
ACEBench: A Comprehensive Evaluation of LLM Tool Usage

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have demon-002
strated significant potential in decision-making003
and reasoning, particularly when integrated004
with various tools to effectively solve com-005
plex problems. However, existing benchmarks006
for evaluating LLMs’ tool usage face several007
limitations: (1) limited evaluation scenarios,008
often lacking assessments in real multi-turn di-009
alogue contexts; (2) narrow evaluation dimen-010
sions, with insufficient detailed assessments of011
how LLMs use tools; and (3) reliance on LLMs012
or real API executions for evaluation, which013
introduces significant overhead. To address014
these challenges, we introduce ACEBench, a015
comprehensive benchmark for assessing tool016
usage in LLMs. ACEBench categorizes data017
into three primary types based on evaluation018
methodology: Normal, Special, and Agent.019
"Normal" evaluates tool usage in basic sce-020
narios; "Special" evaluates tool usage in sit-021
uations with ambiguous or incomplete instruc-022
tions; "Agent" evaluates tool usage through023
multi-agent interactions to simulate real-world,024
multi-turn dialogues. We conducted extensive025
experiments using ACEBench, analyzing vari-026
ous LLMs in-depth and providing a more gran-027
ular examination of error causes across differ-028
ent data types.029

1 Introduction030

Large Language Models (LLMs), such as GPT-031

4 (Achiam et al., 2023), have demonstrated excep-032

tional performance across numerous natural lan-033

guage processing tasks (Naveed et al., 2023; Qu034

et al., 2025; Mialon et al., 2023). Studies have035

shown that incorporating tools can significantly ex-036

pand LLM capabilities, particularly in specialized037

domains such as mathematics (Das et al., 2024; Bu-038

lusu et al., 2024; Gou et al., 2023; Veerendranath039

et al., 2024), programming (Xu et al., 2024), and040

reasoning (Chen et al., 2022; Shao et al., 2022;041

Surís et al., 2023; Yang et al., 2023). On one hand,042

integrating tools into LLMs can enhance capabili- 043

ties in multiple domains, for example, ToolTrans- 044

former (Schick et al., 2023) enhances the ability of 045

LLMs to solve complex problems by utilizing tools. 046

On the other hand, adopting a tool usage paradigm 047

can improve the robustness of the response and 048

the transparency of the generation, thus increasing 049

the explainability and trust of usersusers (Schick 050

et al., 2023), as well as improving the system’s 051

adaptability. As this field continues to evolve, it is 052

essential to comprehensively evaluate all aspects 053

of tool usage, particularly in complex scenarios. 054

While several studies have focused on evaluating 055

tool usage (Yan et al., 2024; Guo et al., 2024; Wang 056

et al., 2024a; Qin et al., 2023; Wang et al., 2024b; 057

Zhuang et al., 2023; Lu et al., 2024), there are still 058

some shortcomings in the existing tool-use bench- 059

marks. Firstly, existing benchmarks lack multi-turn 060

dialogue evaluation in real-world scenarios. For 061

example, the multi-turn dialogues in BFCL (Yan 062

et al., 2024) and HammerBench (Wang et al., 063

2024a) are composed of predefined fixed content 064

combinations. Secondly, current tool-use bench- 065

marks (Qin et al., 2023; Guo et al., 2024; Huang 066

et al., 2023; Li et al., 2023) lack fine-grained eval- 067

uation and personalized data assessment. Addi- 068

tionally, existing benchmarks (Qin et al., 2023; 069

Guo et al., 2024; Wang et al., 2024b) ignore the 070

assessment of special cases, or the evaluation meth- 071

ods are simplistic (Yan et al., 2024), as user in- 072

structions in real life are not always perfect(Wang 073

et al., 2024c). The model’s ability to recognize and 074

handle these issues is also crucial for evaluation. 075

Lastly, evaluation costs are high (Qin et al., 2023; 076

Guo et al., 2024), as many studies rely on advanced 077

large models for evaluation. 078

To address these shortcomings, we propose 079

ACEBench, a comprehensive tool-use benchmark 080

that includes the following categories: 081

Normal. Consists of fixed question-answer pairs 082

1

Table 1: Comparison of benchmarks across different evaluation criteria. "LLM-Free" refers to result evaluation
without relying on LLMs. "Robustness" refers to incomplete or unclear user instructions. "Interactiveness" refers
to the dynamic interaction between the model and the environment. "Atomic-Level" refers to analyzing from the
atomic-level capabilities. "Personalization” refers to the inclusion of personal likes.

Benchmark LLM-Free Robustness Interactiveness Atomic-Level Personalization

MetaTool (Huang et al., 2023) ✓ ✗ ✗ ✗ ✗
API-Bank (Li et al., 2023) ✓ ✗ ✗ ✗ ✗
Stable ToolBench (Guo et al., 2024) ✗ ✗ ✗ ✗ ✗
BFCL (Yan et al., 2024) ✓ ✓ ✗ ✗ ✗
τ -Bench (Yao et al., 2024) ✓ ✗ ✓ ✗ ✗
HammerBench (Wang et al., 2024a) ✗ ✓ ✗ ✗ ✗
ACEBench (Ours) ✓ ✓ ✓ ✓ ✓

and encompasses a variety of scenarios, including083

single-turn dialogues, multi-turn dialogues, and084

personalized scenario data. It also includes evalua-085

tions of atomic-level capabilities.086

Special. Includes imperfect instructions, such as087

instructions containing incomplete parameters, in-088

correctly formatted parameters, or questions irrele-089

vant to the capabilities of the candidate functions.090

Agent. Encompasses real-world scenarios, ab-091

stracted to construct multi-turn, multi-step tool092

invocation scenarios, divided into multi-turn and093

multi-step cases depending on whether the user094

participates in the dialogue process.095

The three categories above cover most of the tool096

usage scenarios for LLMs, and detailed explana-097

tions of each category can be found in Appendix A.098

Our main contributions are as follows:099

• Comprehensive Benchmark Evaluation. We100

propose a comprehensive benchmark for evalu-101

ating LLMs’ tool usage, covering various sce-102

narios, including more fine-grained evaluation103

perspectives and assessments under imperfect in-104

structions and providing more stable evaluation105

metrics.106

• Sandbox Environment and Automated Eval-107

uation System. We build an end-to-end auto-108

mated evaluation system and develop a sandbox109

environment construction scheme for multi-turn,110

multi-step tool invocation based on real-world111

scenario abstraction.112

• Extensive Experimental Validation. Through113

extensive experiments, we demonstrate our114

benchmark provides a more comprehensive anal-115

ysis with greater distinction, offering a clearer116

evaluation of LLMs’ tool usage.117

2 Related Works 118

The emerging trend of leveraging LLMs’ tool-use 119

capabilities in real-world applications underscores 120

the need for comprehensive evaluations of their 121

performance and effectiveness. Despite recent ad- 122

vancements, existing benchmarks for evaluating 123

the tool-use capabilities of LLMs still have signifi- 124

cant limitations 125

Stable ToolBench (Guo et al., 2024) addresses 126

the issue of unstable external APIs by employing 127

a virtual API server, but its dependence on large 128

models for evaluation results in high costs and 129

scalability challenges. BFCL (Yan et al., 2024) in- 130

troduces a benchmark for tool use in multi-turn di- 131

alogue scenarios. Yet, it assembles dialogues from 132

fixed content, failing to capture the dynamic and 133

adaptive nature of real-world interactions. Simi- 134

larly, τ -Bench (Yao et al., 2024) evaluates language 135

agents’ ability to engage with human users while 136

adhering to domain-specific rules. Still, its narrow 137

focus on just two scenarios limits its generalizabil- 138

ity across diverse tasks. HammerBench (Wang 139

et al., 2024a) improves upon this by incorporat- 140

ing datasets derived from popular mobile applica- 141

tions and merging dialogues to simulate typical 142

question-answer trajectories. However, like BFCL, 143

its multi-turn dialogues are simplistic concatena- 144

tions of pre-defined content, which do not reflect 145

the complexities of real-world conversational dy- 146

namics. In addition, some benchmarks (Qin et al., 147

2023; Guo et al., 2024) rely on large language mod- 148

els (LLMs) for result evaluation, leading to high 149

costs and unstable operations. 150

In contrast, our work addresses these limitations 151

by expanding the scope of evaluation to encom- 152

pass a broader range of tool usage scenarios. We 153

propose a framework that simulates realistic multi- 154

turn dialogue processes and enables end-to-end au- 155

2

UserTool Assistant

Multi-Agent

Interactive Generation

APIs

Single Turn Single Function

Single Turn Parallel Function

……

Advanced Model

Generation

Dialogue Formats

Real-Rorld

Scenarios.

Add_Food_Order

Get_Products

Login_Platform

Food

Platform

class Food_Platform:

 def __init__(self):

 self.orders = {}

 ……

 def add_food_order(

 self,

 username: str,

 merchant_name: str,

 items:list) ……

Dialogue Rule

eg Before ordering takeout, you

need to obtain ……

Questions Designed

by Experts.

