Depth Estimation (d) , Surface Normal (n) ,
Keypoint Detection (k) , and Edge Detection (e)

ETTm1-7
High useFul load(HF ) , High useLess load(HL) , Middle useFul load(MF ) ,
Middle useLess load(ML) , High useFul load(LF ) , High useLess load(LL) ,
Oil Temperature(OT )

MIMIC-III-27

icd infection (t1) , icd neoplasms (t2) , icd endocrine (t3) , icd blood (t4) ,
icd mental (t5) , icd nervous (t6) , icd circulatory (t7) , icd respiratory (t8) ,
icd digestive (t9) , icd genitourinary (t10) , icd pregnancy (t11) , icd skin (t12) ,
icd musculoskeletal (t13) , icd congenital (t14) , icd ill defined (t15) , icd injury (t16) ,
dis 24h (t17) , dis 48h (t18) , mor 24h (t19) , mor 48h (t20) , los (t21) , rea (t22) ,
acu (t23) , dnr 24h (t24) , dnr 48h (t25) , cmo 24h (t26) , cmo 48h (t27)

Table 1: Tasks for Taskonomy-5, MIMIC-III-5, MIMIC-III-27.

final results of different task combinations on MIMIC-III-27 dataset are the average results of 5
random seeds. We utilize cross-entropy loss for all tasks on MIMIC-III-27.Its code is available at:
https://github.com/mmcdermott/comprehensive_MTL_EHR.

For Taskonomy-5, we follow the model used in [4]. It leverages a modified Xception network as the
encoder, which has 36 convolutional layers forming the feature extraction base. As for task-specific
decoders, it uses four transposed convolutional layers and four convolution layers. We follow the
hyperparameters of Xception encoder used in [4] for Taskonomy-5 experiments, which modifies the
original proposed Xception network for a low inference time. It replaces the max-pooling layers with
2× 2 convolution layers with a stride of 2, the input image size is 256× 256. The learning rate is
set to 0.1, and the batch size is 16. For model training, we follow [4], which trains the model for
100 epochs and picks the model that has the best performance on the validation set. The final results
of different task combinations on Taskonomy-5 dataset are the average results of 3 random seeds.
We utilize cross-entropy loss for Semantic Segmentation and L1 loss for all other tasks for model
optimization. Its code is available at: https://github.com/tstandley/taskgrouping.

For ETTm1-7, we follow the model used in [6]. It leverages an encoder-decoder model with decompo-
sition capabilities and an approximation to attention based on Fourier transform. The input sequence
length is set to 96, and the prediction length is set to 24. The number of encoder layers is 2, and the
number of the decoder layer is 1. The number of attention heads in Autoformer’s auto-correlation
layers is 8. The dropout rate is 0.05. The hidden dimension of embedding in encoder layers and
decoder layers is 512, and the dimension of the fully-connected layer is 2048. The learning rate is set
to 0.0001 and the batch size is 32. We leverage an early stopping strategy to train the model and the
early stopping patience is 10. The final results of different task combinations on ETTm1-7 dataset
are the average results of 5 random seeds. We utilize L2 loss for all tasks on ETTm1-7. Its code is
available at: https://github.com/thuml/Autoformer.

C Grouping Selection Algorithm

For Taskonomy-5 and ETTm1-7, we follow the brute-force search solution used in [4, 1]. Considering
the overwhelming computational cost of applying the brute-force search on MIMIC-III-27, we
utilize a beam search algorithm as an alternative. The beam search algorithm keeps track of multiple
best search sequences with a specific beam size rather than one search sequence compared to greedy
search algorithm. It provides a tradeoff between accuracy v.s. computational cost via its flexible
choice of the beam size. The pseudo-code of the beam search algorithm is provided at Algorithm 1.

D Additional Experiments & Analyses

We provide additional experiments and experimental analyses in this section. Generally, we provide
the case studies on three aspects: (1) We provide case studies on the task level gains, which includes
the per-task gains on each dataset with different methods; (2) We provide further visualization results
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Algorithm 1: Beam Search for Grouping Selection
Input: A set of task combinations Y , all task combinations Ya, budget c0, number of search beginning

points β, remaining budget cr , beam size γ. Initially, cr = 1.
Function beamSearch(Ya, c0, β):

runningList← best β candidates in Ya;
while cr ≤ c0 do

for List in runningList do
Y= Filter(Ya, List);
while Y is not empty do
X ← Y.pop ;
newList ← List ∪ X ;
runningList ← runningList ∪ newList

end
end
runningList← Best γ candidates in runningList;
cr = cr + 1;

end
S ← ∅;
for List ∈ runningList do

S ← Better(S,List);
end
return S

Function Filter(Y ,List):
Remove candidates that cannot improve List’s performance on any task.