Environment ConstructionScenario Construction

API ExamplesAPI context Tree

LLM generate APIs

Self-Evolving API Synthesis Dialogue Construction

(b) Agent Data Construction

(a) Normal and Special Data Construction

Figure 1: Dataset construction pipeline. (a) Normal and Special data construction: API synthesis module (left),
Dialogue generation module (right). (b) Agent Data Construction: include scenario construction, environment
construction and question design.

tomated assessment, thereby reducing evaluation156

costs and improving scalability. A comparative157

analysis of ACEBench against recent benchmarks,158

as shown in Table 1, demonstrates its effectiveness159

in overcoming these challenges.160

3 ACEBench161

3.1 Dataset162

We constructed two linguistically parallel versions163

of the dataset (Chinese and English), ensuring164

equal distribution of data types between them. The165

final dataset comprises 2,000 annotated entries.166

3.1.1 Data Construction167

The Normal and Special data are automatically168

generated by LLMs, whereas the Agent data is169

constructed by experts. Creation details for some170

data are provided in Appendix Section B.171

Normal and Special Data Construction. We172

employ a fully automated LLM-based generation173

pipeline specifically designed for Normal and Spe-174

cial Data , as illustrated in Figure 1(a).175

(1) API Synthesis. We use real APIs from various176

real-world scenarios as reference during construc-177

tion to enhance authenticity. To ensure the stability178

of the data, we use synthetic APIs to construct the179

evaluation dataset, referencing real-world APIs as 180

a guide. We employ a self-evolution approach by 181

building a hierarchical API context tree to ensure 182

the generated APIs cover a wide range of domains 183

and functionalities (Liu et al., 2024b). Initially, we 184

extract relevant information from technical docu- 185

ments to guide the API generation. As the process 186

progresses, the context tree is gradually expanded, 187

ultimately ensuring the depth and breadth of the 188

generated APIs. 189

(2) Dialogue Construction. We use two differ- 190

ent dialogue generation pipelines built on the con- 191

structed API pool from which three to six candidate 192

APIs are selected for each evaluation instance. For 193

most cases, APIs are chosen randomly. However, 194

for instances requiring specific functionality (e.g., 195

similar APIs or multi-turn scenarios), advanced 196

methods, including graph-based sampling (Wang 197

et al., 2024d), are used. Simple cases or those 198

with predefined functionality use a template-based 199

generation, where a single generator produces dia- 200

logues to ensure consistency. We employ a multi- 201

agent dialogue pipeline for more complex scenar- 202

ios, where three agents (user, assistant, and tool) 203

to simulate real-world interactions. Both pipelines 204

are supported by carefully hand-crafted examples 205

to ensure comprehensive coverage and diversity. 206

3

art
culture

offic
e

travel
biology

protection
economy

management
wellness food

others
urban

safety

education

technology ai
0

50

100

150

200

250
N

um
be

r

Culture
Entertainment
Environment

Finance
Health
Others

Society
Technology

Figure 2: Distribution of APIs in terms of domains (Top
2 subcategories for each category).

Agent Data Construction. We implement a care-207

fully curated human-expert construction frame-208

work specifically tailored for Agent Data gener-209

ation, as shown in Figure 1(b).210

(1) Scenario Construction. Through system-211

atic abstraction of real-world interaction scenarios212

(such as food delivery services and telecommuni-213

cation operations), we design functional modules214

with well-defined business semantics and specify215

each scenario’s core state variables (e.g., order sta-216

tus, account balance) and intrinsic property sets.217

(2) Sandbox Environment Construction. We218

constructed an isolated sandbox environment with219

three core components: standardized functional220

interfaces with well-defined input/output specifica-221

tions and preconditions, a dynamic attribute man-222

agement system for real-time state transition mon-223

itoring, and an execution monitoring module that224

logs invocation processes.225

(3) Question Design. Based on predefined multi-226

turn dialog specifications tailored to different sce-227

narios, domain experts systematically crafted the228

conversational questions through an iterative anno-229

tation process.230

3.1.2 Multi-Stage Data Verification231

To address issues like mismatched answers or am-232

biguous criteria, we have implemented a multi-233

stage verification process.234

Automated Quality Inspection. The data first235

undergoes a rule-based quality inspection module,236

which evaluates four dimensions: clarity of API237

definitions, executability of function calls, accu-238

racy of dialogues, and consistency of data samples,239

effectively filtering out formatting and spelling er-240

rors. Next, the data enters the model-based quality241

verification module, which uses LLMs to detect242

semantic errors, employing a voting mechanism to243

Norm
al

Special

Agent

atom

single-turn

multi-turn

similar api

pe
rs

on
al

iz
at

io
n

incomplete

error

irrelevant

agent multi-turn

agent multi-step

50

100

150

200

250

300
Number

Figure 3: Visualization of the data composition of
ACEBench.

ensure consistency in evaluation. 244

Human Quality Inspection. In the initial evalu- 245

ation, the dataset remaining after automated qual- 246

ity inspection is assessed by three LLMs to assist 247

human experts in data screening. Valid data is re- 248

tained, while potentially problematic data is placed 249

in the error candidate pool. These flagged entries 250

undergo a two-step expert review process, where 251

two experts independently assess and suggest mod- 252

ifications, and a third expert consolidates feedback, 253

revising problem statements, API definitions, and 254

answers. The revised data is re-evaluated and man- 255

ually verified, and three rounds of optimization are 256

performed to ensure a high-quality dataset. 257

3.1.3 Data Analysis 258

To demonstrate the breadth and comprehensiveness 259

of ACEBench, we provide a detailed analysis of its 260

test case distributions. Specific examples of each 261

data type can be found in Appendix C. 262

Domain of APIs. The ACEBench API boasts a 263

comprehensive coverage of 8 major domains and 264

68 sub-domains, spanning various aspects of daily 265

life, including technology, finance, entertainment, 266

society, health, culture, environment, and others. 267

It offers a rich collection of 4,538 APIs in both 268

Chinese and English. The distribution of these 269

APIs is visualized in the accompanying Figure 2. 270

Data Composition. ACEBench consists of three 271

categories of test samples: Normal, Agent, and 272

Special, where each category is divided into several 273

subcategories. The data composition is visualized 274

in Figure 3, demonstrating a comprehensive cov- 275

erage of tool-use capabilities, from simple single- 276

turn tool invocations to complex multi-turn inter- 277

actions involving users and environments. They 278

include scenarios requiring multiple steps and in- 279

teractions with the environment, as well as cases 280

4

0 1 2 3 4 5 6 7 8
0

500

1000

1500
N

um
be

r o
f T

ur
ns

/A
rg

s

0

1088

431

89 129
19 12 8 42

1081

1517

1170

581

149
36 2 0

Turns
Args

Figure 4: Distribution of dialogue turns and API argu-
ment numbers.

where tool calls are infeasible.281

Number of turns and arguments. The test data282

in ACEBench covers a wide range of complexities.283

Specifically, we statistically analyzed the number284

of dialogue turns and the number of arguments in285

the called apis, which are visualized in Figure 4.286

The results show that the number of dialogue turns287

ranges from 1 to 8, encompassing most real-world288

scenarios. These samples with varying numbers of289

turns and arguments further form a test suite that290

covers a broader range of difficulties.291

3.2 Eval292

In this section, we introduce the evaluation process,293

and the inference prompt for evaluation can be294

found in Appendix D.295

3.2.1 Normal Evaluation296

As shown in the left part of Figure 5, we evaluate297

Normal Data by comparing the model’s function298

call output with the ground truth using AST pars-299

ing. For cases with multiple valid answers, we300

employ a candidate answer pool where matching301

any candidate constitutes correctness. Evaluation302

uses Accuracy metric (1=full match, 0=mismatch).303

3.2.2 Special Evaluation304

As illustrated in the middle section of Figure 5,305

the evaluation of Special Data primarily assesses306

the model’s capability in problem identification.307

Specifically, the model must: (1) detect and alert308

missing parameters, (2) accurately locate erro-309

neous parameters, and (3) recognize task-function310

mismatches. For each case, Accuracy is scored as311

1 if correctly identified, otherwise 0.312

3.2.3 Agent Evaluation313

As shown in the right part of Figure 5, we evaluate314

the agent’s capabilities by assessing the model’s315

proficiency in utilizing tools during human-agent316

interactions, employing gpt-4o as a user simula- 317

tor for testing purposes. There are two evaluation 318

metrics: 319

End-to-End Accuracy is evaluated by comparing 320

the instance attributes of the corresponding class 321

with the target. If all attributes match exactly, the 322

Accuracy is 1; otherwise, the Accuracy is 0. 323

Process Accuracy is determined by the consis- 324

tency between the actual function call process and 325

the ideal process. It is expressed as n
m , where m 326

represents the ideal function call process, and n 327

represents the degree of match between the actual 328

and ideal processes. 329

3.2.4 Overall Accuracy 330

The Overall Accuracy is computed as a weighted 331

sum of the accuracies for the Normal, Special, and 332

Agent data types, where the weights are determined 333

by the square roots of their respective sample sizes. 334

The details can be found in Appendix E. 335

4 Experiments 336

In this section, we present a comprehensive set of 337

experiments designed to evaluate the performance 338

of LLMs on ACEBench. 339

Experimental Setup. In our evaluation, we exam- 340

ine seven closed-source LLMs, including the GPT- 341

4 series (Achiam et al., 2023), Qwen-Max (Yang 342

et al., 2024), Gemini-1.5-Pro (Team et al., 2024), 343

Claude-3.5-Sonnet (Anthropic, 2024), and Doubao- 344

Pro-32K (ByteDance, 2025). Additionally, a wide 345

range of open-source language models are as- 346

sessed, such as the Qwen2.5 series (Yang et al., 347

2024), Llama3 series (Dubey et al., 2024), Phi-3- 348

Mini (Abdin et al., 2024), Deepseek-V3(Liu et al., 349

2024a), and DeepSeek-Coder-V2 (Zhu et al., 2024). 350

Furthermore, four tool-learning-enhanced mod- 351

els were evaluated: Hammer2.1-3B, Hammer2.1- 352

7B (Lin et al., 2024), xLAM-7B-r (Liu et al., 353

2024c), and Watt-Tool-8B (Watt-AI, 2024). 354

4.1 Main results and analysis 355

The comprehensive experimental results for the 356

Chinese and English datasets are presented in Ta- 357

ble 2, with detailed results for each language pro- 358

vided in Appendix F. We can draw the following 359

important conclusions: 360

General Conclusion on Model Performance. 361

The overall best performance remains dominated 362

by closed-source models, such as the GPT-4 series. 363

However, the performance gap between certain 364

5

Table 2: Comprehensive evaluation of different models on ACEBench for Chinese and English combined (%).