Function Better(S1, S2):
Score1 ← total gain of S1;
Score2 ← total gain of S2;
if Score1 > Score2 then

return S1

else
return S2

Output: Best group selection S

Table 2: Case studies on Taskonomy-5, we list the best task combinations identified by different
methods.

Task Methods s d n k e Estimated Gain Valid Gain Test Gain

s
HOA ✓ – ✓ – – +19.49% +19.49% +17.35%

MTG-Net ✓ – ✓ – – +19.49% +19.49% +17.35%
Oracle ✓ – ✓ – – – +19.49% +17.35%

d
HOA – ✓ ✓ – – +14.61% +14.61% +16.76%

MTG-Net – ✓ ✓ – – +14.61% +14.61% +16.76%
Oracle – ✓ ✓ – – – +14.61% +16.76%

n
HOA – – ✓ – ✓ +1.69% +1.69% +1.71%

MTG-Net – ✓ ✓ – ✓ +1.80% +1.80% +1.82%
Oracle – ✓ ✓ – ✓ – +1.80% +1.82%

k
HOA – – ✓ ✓ – +44.33% +44.33% +37.09%

MTG-Net – – ✓ ✓ – +44.33% +44.33% +37.09%
Oracle – – ✓ ✓ – – +44.33% +37.09%

e
HOA – – ✓ – ✓ +4.12% +4.12% +4.25%

MTG-Net – ✓ ✓ – ✓ +11.04% +11.04% +12.14%
Oracle – ✓ ✓ – ✓ – +11.04% +12.14%
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Table 3: Case studies on ETTm1-7, we list the best task combinations identified by different methods.
Task Methods HF HL MF ML LF LL OT Estimated Gain Valid Gain Test Gain

HF
HOA ✓ – – ✓ – – – +9.63% +9.63% +7.99%

MTG-Net ✓ – – ✓ ✓ – – +19.20% +19.20% +16.43%
Oracle ✓ – – ✓ ✓ – – - +19.20% +16.43%

HL
HOA – ✓ – ✓ – – – +4.84% +4.84% -2.41%

MTG-Net ✓ ✓ ✓ ✓ – ✓ ✓ +7.57% +7.57% -1.15%
Oracle ✓ ✓ – – ✓ – – - +8.22% -1.09%

MF
HOA – – ✓ – ✓ – – +12.75% +12.75% +20.68%

MTG-Net ✓ ✓ ✓ – ✓ – – +16.08% +16.08% +16.53%
Oracle – – ✓ ✓ ✓ – ✓ - +24.60% +23.70%

ML
HOA – ✓ – ✓ – – – +4.64% +4.64% +0.65%

MTG-Net ✓ ✓ ✓ ✓ – ✓ ✓ +7.92% +7.92% +3.80%
Oracle – – ✓ ✓ ✓ – ✓ - +8.71% +10.99%

LF
HOA – – – – ✓ – – 0 0 0

MTG-Net – – – ✓ ✓ ✓ – +6.61% +6.61% +5.57%
Oracle – – – ✓ ✓ ✓ – - +6.61% +5.57%

LL
HOA – – ✓ – – ✓ – +0.99% +0.99% -10.36%

MTG-Net ✓ ✓ ✓ ✓ – ✓ - +12.78% +12.78% +8.97%
Oracle ✓ ✓ ✓ ✓ – ✓ - - +12.78% +8.97%

OT
HOA ✓ – – – – – ✓ +16.80% +16.80% +24.80%

MTG-Net ✓ ✓ ✓ ✓ – ✓ ✓ +32.47% +32.47% +41.26%
Oracle ✓ ✓ ✓ ✓ – ✓ ✓ - +32.47% +41.26%

on tasks’ encoded embeddings; (3) We provide a comparison on estimation errors between active
selection and random selection with different K.

D.1 Case Study

For tasks on each dataset, we identify the task combination that provides the largest gain for it,
and provide the best combination selection results for the all tasks on Taskonomy-5, ETTm1-7, and
MIMIC-III-27, respectively.

The experimental results can be seen through in Table 2, Table 3, and Table 4. For the combination
selection results on Taskonmy-5, we can see the estimated gains of all tasks in this setting are the
same as the ground truth. It depicts that such task combinations are sampled during training, and
validates that MTG-Net has the ability to sample task combinations with large gains. Therefore,
MTG-Net successfully identifies the optimal combination solutions for each task on Taskonmy-5.
Furthermore, the results on MIMIC-III-27 show the generalization ability of MTG-Net, that is,
it can predict and pick task combinations with large gains on unseen groups (t3 and t24). Thus,
MTG-Net performs well on both settings for per-task best combination selection. Therefore, we think
the final grouping performance advantages of MTG-Net are two-fold: (i) The active learning strategy
encourages the model to sample task combinations with larger gains, which also makes it collect
the ground truth gains of the sampled combinations. Thus, if the active learning strategy works,
MTG-Net can collect the combinations with the largest gains through iterative sampling directly; (ii)
Meta learning on task combinations allows MTG-Net to have the ability to generalize over the unseen
task combinations. To sum up, the active learning strategy not only provides the ’fuel’ for MTG-Net
training, but also collects the combinations which possibly can be the optimal solutions for tasks. On
the other hand, MTG-Net guides the sampling of active learning by predicting the performance of
task combinations.

D.2 Further Visualization Results

This section provides further visualization results and analyses on tasks’ encoded embeddings,
which are projected into a two dimensional space by t-SNE. The points’ are colored by the ground
truth value (red: positive; blue: negative; the deeper the color depth, the larger the gain (absolute
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Figure 1: We visualize the latent structures of transferring relationships discovered by MTG-Net
in Figure 1a, Figure 1b, and Figure 1c. For each task, we aggregate its encoded embeddings for
all relevant task combinations and project them into a two-dimensional space via t-SNE [5]. We
color each combination by gain estimations that are produced by different approaches for this task.
The combinations in the first row are colored by the ground-truth gains, while the combinations
in the second to fourth row are colored by gain estimations produced by MTG-Net, HOA, and TAG,
respectively. Figure 1a includes all 5 tasks in Taskonomy-5, Figure 1b includes all 7 tasks in
ETTm1-7 , and Figure 1c includes 5 selected tasks in MIMIC-III-27. Besides, Figure 1d shows
the visualization of latent structures of transferring relationships that are colored by combinations’
ground truth gains for all 27 tasks in MIMIC-III-27.
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Figure 2: Two examples on pairwise task impact on the latent structures of transferring relationships
discovered by MTG-Net. These diagrams illustrate the latent structures discovered by MTG-Net of two
tasks: icd congenital and mor 24h in MIMIC-III-27. The first diagram illustrates icd congenital’s
t-sne visualization results on all relevant task combinations, while the second diagram shows icd
congenital’s t-sne visualization results on its relevant task combinations that exclude task dis 24h. The
third diagram illustrates mor 24h’s t-sne visualization results on all relevant task combinations, while
the second diagram shows icd congenital’s t-sne visualization results on its relevant task combinations
that include task dis 24h.

6



Table 4: Case studies on MIMIC-III-27, we list the best task combinations identified by different
methods.