Model Normal Special Agent Overall
Atom Single-Turn Multi-Turn Similar API Preference Summary

Closed-Source Large Language Models

GPT-4o 93.4 84.5 77.0 85.0 83.0 87.6 93.0 63.8 85.4
GPT-4-Turbo 93.2 84.8 77.5 86.0 86.0 88.0 86.7 67.5 84.5
Qwen-Max 91.2 80.5 68.0 83.0 83.0 84.2 74.0 64.3 78.4
GPT-4o-Mini 86.5 76.0 66.5 77.0 78.0 79.9 79.0 33.3 72.5
Gemini-1.5-Pro 84.5 76.8 64.5 80.0 78.0 79.0 78.7 25.5 70.7
Claude-3-5-Sonnet 76.9 72.5 62.5 71.0 72.0 72.9 77.4 39.5 68.9
Doubao-Pro-32k 79.8 55.5 58.0 76.0 66.0 70.7 55.0 25.0 59.4

Open-Source Large Language Models

Qwen2.5-Coder-32B-Instruct 90.2 81.0 71.0 83.0 81.0 84.1 80.7 60.8 79.6
DeepSeek-V3 91.5 84.0 77.0 83.0 83.0 86.5 73.0 34.5 74.8
Qwen2.5-72B-Instruct 86.8 80.3 69.5 83.0 81.0 82.1 75.7 45.0 74.7
Llama-3.1-70B-Instruct 82.5 68.3 63.5 79.0 68.0 75.5 38.3 42.3 60.4
Qwen2.5-7B-Instruct 76.0 60.3 58.5 72.0 67.0 69.4 47.0 13.8 54.8
DeepSeek-Coder-V2-Lite-Instruct 75.2 57.8 46.5 72.0 65.0 66.4 40.3 2.0 49.5
Qwen2.5-Coder-7B-Instruct 76.0 63.8 57.5 74.0 68.0 70.1 22.3 15.5 48.9
Watt-Tool-8B 85.7 69.3 55.5 79.0 64.0 75.6 6.0 2.8 45.7
Hammer2.1-7B 73.7 57.5 40.0 62.0 55.0 62.8 14.7 16.8 42.9
Llama-3.1-8B-Instruct 51.9 39.8 28.0 66.0 46.0 46.6 21.0 5.3 33.4
Phi-3-Mini-128k-Instruct 57.2 39.3 23.0 58.0 32.0 46.5 18.7 0.8 32.0
xLAM-7B-r 43.5 22.0 19.0 61.0 0.0 33.7 2.7 8.8 21.6
Llama-3.2-3B-Instruct 38.7 15.3 9.0 42.0 32.0 29.6 9.4 0.0 19.6
Hammer2.1-3B 22.4 11.5 3.5 40.0 20.0 18.7 1.0 1.5 11.3

open-source models, such as Qwen2.5-Coder-32B-365

Instruct, Qwen2.5-72B-Instruct and DeepSeek-V3,366

and their closed-source counterparts is progres-367

sively narrowing. This trend suggests that open-368

source models are steadily catching up to closed-369

source models, driven by advancements in model370

architecture and training methodologies.371

Loss of Generalization in Fine-Tuned Mod-372

els. As shown in Figure 3, models fine-tuned373

on specific datasets, such as Watt-Tool-8B (Watt-374

AI, 2024), xLAM-7B (Liu et al., 2024c), and375

Hammer2.1-7B(Lin et al., 2024), exhibit a signifi-376

cant decline in performance on the Special dataset.377

This decline can primarily be attributed to the fact378

that while fine-tuning enhances a model’s perfor-379

mance on specialized tasks, it can also lead to a loss380

of generalization, making the model less effective381

on new or broader instruction-following tasks.This382

phenomenon highlights the importance of balanc-383

Table 3: The Accuracy of Models on Special Data

Model Incomplete Error Irrelevant

Llama-3.1-8B-Instruct 29.0 20.0 14.0
Watt-Tool-8B 7.0 1.0 10.0

Qwen2.5-7B-Instruct 26.0 36.0 79.0
xLAM-7B-r 1.0 3.0 4.0

Llama-3.2-3B-Instruct 13.0 12.0 3.0
Hammer2.1-3B 0.0 3.0 0.0

ing task-specific performance and generalization 384

capability during model optimization. 385

Performance Limitations of Large Models in 386

Complex Tasks. As shown in Table 4, most mod- 387

els exhibit an end accuracy of less than 50% on 388

Agent data tasks. This can be attributed to the 389

fact that completing such tasks in dynamic envi- 390

ronments, which simulate real-world multi-turn 391

interactions, requires more than just performing 392

individual tool operations. The model must also 393

integrate contextual information during tool usage 394

and account for the interdependencies between tool 395

calls, which significantly increases task complexity. 396

Furthermore, these tasks demand advanced reason- 397

ing and adaptability, which even large models may 398

struggle with due to the challenges of maintain- 399

ing consistency across long-term interactions and 400

responding to the evolving nature of the task. 401

4.2 Error Analysis 402

Error Analysis of Normal Data. As shown in Fig- 403

ure 6, we observe from the error type distribution 404

on Normal data that param value error dominate 405

across all models. This highlights the models’ dif- 406

ficulty in generating specific values, likely due to 407

limited contextual understanding and the complex- 408

ity of numerical distributions. Output format error 409

is the second most common, suggesting room for 410

improvement in generating code that follows pre- 411

6

Missing necessary parameters (location).

Get_Weather(location="", time="today")

Model Output

User Assistant Execution

In a sandbox

environment.

Use “gpt-4o” for

user Simulator.

My name is Jack, I want to order some takeout.

First [login_food_platform(username='Jack')]

Function Call Process

log_food_platform(…)

……

Instance Attributes

Self.user = [Jack]

……

Process_Acc= n / m

n: Match Number of Calls

m: Total Length of Calls

End_to_End_Acc= 0 or 1

Exact Match : 1

No Exact Match : 0

Detect incomplete/ error_param/

 irrelevant functions

Questions in Imperfect

instructions.

User Assistant

Questions in Perfect

Instructions.

Function Matching

Type Check

Value Check

(name: set_alarm)

(type:number)

(value: 08:30)

Use function to

solve questions.

Output: set_alarm(time=“20:30", repeatdays=[1,2])

Answer: set_alarm(time=“08:30", repeatdays=[1,2])

Normal Eval Agent EvalSpecial Eval

User Assistant

Point out Imperfect

instructions.

…… (Multi turn)

Acc = 1 Acc = 0

Yes No

Question: Can you tell me today's weather ?Question: Can you set an alarm for 8:30 PM?

Figure 5: Overview of evaluation process: The left represents ’Normal’ evaluation: AST-based function and
parameter verification. The middle illustrates ’Special’ evaluation: Imperfect instruction defect diagnosis. The
right shows ’Agent’ evaluation: State transition analysis via user-model interaction

Table 4: Performance evaluation of different models
on Agent Data: PA represents Process Accuracy, EA
represents End-to-End Accuracy (%).

Model Multi Turn Multi Step

EA PA EA PA

GPT-4-Turbo 50.0 66.0 85.0 89.5
DeepSeek-V3 31.5 54.5 37.5 53.0
Claude-3-5-Sonnet 21.5 41.5 57.5 76.5
DouBao-Pro-32k 20.0 45.5 30.0 47.5
Qwen2.5-7B-Instruct 15.0 28.0 12.5 15.5
Hammer2.1-7B 8.5 33.5 25.0 42.5

Table 5: Error type distribution across different model
series on Special Data.

Model Error Detection Error Correction

Watt-Tool-8B 188 4
Hammer2.1-7B 172 7
Phi-3-mini-128k-instruct 143 15
Qwen2.5-3B-Instruct 130 36
xLAM-7B-r 195 1
Llama-3.1-8B-Instruct 145 6
Hammer2.1-3B 197 0
Llama-3.2-3B-Instruct 166 9

defined formats and syntactic rules. These issues412

may stem from inconsistencies in training data and413

the models’ limited ability to learn rule-based gen-414

eration. In contrast, function name and param type415

errors are less frequent, indicating that the models416

excel in matching function calls and handling data417

types. While the models show strong function invo-418

cation abilities, further improvements are needed419

in numerical generation and format compliance.420

Specific error examples for Normal data can be 421

found in Appendix G.1. 422

Error Analysis of Special Data. As shown in Ta- 423

ble 5, we identified two main types of model errors: 424

The first type is "Error Detection", which refers to 425

the model’s complete failure to detect issues in 426

the user’s instructions or its inability to identify 427

problems according to the prompt’s formatting re- 428

quirements. The second type is "Error Correction," 429

where the model detects the problem but provides 430

unclear feedback. For example, the model might 431

indicate that there is an issue, but fails to specify 432

which parameter values are incorrect or what criti- 433

cal information is missing. Results show that most 434

errors in special-type scenarios are caused by "Er- 435

ror Detection", highlighting a critical gap in the 436

model’s problem-detection capabilities. This sug- 437

gests that the model needs to learn not only simple 438

tool invocation but also how to identify correspond- 439

ing issues under imperfect instructions. Specific 440

error examples for Special data can be found in 441

Appendix G.2. 442

Error Analysis of Agent Data. Our analysis iden- 443

tifies three primary causes of Agent errors. First, 444

function call errors occur when the model fails to 445

select the appropriate function or provide param- 446

eters that do not meet the required specifications, 447

reflecting a lack of understanding of tool-use ca- 448

pabilities and parameter constraints. Second, rule 449

violations arise when the model disregards pre- 450

defined scene rules, skipping necessary steps or 451

breaking key task logic, highlighting deficiencies 452

7

output format function name param num param type param vlue
0

10

20

30

40

50

60
Pe

rc
en

ta
ge

 (%
)

15.28

2.94

19.82

2.39

59.57

20.36

1.15

10.31

2.54

65.65

7.71
5.04

25.89

0.87

60.50
Qwen series
GPT series
Qwen-coder series

Figure 6: Error type distribution on Normal Data.

in its comprehension and execution. Finally, infor-453

mation mismanagement results from the model’s454

inability to correctly record or process contextual455

information during multi-turn interactions, lead-456

ing to outputs that diverge from expectations. As457

shown in Figure 21, we illustrate an error caused458

by missing information.459

4.3 Further Analysis460

Scaling Law. We evaluated the performance461

of Qwen2.5-Coder (3B, 7B, 14B, 32B) and462

Qwen2.5-Instruct (3B, 7B, 14B, 32B, 72B) on the463

ACEBench dataset. As shown in Figure 7, the ex-464

perimental results demonstrate that performance465

improves significantly across various tasks as the466

model size increases, with particularly strong re-467

sults observed in high-complexity tasks. However,468

it is worth noting that as the model size continues to469

grow, the rate of performance improvement begins470

to slow down, especially between the 32B and 72B471

models. This indicates that while increasing the472

model parameters brings substantial performance473

gains initially, the marginal benefits of scaling up474

further decrease, making additional improvements475

more challenging.476

Table 6: Accuracy comparison of prompting strategies
on English Normal Data (%).