Tasks Methods Selected Task Combinations Estimated Gain Valid Gain Test Gain

t3

HOA t3 t10 +2.71% +2.71% -2.95%

MTG-Net t1 t2 t3 t4 t7 t8 t10 t11 t12 t13 t16 t20
t22 t24 t25 t26 t27

+9.35% +7.88% +5.92%

Oracle t1 t2 t3 t7 t8 t10 t11 t14 t15 t16 t22 t24
t26

– +8.35% +6.65%

t11

HOA t11 t15 +0.40% +0.40% +0.81%

MTG-Net t11 0 0 0

Oracle t11 t15 – +0.40% +0.81%

t16

HOA t16 t20 +27.19% +27.19% +30.55%

MTG-Net t1 t2 t3 t4 t7 t8 t10 t11 t12 t13 t16
t20 t22 t24 t25 t26 t27

+50.30% +50.30% +27.90%

Oracle t5 t6 t9 t13 t14 t17 t18 t20 t21 t23 t25 t27 – +50.30% +27.90%

t18

HOA t12 t18 +2.22% +2.22% +0.70%

MTG-Net t1 t3 t4 t5 t8 t10 t11 t12 t13 t15 t18
t21 t23 t24 t25 t26

+10.10% +5.73% +2.58%

Oracle t2 t7 t8 t10 t11 t15 t16 t18 t19 t20 t23 t26 – +6.12% +8.37%

t19

HOA t19 t23 +10.90% +10.90% +4.37%

MTG-Net
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

t14 t15 t16 t17 t18 t19 t20 t21 t22
t23 t24 t25 t26 t27

+20.62% +20.62% +7.25%

Oracle
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

t14 t15 t16 t17 t18 t19 t20 t21 t22
t23 t24 t25 t26 t27

– +20.62% +7.25%

t24

HOA t24 t27 +9.00% +9.00% +8.49%

MTG-Net t1 t4 t7 t8 t9 t12 t13 t14 t15 t16 t20 t21
t22 t23 t24

+24.88% +20.49% +16.32%

Oracle t1 t2 t3 t4 t6 t8 t11 t12 t13 t15 t20 t21
t22 t23 t24 t27

– +26.10% +21.74%

value)). In Figure 1a, Figure 1c and Figure 1b, we provide further visualization results on encoded
embeddings by the predictions of different approaches. These figures show that MTG-Net learns
the latent relationships between tasks more effectively compared with HOA and TAG. Besides, for
a comprehensive view of the encoded representations of MIMIC-III-27’s tasks, we provide the
encoded task representations’ t-SNE visualization results for all tasks in MIMIC-III-27 in Figure 1d.

Besides, we additionally provide experiments to show how pairwise impact on task encoded embed-
ding’s structures in Figure 2. The two diagrams on the left of Figure 2 illustrate the latent structures
discovered by MTG-Net of task icd congenital in MIMIC-III-27. ( Task icd congenital is a task to
predict the presence of a congenital anomaly). The diagram on the left includes its t-sne visualization
results on all relevant task combinations, while the diagram on the right shows its t-sne visualization
results on its relevant task combinations exclude the dis 24h. However, as we can see, when we
remove the task combinations that it’s trained with dis 24h ( dis 24h is used to predict whether
the patients will be discharged within the next 24 hours), the icd congenital’s representation will
no longer appear in some clusters that consist mainly of negative samples. It shows that there’s a
significant negative transfer from dis 24h to task icd congenital. Moreover, as it can be seen in
the two diagrams on the right of Figure 2, when task mor 24h (whether the patient’s recorded time
of death is within the subsequent 24 hours) is trained with acu (if the patient will die, where will
the patient stay at the end), its representation will no longer appear into a negative cluster, which
suggests that there is a strong positive transfer between these two tasks. On the other hand, the task’s
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Dataset Meta Model Layers = 1 Layers = 2 Layers = 3 Layers = 4 Layers = 5

Taskonomy-5 MTG-Net (K=1) +12.17% +12.43% +12.43% +12.35% +12.35%

Taskonomy-5 MTG-Net (K=2) +17.90% +18.34% +18.34% +17.90% +18.34%

ETTm1-7 MTG-Net (K=1) +10.52% +10.61% +10.61% +10.57% +10.52%

ETTm1-7 MTG-Net (K=3) +14.44% +14.52% +14.50% +14.44% +14.50%

MIMIC-III-27 MTG-Net (K=1) +6.25% +6.28% +6.29% +6.29% +6.31%

MIMIC-III-27 MTG-Net (K=13) +8.63% +8.73% +8.74% +8.76% +8.78%
Table 5: Max-budget grouping performance of multiple MTG-Net models with different numbers of
encoding layers.

Dataset Meta Model D = 8 D = 16 D = 32 D = 64 D = 128

Taskonomy-5 MTG-Net (K=1) +12.35% +12.43% +12.43% +12.43% +12.35%

Taskonomy-5 MTG-Net (K=2) +17.90% +18.34% +18.34% +18.34% +18.34%

ETTm1-7 MTG-Net (K=1) +10.52% +10.59% +10.61% +10.61% +10.61%

ETTm1-7 MTG-Net (K=3) +14.42% +14.50% +14.50% +14.52% +14.52%

MIMIC-III-27 MTG-Net (K=1) +6.07% +6.10% +6.17% +6.28% +6.32%

MIMIC-III-27 MTG-Net (K=13) +8.12% +8.45% +8.62% +8.73% +8.79%
Table 6: Max-budget grouping performance of multiple MTG-Net models with different numbers of
hidden dimension.

encoded representation of MTG-Net successfully capture such task relationships and exhibits them in
a structured latent space that can be seen from the visualization results above.