Model Standard Condensed Minimal

Qwen2.5-3B-Instruct 34.5 31.8 27.8
Qwen2.5-7B-Instruct 48.5 47.5 45.5
Qwen2.5-14B-Instruct 56.3 54.0 47.5

Impact of Prompting Strategies. Prompt design477

significantly affects language model performance.478

We tested three strategies (see Appendix D.4):479

(1)Standard Prompt: A comprehensive template480

designed to eliminate interference from informa-481

tion insufficiency, ensuring a fair evaluation.482

2 3 4 5 6
Log of Model Scale (Billion Parameters)

0.3

0.4

0.5

0.6

0.7

0.8

Su
m

m
ar

y
Sc

or
e

32B
14B

7B

3B

72B

32B

14B7B

3B

Qwen2.5 Series
Qwen2.5-Coder Series

Figure 7: Scaling Law of LLMs on ACEBench.

(2)Condensed Prompt: A compact version re- 483

taining core instructions, testing performance with 484

reduced but sufficient guidance. 485

(3)Minimal Prompt: A highly abbreviated form 486

(e.g keywords) to assess the model’s ability to infer 487

tasks from ultra-concise input. 488

The experimental results in Table 4 demonstrate 489

that models utilizing standard prompt templates 490

achieve the highest overall accuracy. This optimal 491

performance can be attributed to the rigorous for- 492

matting specifications in standard prompts, which 493

effectively mitigate interference from extraneous 494

variables. These empirical findings establish a pos- 495

itive correlation between prompt standardization 496

and model performance, providing key insights for 497

future prompt engineering: enhancing the standard- 498

ization of function-calling prompts with explicit 499

formatting requirements can significantly improve 500

execution accuracy. 501

5 Conclusion 502

This paper introduces ACEBench, a comprehen- 503

sive tool-use benchmark designed to evaluate the 504

tool-use capabilities of Large Language Models 505

(LLMs), including data from three types: normal, 506

special, and agent. It addresses key limitations of 507

existing evaluation benchmarks, such as the lack of 508

multi-turn dialogue assessments in real-world sce- 509

narios, the absence of fine-grained evaluations for 510

parameter-type function calls, and the high costs 511

associated with using large models for evaluation. 512

The experimental results indicate that models fine- 513

tuned on specific tool-use datasets to struggle with 514

generalization when faced with complex or imper- 515

fect instructions, and code capabilities enhance the 516

tool-use performance of large models. Through 517

extensive experiments, we demonstrate the effec- 518

tiveness of ACEBench in providing deeper insights 519

into the tool-use abilities of various models. 520

8

Limitations521

We acknowledge several limitations in our evalu-522

ation of ACEBench for assessing the tool-use ca-523

pabilities of large language models. Firstly, while524

our test data is generated by large language mod-525

els and various measures have been taken to en-526

sure its authenticity and diversity, a gap remains527

when compared to data from real-world applica-528

tions. This discrepancy may impact the evaluation529

of the model’s performance in real-world scenar-530

ios. Secondly, for the Agent data, the design of531

evaluation scenarios relies on manual construction,532

which somewhat limits the diversity and coverage533

of the evaluation framework.534

Ethical Considerations535

This study did not involve human subjects or exter-536

nal annotators. All data processing was performed537

by the authors.538

References539

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed540
Awadallah, Ammar Ahmad Awan, Nguyen Bach,541
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat542
Behl, et al. 2024. Phi-3 technical report: A highly ca-543
pable language model locally on your phone. arXiv544
preprint arXiv:2404.14219.545

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama546
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,547
Diogo Almeida, Janko Altenschmidt, Sam Altman,548
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.549
arXiv preprint arXiv:2303.08774.550

Anthropic. 2024. Claude 3.5 sonnet. Accessed: Jan-551
uary 2025.552

Arya Bulusu, Brandon Man, Ashish Jagmohan, Aditya553
Vempaty, Jennifer Mari-Wyka, and Deepak Akkil.554
2024. Mathviz-e: A case-study in domain-555
specialized tool-using agents. arXiv preprint556
arXiv:2407.17544.557

ByteDance. 2025. Doubao product page. Accessed:558
January 2025.559

Wenhu Chen, Xueguang Ma, Xinyi Wang, and560
William W Cohen. 2022. Program of thoughts561
prompting: Disentangling computation from reason-562
ing for numerical reasoning tasks. arXiv preprint563
arXiv:2211.12588.564

Debrup Das, Debopriyo Banerjee, Somak Aditya,565
and Ashish Kulkarni. 2024. Mathsensei: A tool-566
augmented large language model for mathematical567
reasoning. arXiv preprint arXiv:2402.17231.568

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 569
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 570
Akhil Mathur, Alan Schelten, Amy Yang, Angela 571
Fan, et al. 2024. The llama 3 herd of models. arXiv 572
preprint arXiv:2407.21783. 573

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, 574
Minlie Huang, Nan Duan, Weizhu Chen, et al. 575
2023. Tora: A tool-integrated reasoning agent 576
for mathematical problem solving. arXiv preprint 577
arXiv:2309.17452. 578

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, 579
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and 580
Yang Liu. 2024. Stabletoolbench: Towards stable 581
large-scale benchmarking on tool learning of large 582
language models. arXiv preprint arXiv:2403.07714. 583

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 584
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 585
Neil Zhenqiang Gong, et al. 2023. Metatool bench- 586
mark for large language models: Deciding whether 587
to use tools and which to use. arXiv preprint 588
arXiv:2310.03128. 589

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 590
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 591
and Yongbin Li. 2023. Api-bank: A comprehensive 592
benchmark for tool-augmented llms. arXiv preprint 593
arXiv:2304.08244. 594

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 595
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 596
Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham- 597
mer: Robust function-calling for on-device lan- 598
guage models via function masking. arXiv preprint 599
arXiv:2410.04587. 600

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 601
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 602
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a. 603
Deepseek-v3 technical report. arXiv preprint 604
arXiv:2412.19437. 605

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 606
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 607
Zhengying Liu, Yuanqing Yu, et al. 2024b. Toolace: 608
Winning the points of llm function calling. arXiv 609
preprint arXiv:2409.00920. 610

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 611
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 612
Zhiwei Liu, Yihao Feng, et al. 2024c. Apigen: 613
Automated pipeline for generating verifiable and 614
diverse function-calling datasets. arXiv preprint 615
arXiv:2406.18518. 616

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au- 617
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma, 618
Mengyu Li, Guoli Yin, et al. 2024. Toolsandbox: A 619
stateful, conversational, interactive evaluation bench- 620
mark for llm tool use capabilities. arXiv preprint 621
arXiv:2408.04682. 622

9

https://anthropic.com/news/claude-3-5-sonnet
https://www.volcengine.com/product/doubao

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-623
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,624
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,625
Asli Celikyilmaz, et al. 2023. Augmented language626
models: a survey. arXiv preprint arXiv:2302.07842.627

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad628
Saqib, Saeed Anwar, Muhammad Usman, Naveed629
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A630
comprehensive overview of large language models.631
arXiv preprint arXiv:2307.06435.632

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan633
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,634
Bill Qian, et al. 2023. Toolllm: Facilitating large635
language models to master 16000+ real-world apis.636
arXiv preprint arXiv:2307.16789.637

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,638
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong639
Wen. 2025. Tool learning with large language mod-640
els: A survey. Frontiers of Computer Science,641
19(8):198343.642

T. Schick, J. Dwivedi-Yu, R. Dessì, et al. 2023. Tool-643
former: Language models can teach themselves to644
use tools. Advances in Neural Information Process-645
ing Systems, 36:68539–68551.646

Zhihong Shao, Fei Huang, and Minlie Huang. 2022.647
Chaining simultaneous thoughts for numerical rea-648
soning. arXiv preprint arXiv:2211.16482.649

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.650
Vipergpt: Visual inference via python execution for651
reasoning. In Proceedings of the IEEE/CVF Interna-652
tional Conference on Computer Vision, pages 11888–653
11898.654

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan655
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,656
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.657
2024. Gemini 1.5: Unlocking multimodal under-658
standing across millions of tokens of context. arXiv659
preprint arXiv:2403.05530.660

Vishruth Veerendranath, Vishwa Shah, and Kshitish661
Ghate. 2024. Calc-cmu at semeval-2024 task 7:662
Pre-calc–learning to use the calculator improves663
numeracy in language models. arXiv preprint664
arXiv:2404.14355.665

Jun Wang, Jiamu Zhou, Muning Wen, Xiaoyun Mo,666
Haoyu Zhang, Qiqiang Lin, Cheng Jin, Xihuai Wang,667
Weinan Zhang, and Qiuying Peng. 2024a. Ham-668
merbench: Fine-grained function-calling evaluation669
in real mobile device scenarios. arXiv preprint670
arXiv:2412.16516.671

Pei Wang, Yanan Wu, Zekun Wang, Jiaheng Liu,672
Xiaoshuai Song, Zhongyuan Peng, Ken Deng,673
Chenchen Zhang, Jiakai Wang, Junran Peng, et al.674
2024b. Mtu-bench: A multi-granularity tool-use675
benchmark for large language models. arXiv676
preprint arXiv:2410.11710.677

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl 678
Lee, Youliang Yuan, Jen-tse Huang, and Michael R 679
Lyu. 2024c. Learning to ask: When llms meet un- 680
clear instruction. arXiv preprint arXiv:2409.00557. 681

Z. Wang, X. Zeng, W. Liu, and et al. 2024d. 682
Toolflow: Boosting llm tool-calling through natu- 683
ral and coherent dialogue synthesis. arXiv preprint 684
arXiv:2410.18447. 685

Watt-AI. 2024. Watt-tool 8b. Accessed: January 2024. 686

Shuyuan Xu, Zelong Li, Kai Mei, and Yongfeng Zhang. 687
2024. Core: Llm as interpreter for natural lan- 688
guage programming, pseudo-code programming, and 689
flow programming of ai agents. arXiv preprint 690
arXiv:2405.06907. 691

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, 692
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and 693
Joseph E. Gonzalez. 2024. Berkeley function calling 694
leaderboard. https://gorilla.cs.berkeley. 695
edu/blogs/8_berkeley_function_calling_ 696
leaderboard.html. Accessed: 2024-01-16. 697

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 698
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 699
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 700
nical report. arXiv preprint arXiv:2412.15115. 701

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin 702
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, 703
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm- 704
react: Prompting chatgpt for multimodal reasoning 705
and action. arXiv preprint arXiv:2303.11381. 706

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik 707
Narasimhan. 2024. τ -bench: A benchmark for tool- 708
agent-user interaction in real-world domains. arXiv 709
preprint arXiv:2406.12045. 710

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, 711
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo 712
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2: 713
Breaking the barrier of closed-source models in code 714
intelligence. arXiv preprint arXiv:2406.11931. 715

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, 716
and Chao Zhang. 2023. Toolqa: A dataset for llm 717
question answering with external tools. Advances in 718
Neural Information Processing Systems, 36:50117– 719
50143. 720

10

https://huggingface.co/watt-ai/watt-tool-8B
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

A Detailed Descriptions of Test Cases721

A.1 Data Categories Description722

We divide the benchmark into three main cate-723

gories: Normal, Special, and Agent. Below is724

a detailed description of each category.725

Normal Data726

The Normal Data consists of fixed question-answer727

pairs, where each question corresponds to a correct728

function call. It is categorized into the following729

categories: Single-Turn, Multi-Turn, Similar APIs,730

Preference, and Atom.731

Single-Turn: There is only one round interac-732

tion between the user and the assistant, and based733

on the number of function calls in the response, it734

is divided into single-turn single function calls and735

single-turn parallel function calls.736

Multi-Turn: There are multiple interactions be-737

tween the user and the assistant. The conversa-738

tion can be categorized into two types: (switch)739

The conversation progresses by changing topics.740

(adjust) The conversation evolves by refining or741

modifying the original question.742

Similar APIs: The candidate APIs exhibit sig-743

nificant similarity, particularly focusing on the744

same topic. This similarity presents a challenge for745

the assistant, requiring it to effectively distinguish746

between the APIs and accurately select the most747

appropriate ones.748

Preference: Besides the candidate APIs, the as-749

sistant is provided with supplementary user profile750

data. This type of information necessitates the as-751

sistant’s ability to mine user-specific factors, such752

as past interactions, interests, or other personalized753

attributes, to generate argument values.754

Atom: Atom Data refers to a set of APIs that755

contain only specific parameter types, such as can-756

didate functions where the parameters exclusively757

involve numbers, lists, etc. This design is intended758

to explore whether the type of function parameters759

affects the model’s ability to handle data filling.760

We have divided the Atom data into five types:761

number, enum, list, bool, and object.762

Special Data763

The Special Data refers to situations where the764

model is unable to resolve the problem posed in765

the instruction using the candidate functions(Wang766

et al., 2024c). It is categorized into the following767

categories: Incomplete, Error, and Irrelevant.768

Incomplete: Refers to situations where the key 769

information required for the function call is miss- 770

ing in the query, such as the absence of "required" 771

parameters. 772

Error: Refers to situations where the instruction 773

contains parameters or names that do not meet the 774

required format or constraints, such as matching a 775

specific pattern or being selected from a predefined 776

list, causing the function call to fail. 777

Irrelevant: Refers to situations where the in- 778

struction exceeds the function’s capabilities, mean- 779

ing none of the candidate functions can resolve the 780

issue. 781

Agent Data 782

Agent Data refers to scenarios where completing 783

a task in an environment modeled after real-world 784

situations typically requires multi-step collabora- 785

tion. In this study, we employ the GPT-4o lan- 786

guage model to simulate user roles and replicate 787

real-world interaction processes, thereby evaluat- 788

ing the model’s performance in complex interactive 789

settings. The key scenarios are defined as follows: 790

Multi-step Scenario: The user participates in 791

only a single interaction throughout the entire dia- 792

logue flow. 793

Multi-turn Scenario: The user engages in mul- 794

tiple interactions across the entire dialogue cycle. 795

Agent Data currently encompasses the following 796

fundamental scenarios: 797

(1)Mobile Application Simulation. The mo- 798

bile application scenario provides digital lifestyle 799

functionalities including communication services, 800

integrated reminder and memo management sys- 801

tems, and alarm configuration capabilities. This 802

environment simulates core smartphone operations 803

with particular attention to notification handling 804

and scheduling precision. 805

(2)Food Delivery Platform. This scenario simu- 806

lates the core functionalities of a food delivery plat- 807

form, primarily including merchant search, product 808

browsing and ordering, order status tracking, and 809

cancellation processing. The system implements 810

essential operational procedures from merchant 811

selection to order completion, supporting users 812

throughout the entire food ordering experience. 813

(3)Financial Services Scenario. This module 814

provides fundamental banking service simulations, 815

primarily including: deposit/withdrawal transac- 816

tions, account balance inquiries, fund transfers, 817

and other routine banking operations, while also 818

11

supporting loan applications and repayment pro-819

cesses. The system maintains detailed transaction820

records and can generate basic financial statements,821

replicating the core services of real banking sys-822

tems.823

(4)Travel Booking Platform. This scenario824

simulates a standard ticketing system, enabling825

users to complete end-to-end operations includ-826

ing flight/train ticket inquiry, booking, payment,827

rescheduling, and cancellation. The system incor-828

porates fare checking, seat selection, and order829

management functionalities, capable of handling830

itinerary changes and related ticket adjustments. It831

covers the complete user journey from search to832

ticket issuance.833

Our team is actively working on designing more834

functional scenarios to enhance the platformin835

Agent Data.836

B The Construction of Data837

B.1 Agent Data838

As shown in Figure 8, the construction of Agent839

data can be summarized in the following steps:840

First, through an in-depth analysis of real-world841

scenarios, extract key task requirements and modu-842

larize them into sub-scenarios in different domains843

(such as flight booking, food delivery platforms,844

and financial services), clearly define the specific845

functional objectives of each module.846

Second, implement logical abstraction for each847

function through code, designing core processes848

such as user authentication, cost calculation, pay-849

ment processing, and information recording. This850

ensures the code logic’s scalability and robustness851

while comprehensively addressing exception han-852

dling.853

Third, design interaction rules based on specific854

scenario requirements to standardize the interac-855

tion process between users and the Agent, such as856

verifying account, merchant information, and bal-857

ance status in food delivery orders, and providing858

user guidance in exceptional cases.859

Finally, combine real-world demands to design860

question formats and solutions, enabling the model861

to accurately meet user task requirements and862

achieve the desired outcomes.863

B.2 Special Data 864

Irrelevant 865

The irrelevant data refers to situations where the in- 866

struction exceeds the function’s capabilities. And 867

the construction method for Irrelevant data is sim- 868

ilar to that of Normal data, where we simply re- 869

move the correct API from the candidate APIs of 870

the common data. 871

Incomplete 872

The special data with incomplete instructions pri- 873

marily refers to situations where key information 874

is missing from the user’s instructions, causing the 875

function to be called incorrectly. Our main prompt 876

for constructing incomplete data is shown in Fig- 877

ure 9. From the generated dialogue, we can extract 878

the corresponding data and reference answers (the 879

missing data). Next, we can convert the conversa- 880

tion we obtained into data. A specific example is 881

shown in Figure 10. 882

Please refer to the example and continue the dialogue
based on the given tool definition and the beginning of
the conversation. The requirements are as follows:
1 The user’s request is meaningful, requiring the use of
one tool, and the tool will be called once.
2 Calling the tool to fulfill the user’s request still lacks
one or more required parameters.
......
Here is an example for reference

<tool_definition>

{
"name": "calculate_triangle_area",
"description": "Given the base and height of a

triangle, calculate its area.",
"required": ["base", "height"]
}

<dialogue_example>

[User]: I want to calculate the area of a
triangle with a base of 5 and a height of 10.
[Assistant]:
[Thought] Missing parameters: base|height
[Response]:
Please provide both the base and the
height of the triangle.
[User]: The base is 5, and the height is 10.
[Assistant]:
<tool_usage>calculate_triangle_area
|{"base": 5, "height": 10}</tool_usage>

Here is the dialogue continuation you need to write:
<Tool Definition>
{tool_definition}
......

Figure 9: Main prompt of Incomplete Data construc-
tion.

12

Real-world Scenario Collection

Food

Platform

Add_Food_Order

Get_Products

Login_Platform

Finance

Deposit

Withdrawal

……

Travel

Reserve_Flight

Modify_Flight

……

……

……

Code Implementation for Scenario Abstraction Dialogue Rule Design

（Ordering Takeout）

1 Before ordering takeout, you need to obtain the

user's takeout platform account and password, and

log in using login_food_platform().

2 If the merchant, product, and quantity for the order

are not initially provided, you need to ask the user.

3 If the balance is insufficient, you need to inform the

user "Insufficient balance" and ask if they want to

change the order.

…..

Question Formulation

1 Order food delivery based on account balance, such

as purchasing bubble tea, within a specific budget

constraint.

2 Book tickets based on travel requirements,

including comparing prices, and ensuring the travel

schedule matches the planned itinerary.