D.3 Hyper-parameter testing results for MTG-Net

This section supplements more hyper-parameter testing results for MTG-Net. We showed that
MTG-Net is robust to different configurations of the number of encoding layers and the hidden
dimension (D), which in this paper are set as 2 (layers) and 64 (D), respectively. Below we show the
max-budget grouping performance of multiple MTG-Net models with different setups of these two
hyper-parameters on MIMIC-III-27. The results can be seen in Table 5 and Table 6.

Moreover, from Table 7 we can see that MTG-Net can still obtain reasonable performance with other
setups of α, and by significantly preferring task combinations with larger gains, MTG-Net is able to
obtain slightly more improvements in terms of the final grouping performance. The rationale behind
this observation is that the estimation errors on larger transferring gains can cause more direct error
propagations to the grouping selection algorithm, thus paying more attention to these estimation
errors helps most in the final grouping performance.

Besides, the hyper-parameter η controls the frequency of updating MTG-Net with actively selected
meta samples, which allows a trade-off between efficiency and effectiveness for MTG-Net training. In
this work, we adopt a dynamic strategy: 1) in the earliest round (K = 1), we set η as 1 to encourage
more frequent MTG-Net updating per each active selection, 2) and in latter epochs (K > 1), we set η
as N to further improve the efficiency by updating MTG-Net per N active selections. In the following
table, we compare this dynamic strategy with two fixed strategies (η = 1 or η = N ) to reveal the
impact of η. From Table 8 we can see that our dynamic strategy for η can help MTG-Net with different
Ks achieve competitive performance as setting η as 1 while ensuring that the number of MTG-Net
updating steps is not an order of magnitude larger than that of setting η as N .

D.4 Detailed task combinations selected by MTG-Net at each step of active learning

Here we provide a few snapshots of the active learning procedure as a quick response in Table 9.
From the table, we can observe diversified combinations being selected for different tasks at different

8



Dataset Meta Model α=0.01 α=0.1 α=1 α=10 α=25 α=100

Taskonomy-5 MTG-Net
(K=1) +11.35% +11.50% +11.95% +12.43% +12.43% +12.43%

Taskonomy-5 MTG-Net
(K=2) +17. 75% +17.90% +18.14% +18.34% +18.34% +18.34%

ETTm1-7 MTG-Net
(K=1) +10.11% +10.15% +10.52% +10.61% +10.61% +10.61%

ETTm1-7 MTG-Net
(K=3) +14.30% +14.37% +14.46% +14.52% +14.52% +14.52%

MIMIC-III-27 MTG-Net
(K=1) +5.86% +6.07% +6.15% 6.26% +6.28% +6.28%

MIMIC-III-27 MTG-Net
(K=13) +7.91% +8.13% +8.61% +8.70% +8.73% +8.74%

Table 7: Max-budget grouping performance of MTG-Net with different α.

Meta Model η Updating Steps Taskonomy-5 ETTm1-7 MIMIC-III-27

MTG-Net
(K=1) η = 1 K ∗ N →N +12.47% +10.65% +6.29%

MTG-Net
(K=1) η = N K → 1 +11.27% +9.97% +5.97%

MTG-Net
(K=1) η = 1 if K =1 else N N + K − 1→ N +12.43% +10.61% +6.28%

MTG-Net
(K=(N − 1)/2) η = 1 K ∗ N → N ∗ (N − 1)/2 +18.34% +14.55% +8.75%

MTG-Net
(K=(N − 1)/2) η = N K → (N − 1)/2 +17.75% +14.26% +8.69%

MTG-Net
(K=(N − 1)/2) η = 1 if K =1 else N N + K − 1→ (N − 1) ∗ 3/2 +18.34% +14.52% +8.73%

Table 8: Max-budget grouping performance with different setups of η and update steps.

rounds. More importantly, these results intuitively reveal that MTG-Net can calibrate its predictions
after updating with the ground-truth gains.

D.5 How can MTG-Net benefits from the active learning strategy?

Figure 3 shows how the errors of gain estimations on unseen task combinations vary with K, which
determines the scale of the meta-training set. We can observe that given the same size of Ctrain,
the active selection of meta-samples produces fewer estimation errors compared with the random
selection. Combining Figure 3 with Figure 3 in the main text that illustrates random selection v.s.
active selection in the main paper, we can observe that the performance of gain estimations highly
correlates with the final grouping performance. Moreover, the active selection has a lower estimation
error compared with random selection, and it performs better on the final grouping performance.
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