3 Complete tasks based on the content of messages.

……

def add_food_order(

self,

username: str,

merchant_name: str,

items: List[Dict[str, Union[str, int]]])

if username not in self.logged_in_users:

return {

"status": False,

"message": f"User {username} is not logged"}

if merchant_name not in self.merchant_list:

return {"status": False, "message": "Merchant does not exist"}

total_price = 0.0

order_items = []

for item in items:

product_name = item.get("product")

quantity = item.get("quantity", 1)

……

if total_price > self.users[username]["balance"]:

return {"status": False, "message": "Insufficient balance"}

self.users[username]["balance"] -= total_price

order = {

"user_name": username,

"merchant_name": merchant_name,

"items": order_items,

"total_price": total_price }

self.orders.append(order)

return {"status": True,

"message": f"Food delivery order successfully placed”}

Figure 8: The construction of Agent Data. The left shows scenario sampling from real-world cases, the middle
demonstrates the implementation of code tailored to specific scenarios, and the right presents examples of dialogue
rules and question design for the scenarios.

candidate function
{
"name": "book_flight",
"description": "Flight booking ...",
"arguments": {},
"required": ["from_city_name",
"to_city_name", "depart_date"]

}

obtained dialouge
<user> I plan to travel to Beijing.
Help me book a flight to Beijing.
</user> [Thought] Missing parameters:
from_city_name
[Response] May I know the departure
city you want to book?
<user> Shenzhen

converted data
[question] I plan to travel to Beijing.
Help me book a flight to Beijing.
[answer] Miss necessary parameter
(from_city_name) from (book_flight)

Figure 10: Specific example of Incomplete Data con-
struction.

Please refer to the example and continue the dialogue
based on the given tool definition and the beginning of
the conversation. The requirements are as follows:
1 The user’s request is specific and meaningful, requir-
ing one tool, and the tool should be called once.
2 The user’s first question contains incorrect parameters
(i.e., it does not conform to the function definition’s
pattern or format requirements).
......
Here is an example for reference
<tool_definition>

{"name": "TennisTeamDetails",
"description": "Retrieve detailed
information about a tennis team .",
"parameters": {

"properties": {
"team_name": {......
"pattern": "^[a-zA-Z\\s]+$"}}}}

<dialogue_example>

<user> Can you retrieve the details of
the tennis team named 'Team@1234'?

</user> [Thought] Error Parameter: 'Team@1234'
[Response] The team name you provided does

not meet the naming criteria.
<user> Oh, I made a mistake.

The team name is TeamABC.
</user> <tool_usage>TennisTeamDetails
|{"team_name": "TeamABC"}</tool_usage>"

Here is the dialogue continuation you need to write:
<Tool Definition>
{tool_definition}
......

Figure 11: Main prompt for Error Data construction.

13

Error883

The special data which has error instructions884

mainly refers to situations where the instruction885

contains parameters or names that do not meet the886

required format or constraints, and the construction887

is shown in 11. Next, we can convert the conversa-888

tion we obtained into data. A specific example is889

shown in 12.890

candidate function
{ "name": "FootballTeamDetails",
"description": "Retrieve information
about a football team by its name.",
"parameters": {

"team_name": {......
"pattern": "^[a-zA-Z\\s]+$"}}}}

obtained dialouge
<user> I want to know information about
the football team football$156.
</user> [Thought] Error Parameter:

football$156.
[Response] The team name you provided
does not meet the naming criteria.
<user>

converted data
[question] I want to know information
about the football team footbaoo$156.
[answer] There is incorrect value
(football$156) for the (team_name).

Figure 12: Specific example of Error Data construction.

C Examples of Dataset891

C.1 Normal Examples892

Single-Turn. The example of Normal Single-Turn893

Data is shown in Figure 13.894

Multi-Turn. The example of Normal Multi-Turn895

Data is shown in Figure 14.896

Preference. The example of Normal Preference897

Data is shown in Figure 15.898

Similar APIs. The example of Normal Similar899

APIs Data is shown in Figure 16.900

Atom. The example of Normal Atom Data is901

shown in Figure 17.902

C.2 Special Examples903

Incomplete. The example of Special Incomplete904

Data is shown in Figure 18.905

Error. The example of Special Error Data is shown906

in Figure 19.907

Irrelevant. The example of Special Irrelevant Data908

is shown in Figure 20.909

C.3 Agent Examples 910

The example of Agent Data is shown in Figure 21 911

and Figure 22. 912

D Evaluation Inference Prompts 913

D.1 Normal Prompt 914

The main evaluation inference prompt for Normal 915

Data is shown in Figure 23 and Figure 24. 916

D.2 Special Prompt 917

The main evaluation inference prompt for Special 918

Data is shown in Figure 27. 919

D.3 Agent Prompt 920

An example of the evaluation inference prompt 921

for Agent Data in a specific scenario is shown in 922

Figure 28. And an inference prompt is shown in 923

Figure 29. 924

D.4 Different Prompt Strategies 925

Standard Prompt is shown in Figure 23. Condensed 926

Prompt is shown in Figure 25. Minimal Prompt is 927

shown in Figure 26. 928

E Formula for Overall Accuracy 929

The formula for calculating the Overall Accuracy 930

can be expressed as: 931

All Acc = A·AccNormal+B·AccSpecial+C·AccAgent 932

where the coefficients A, B, and C are defined 933

as: 934

A =

√
nNormal√

nNormal +
√
nSpecial +

√
nAgent

935

B =

√
nSpecial√

nNormal +
√
nSpecial +

√
nAgent

936

C =

√
nAgent√

nNormal +
√
nSpecial +

√
nAgent

937

where nNormal, nSpecial, nAgent are the sample 938

sizes for the Normal, Special, and Agent data 939

types, and Accuracy refers to the accuracy of each 940

respective category. 941

14

F Detailed Results942

The accuracy evaluation of different models on943

English Data is shown in Table 7, and the accuracy944

evaluation of different models on Chinese Data is945

shown in Table 8.946

G Error Examples947

G.1 Error Examples of Normal Data948

Wrong Function Name. An example of wrong949

function name is shown in Figure 30.950

Wrong Param Type. An example of wrong param951

type is shown in Figure 31.952

Wrong Param Value. An example of wrong953

param value is shown in Figure 32.954

Wrong Output Format. An example of wrong955

output format is shown in Figure 33.956

G.2 Error Examples of Special Data957

Error Detection Figure 34 shows an example of958

error detection.959

Error Correction Figure 35 shows an example of960

error correction.961

15

(question)

Please assess the system with asset ID 12345, vulnerability ID 67890, with a severity level of high, and a po-
tential threat that may lead to data leakage.

(candidate function)
{
"name": "Threat_Vulnerability_Assessment_Tool",
"description": "Assess potential security
threats and provide mitigation suggestions",
"parameters":
}
{
"name": "userPrivacySettingsManager",
"description": "Manage user's privacy",
"parameters":
}

Figure 13: An example of Normal Single-Turn Data.

(conversation)

User: I want to analyze the pest and disease risks faced by my rice crop, which is currently in the tillering
stage.
system: Please provide the current temperature and humidity conditions.user: The temperature is 28°C, and the humidity
is 80%.
tool:
[PestInfestationRiskAnalyzer(

crop_information={"crop_type": "rice", "growth_stage": "tillering"},
climate_conditions={"temperature": 28, "humidity": 80})]

system: Based on the analysis, your rice is facing a moderate risk of pests and diseases under the current climatic
conditions. Please take necessary preventive measures.
User: I also want to know the maintenance requirements for my production equipment. The device ID is Device123.
system: Please provide the sensor readings of the device, including temperature, vibration, and humidity.
User: The device currently reads a temperature of 75°C, vibration level of 5, and surrounding humidity of 50%.

(candidate function)
{
"name": "PestInfestationRiskAnalyzer",
"description": "Analyze the pest and disease risk faced by the farmland ",
"parameters":

}
{

"name": "Predictive_Maintenance_AI_Tool",
"description": "Predicting the maintenance needs of equipment using sensor data",
"parameters":

}
{

"name": "PersonalityTraitAnalyzer",
"description": "Analyze an individual's personality traits",
"parameters":

}

Figure 14: An example of Normal Multi-Turn Data.

16

(question)
Can you update my preferred notification method and also check if my current email address and home location are
properly updated in the system?

(candidate function)
{
"name": "updateOrderStatusAlerts",
"description": "Sends automated alerts to users regarding the status of their current orders.",
"parameters":

}
{

"name": "submitProductReview",
"description": "Allows users to submit a review for a product they have purchased.",
"parameters":

}
{

"name": "updateUserProfile",
"description": "Updates the user's profile information based on provided data.",
"parameters":

}

(profile)
{

"basic_features": {
"UserName": "Michael Smith",
"UserEmail": "mike.smith@example.com",
"UserHomeLocation": "Los Angeles, CA",
"UserBirthday": "1978-04-23",
"UserLanguage": "Spanish",
"UserTimeZone": "PST",
.......

},
"user_history": {

"shopping": [
"Searched for 'Nike running shoes' on app",
"Added Nike Air Max to cart",
"Checked coupon availability for Nike products",
"Filtered search by 'Outdoor Equipment' category",
"Selected 'High spending' filter for items over $500",
......

],
"takeout": [

"Ordered Chicken Fajitas on the takeout app for lunch",
"Opted to receive promotional deals via phone calls",
"Chose Debit Card ending in 5678 for payment on the takeout app",
......

]
}

}

Figure 15: An example of Normal Preference Data.

17

(question)

My baby has had a visible vein on her nose for 5 days, and she’s been crying a lot with a decreased appetite.
Can you help?

(candidate function)
{
"name": "baby_health_check_A",
"description": "Checks the common reasons for baby's persistent vein visibility on the nose

and suggests actions. This API considers factors like skin thinness, crying, or overexertion",
"parameters":

}
{

"name": "baby_health_check_B",
"description": "Examines baby's vein visibility and recommends seeing a doctor.

Focuses on persistent visibility and associated symptoms",
"parameters":

}

Figure 16: An example of Similar API Data.

(question)

I need a design for my new website. It’s for a technology company focusing on user engagement.

(candidate function)
{
"name": "WebDesignAssistant_generateDesign",
"description": "Generates a website design based on industry and user experience focus.",
"parameters": {

"type": "object",
"properties": {
"industry": {

"description": "The industry for which the website is being designed.",
"type": "string",
"enum": [
"Technology",
"Healthcare",
"Education",
"Finance"

],
"default": "Technology"

},
"userExperience": {......}

},
"required": ["industry", "userExperience"]

}
}
{. }

Figure 17: An example of Atom (enum) Data.

18

(question)

I’m considering relocating my business to the Middle East. Can you provide me with a list of major cities?

(candidate function)
{"name": "Get_Middle_East_Cities",
"description": "Retrieves a list of cities in the Middle East, sorted by overall score by default.",
"parameters": {

"properties": {
"sort": {

"description": "The sorting order for the list of cities.",
"type": "string",
"enum": ["asc", "desc"],

}
},
"required": ["sort"]

}}

Figure 18: An example of Special Incomplete Data.

(question)

Can you retrieve the tennis team details named ’Team@1234’?”

(candidate function)
{"name": "TennisTeamDetails",
"description": "Retrieve detailed information about a tennis team by its name.",
"parameters": {

"type": "object",
"properties": {
"team_name": {

"pattern": "^[a-zA-Z\\s]+$",
}

},
"required": ["team_name"]

}}

Figure 19: An example of Special Error Param Data.

(question)

Could you help me find available restaurants in New York City?

(candidate function)
{
"name": "Get_Weather_Report",
"description": "Retrieve the current weather report for a specified location",
"parameters":

}
{

"name": "GetTravelDestinationInfo",
"description": "Retrieves information about a specific travel destination",
"parameters":

}

Figure 20: An example of Special Irrelevant Data.

19

Question: You are Jack, and you need to order some takeout for dinner. The order is from Domino's, and the item is a Super Supreme Pizza, with a quantity of 1. If your balance is sufficient, also

order a Cheese Tea from HeyTea. Your takeout platform account is "Jack", and the password is "password654".

I want to order some takeout.

[turn_on_wifi()]

 [login_food_platform(username='Jack', password='password654')]

The WiFi is turned on, and user Jack has successfully logged in.

Which restaurant's takeout you would like to order?

The restaurant is Domino's, the item is a Super Supreme Pizza.

[add_food_order(username='Jack', merchant_name=' Domino‘s ,

items=[{'product': 'Super Supreme Pizza', 'quantity': 1}])]

If the balance is sufficient, I will also order a Cheese Tea from HeyTea.

[check_balance(user_name='Jack')]

32.0 yuan.

However, the balance is insufficient.

Expected Attribute Real Attribute

{

 "orders":

 [

 {

 "product": "Super Supreme Pizza",

 "quantity": 1,

 "price_per_unit": 88.0

 },

 {

 "product": "Cheese Tea",

 "quantity": 1,

 "price_per_unit": 25.0

 }

],

 "total_price": 113.0

}

{
 "orders":
 [
 {
 "product": " Super Supreme Pizza ",
 "quantity": 1,
 "price_per_unit": 88.0
 }
],
 "total_price": 88.0
}

(After ordering the pizza, the remaining

balance is sufficient to order another cup of

Cheese tea.)

……
Please provide your takeout platform account and password.

……

Result Eval End_to_End Accuracy = 0

Process Eval Process Accuracy = 4/6

turn_on_wifi(…)

 login_food_platform(…)

 add_food_order(…)

 check_balance(…)

 get_products(…)

 add_food_order(…)

Expected Process Real Process

login_food_platform(…)

 turn_on_wifi(…)

 login_food_platform(…)

 add_food_order(…)

 check_balance(…)

Figure 21: An example of Agent Data: A partially correct representation.

Question: Your name is Grace, and you want to send Frank a message that says: 'Are you free tomorrow to have lunch with me?' If a message needs to be deleted, generally delete the message that

was sent the earliest.

I want to send a message to Frank.

[send_message(sender_name='Grace', receiver_name='Frank',

message='Are you free tomorrow to have lunch with me?')]

The capacity is full. You need to ask which message to delete.

Which message would you like to delete?

Please delete the message that was sent the earliest.

Expected Attribute Real Attribute

{

 “message":

 [……

 "7": {

 "sender_id": "USR102",

 "receiver_id": "USR101",

 "message": "Are you free tomorrow

to have lunch with me?"

 }

]

}

Who are you and what is the content of the message you want to send?

Result Eval End_to_End Accuracy = 1

Process Eval Process_Accuracy = 1

Expected Process Real Process

send_message (…)

 get_earliest_message_id (…)

 delete_message (...)

 send_message (…)

I am Grace, and the message I want to send is: 'Are you free tomorrow

to have lunch with me?'

[get_earliest_message_id()]

[delete_message(message_id=3)]

[send_message(sender_name='Grace', receiver_name='Frank',

message='Are you free tomorrow to have lunch with me?')]

The earliest message ID is 3.

{

 “message":

 [……

 "7": {

 "sender_id": "USR102",

 "receiver_id": "USR101",

 "message": "Are you free tomorrow

to have lunch with me?"

 }

]

}

get_earliest_message_id (…)

 delete_message (...)

 send_message (…)

Figure 22: An example of Agent Data: A fully accurate representation.

20

You are an AI assistant with the role name "assistant". Based on the provided API specifications and conversation history
from steps 1 to t, generate the API requests that the assistant should call in step t+1. The API requests should be output in
the format [ApiName(key1=’value1’, key2=’value2’, ...)], replacing ApiName with the actual API name, key1, key2, etc.,
with the actual parameter names, and value1, value2, etc., with the actual parameter values. The output should start with a
square bracket "[" and end with a square bracket "]". If there are multiple API requests, separate them with commas, for
example:[ApiName(key1=’value1’,key2=’value2’,...),ApiName(key1=’value1’,key2=’value2’, ...), ...]. Do not include any
other explanations, prompts, or API call results in the output. If the API parameter description does not specify otherwise,
the parameter is optional (parameters mentioned in the user input need to be included in the output; if not mentioned, they
do not need to be included). If the API parameter description does not specify the required format for the value, use the
user’s original text for the parameter value. If the API requires no parameters, output the API request directly in the
format [ApiName()], and do not invent any nonexistent parameter names.

{time}

Role Descriptions:
user: User
assistant: The AI assistant role that makes API requests
tool: Provides the results returned from tool calls

API Specifications:
{function}

Figure 23: The inference prompt for Nomal (except Prefernce) Data.

You are an AI assistant, and your role is called assistant. Based on the given API description, dialogue history 1..t, and
character profile, generate the API requests that the assistant should call in step t+1. The API requests should be output
in the format [ApiName(key1=’value1’, key2=’value2’, ...)], where ApiName is replaced with the actual API name, and
key1, key2, etc., are replaced with the actual parameter names, and value1, value2 are replaced with the actual parameter
values. The output should start with a "[" and end with a "]". If there are multiple API requests, they should be separated
by commas, e.g., [ApiName(key1=’value1’, key2=’value2’, ...), ApiName(key1=’value1’, key2=’value2’, ...), ...]. Do not
output any other explanations, hints, or results of the API calls in the output. If the API parameter description does not
specify special instructions, the parameter is optional (parameters mentioned in the user input or character profile should
be included in the output, and if not mentioned, they should not be included). If the API parameter description does not
specify the format for the parameter value, it should be taken from the user’s original text or character profile. If the API
requires no parameters, the API request should be output as [ApiName()], with no fabricated parameter names.

Character Profile:
{profile}

Role Descriptions:
user: User
assistant: The AI assistant role that makes API requests
tool: Provides the results returned from tool calls

API Specifications:
{function}

Figure 24: The inference prompt for Nomal (Prefernce) Data.

21

You are an AI assistant with the role name "assistant". Based on the provided API specifications and conversation history
from steps 1 to t, generate the API requests that the assistant should call in step t+1. The API requests should be output in
the format [ApiName(key1=’value1’, key2=’value2’, ...)], replacing ApiName with the actual API name, key1, key2, etc.,
with the actual parameter names, and value1, value2, etc., with the actual parameter values. The output should start with a
square bracket "[" and end with a square bracket "]".

{time}

Role Descriptions:
user: User
assistant: The AI assistant role that makes API requests
tool: Provides the results returned from tool calls

API Specifications:
{function}

Figure 25: Condensed Prompt for Normal Data.

You are an AI assistant. Based on the provided API specifications and conversation history generate the API requests in
the format [ApiName(key1=’value1’, key2=’value2’, ...),.....].

{time}

Role Descriptions:
user: User
assistant: The AI assistant role that makes API requests
tool: Provides the results returned from tool calls

API Specifications:
{function}

Figure 26: Minimal Prompt for Normal Data.

22

You are an AI system with the role name "assistant". Based on the provided API specifications and conversation history
from steps 1 to t, generate the API requests that the system should call in step t+1. Below are two specific scenarios:
1. When the information provided by the user is clear and unambiguous, and the problem can be resolved using the
list of candidate functions:
- If the API parameter description does not specify the required format for the value, use the user’s original text for the
parameter value.
- API requests should be output in the format [ApiName(key1=’value1’, key2=’value2’, ...), ApiName(key1=’value1’,
key2=’value2’, ...), ...], replacing ApiName with the actual API name, key1, key2, etc., with the actual parameter names,
and value1, value2, etc., with the actual parameter values. The output should start with a square bracket "[" and end with a
square bracket "]". At this time, the output must not contain any other content.
2. When the information provided by the user is unclear, incomplete, or incorrect, or the user’s question exceeds
the capabilities of the provided functions, you need to clearly point out these issues. The following is your strategy:
(1) If the user’s instructions include the key details required to call the API, but the type or form of the parameter values
does not match the API’s definitions, ask in-depth questions to clarify and correct the details. The output format should be:
["There is incorrect value (value) for the parameters (key) in the conversation history."]
(2) If the user’s instructions lack the key details required by the API, ask questions to obtain the necessary information.
The output format should be: ["Missing necessary parameters (key1, key2, ...) for the api (ApiName)"], replacing key1,
key2 with the names of the missing parameters and ApiName with the actual API name.
(3) If the user’s request exceeds the current capabilities of your APIs, inform them that you cannot fulfill the request. The
output format should be: ["Due to the limitations of the function, I cannot solve this problem."]
Note: The above steps have a priority order. You need to first determine whether scenario (1) applies. If it does,
output according to the requirements in (1). Pay attention to distinguishing between scenarios (1) and (2).

{time}

Role Descriptions:
user: User
assistant: The AI assistant role that makes API requests
tool: Provides the results returned from tool calls

API Specifications:
{function}

Figure 27: The inference prompt for Special Data.

23

The current time is June 11, 2024, 16:00 (Beijing Time). As a simulated mobile assistant agent, you can help users send
text messages, add reminders, and order takeout.

Text messages
Sending Text Messages (1)Before sending a text message, the agent must first obtain the sender and recipient of the
message.(2)When the memory is full and needs to delete messages, you need to ask the user: "Memory is full, which
message would you like to delete?"
Viewing Text Messages (1)Before viewing text messages, the agent must first log into the device via lo-
gin_device().(2)Before viewing text messages, the agent must first obtain the sender and recipient of the messages.(3)After
viewing text messages, the agent needs to ask the user if they want to add the message content to a reminder.(4)After
viewing text messages, the agent needs to ask the user if they want to reply to the message.(5)If the message content
involves takeout, the agent needs to ask if the user wants to order takeout based on the message content.

Reminders
Adding Reminders(1)Before adding a reminder, you should obtain the content and title of the reminder. The reminder
time defaults to the current time.(2)If the reminder to be added is the content of a specific message, the agent needs to first
view the message content.
Viewing Specific Reminders by Title:After viewing a specific reminder by title, you need to ask the user if they want to
complete the tasks within it.

Order takeout
Ordering Takeout(1)Before ordering takeout, the agent needs to obtain the user’s takeout platform account and password,
and log in using login_food_platform().(2)If the merchant, product, and quantity for the order are not initially provided,
you need to ask the user.(3)When encountering takeout from different merchants, you need to order them one by one.(4)If
the balance is insufficient, you need to inform the user "Insufficient balance" and ask if they want to change the order.

Function Calls
When a function call is needed, please strictly adhere to the above format requirements:
(1)[ApiName(key1=’value1’, key2=’value2’, ...)], Please remember that the function call must start with [and end with]
(2)You need to promptly feedback the task execution status to the user and do not repeatedly call the same function. When
you believe the current task is completed, respond with "finish conversation" to end the dialogue.

Figure 28: The inference prompt for Agent Data in a specific scenario.

24

As a user, your role is to interact with an agent. However, during the interaction, you need to follow these guidelines:
1 Break down your inquiries and only raise one question per exchange to simulate a real user’s messages.
2 Provide all the necessary information for the current step. For instance, when setting a reminder, you must give details
such as the reminder’s description, title, and time.
3 When asked if you require further assistance, ensure that the main tasks in the instruction have been completed. If not,
continue to present the next step to the agent.
4 When the agent asks which message needs to be deleted, proceed with the deletion as specified in the instructions. You
cannot offer proactive help to the agent; respond to the agent’s questions according to the instructions, and do not invent
any information that you do not know.
5 Once all tasks are complete, generate a ’finish conversation’ message as a standalone line to end the discussion.
Question: question

Figure 29: An inference prompt for user simulator in a specific scenario.

25

Table 7: Accuracy evaluation of different models on English Data (%).

Model Normal Special Agent Overall
Atom Single-Turn Multi-Turn Similar API Preference Summary

Closed-Source Large Language Models

GPT-4o 90.0 78.0 68.0 80.0 78.0 82.5 92.7 56.0 81.1
GPT-4-Turbo 90.7 80.5 69.0 80.0 88.0 84.2 82.0 62.5 80.3
Qwen-Max 88.0 75.0 61.0 74.0 82.0 79.7 74.0 60.0 75.1
GPT-4o-Mini 84.3 73.5 59.0 74.0 72.0 76.4 76.7 27.5 68.9
Gemini-1.5-Pro 82.3 73.0 61.0 74.0 72.0 75.7 77.3 26.0 68.5
Claude-3-5-Sonnet 66.7 64.0 46.0 58.0 68.0 62.2 72.7 44.0 62.2
Doubao-Pro-32k 75.3 58.0 52.0 70.0 54.0 66.3 50.7 26.5 56.0

Open-Source Large Language Models

Qwen2.5-Coder-32B-Instruct 86.0 73.5 59.0 76.0 72.0 77.4 80.0 50.0 73.9
DeepSeek-V3 88.0 77.5 63.0 76.0 78.0 80.3 72.7 34.0 71.1
Qwen2.5-72B-Instruct 81.3 74.5 64.0 76.0 80.0 76.8 74.0 37.5 70.0
Llama-3.1-70B-Instruct 83.7 71.5 61.0 74.0 66.0 75.6 29.3 41.0 57.9
Qwen2.5-7B-Instruct 70.3 57.0 49.0 62.0 58.0 62.8 49.3 15.0 51.8
Qwen2.5-Coder-7B-Instruct 73.3 63.5 52.0 70.0 58.0 66.6 25.3 18.5 48.1
DeepSeek-Coder-V2-Lite-Instruct 71.7 58.0 50.0 62.0 60.0 64.0 39.3 2.5 47.9
Watt-Tool-8B 84.7 71.5 57.0 70.0 62.0 74.8 2.0 1.5 44.0
Hammer2.1-7B 71.3 62.5 43.0 64.0 52.0 62.9 3.3 15.0 39.6
Phi-3-Mini-128k-Instruct 66.3 49.0 31.0 58.0 32.0 54.0 12.0 0.0 34.4
MLlama-3.1-8B-Instruct 51.0 49.5 28.0 60.0 56.0 48.1 15.3 6.5 32.9
xLAM-7B-r 61.7 42.0 32.0 66.0 0.0 48.7 4.0 10.0 30.8
Llama-3.2-3B-Instruct 31.7 21.5 9.0 34.0 32.0 26.4 8.7 0.0 17.6
Hammer2.1-3B 32.7 14.0 7.0 36.0 32.0 25.5 0.7 1.5 15.2

Table 8: Accuracy evaluation of different models on Chinese Data (%).

Model Normal Special Agent Overall
Atom Single-Turn Multi-Turn Similar API Preference Summary

Closed-Source Large Language Models

GPT-4o 96.7 91.0 86.0 90.0 88.0 92.7 93.3 71.5 89.6
GPT-4-Turbo 95.7 89.0 86.0 92.0 84.0 91.7 91.3 72.5 88.6
Qwen-Max 94.3 86.0 75.0 92.0 84.0 88.7 74.0 68.5 81.7
GPT-4o-Mini 88.7 78.5 74.0 80.0 84.0 83.4 81.3 39.0 76.0
Claude-3-5-Sonnet 87.0 81.0 79.0 84.0 76.0 83.5 82.0 35.0 75.6
Gemini-1.5-Pro 86.7 80.5 68.0 86.0 84.0 82.2 80.0 25.0 72.8
Doubao-Pro-32k 84.3 53.0 64.0 82.0 78.0 75.0 59.3 23.5 62.8

Open-Source Large Language Models

Qwen2.5-Coder-32B-Instruct 94.3 88.5 83.0 90.0 90.0 90.8 81.3 71.5 85.3
Qwen2.5-72B-Instruct 92.3 86.0 75.0 90.0 82.0 87.3 77.3 52.5 79.3
DeepSeek-V3 95.0 90.5 91.0 90.0 88.0 92.6 73.3 35.0 78.5
Llama-3.1-70B-Instruct 81.3 65.0 66.0 84.0 70.0 75.3 47.3 43.5 62.9
Qwen2.5-7B-Instruct 81.7 63.5 68.0 82.0 76.0 75.9 44.7 12.5 57.8
DeepSeek-Coder-V2-Lite-Instruct 78.7 57.5 43.0 82.0 70.0 68.8 41.3 1.5 51.1
Qwen2.5-Coder-7B-Instruct 78.7 64.0 63.0 78.0 78.0 73.5 19.3 12.5 49.6
Watt-Tool-8B 86.7 67.0 54.0 88.0 66.0 76.3 10.0 4.0 47.4
Hammer2.1-7B 76.0 62.5 37.0 60.0 58.0 62.7 26.0 18.5 46.1
Llama-3.1-8B-Instruct 52.7 30.0 28.0 72.0 36.0 45.0 26.7 4.0 33.8
Phi-3-Mini-128k-Instruct 48.0 29.5 15.0 58.0 32.0 38.9 25.3 1.5 29.5
Llama-3.2-3B-Instruct 45.7 9.0 9.0 50.0 32.0 32.7 10.0 0.0 21.6
xLAM-7B-r 25.3 2.0 6.0 56.0 0.0 18.7 1.3 7.5 12.3
Hammer2.1-3B 12.0 9.0 0.0 44.0 8.0 11.8 1.3 1.5 7.4

26

(question)
I want to understand the symmetry in Escher’s Ẅaterfallärtwork. Please provide a detailed symmetry analysis.

(answer)
{"Escher_Artwork_Analysis_Tool": {

"artwork_analysis": [
{"artwork_id": "Waterfall",
"analysis_type": "Symmetry Analysis"}]}}

(model output)
{“FontAdvisor_recommendDisplayFonts”:{......}}

Figure 30: An error example of Wrong Function Name on Normal Data.

(question)
Can you check if our current automation system with system ID 2435 is compatible with the new device model XR10?

(answer)
{"AutomationSystemCompatibilityCheck":{ "systemID":2435,"newDeviceModel":"XR10"}}

(model output)
{“AutomationSystemCompatibilityCheck”:{ “systemID”:"2435", "newDeviceModel":"XR10"}}

Figure 31: An error example of Wrong Param Type on Normal Data.

(question)
I am currently working on a research paper about the state of forests, and I need an assessment of the vegetation diversity
in the Amazon rainforest. Please provide me with a detailed report.

(answer)
{"EcoDiversityMonitor_assessVegetation": {

"area_identifier": "Amazon rainforest",
"detailed_report": true}}

(model output)

[user,area_identifier='Amazonrainforest',detailed_report=True]

Figure 33: An error example of Wrong Output Format on Normal Data.

(question)
I would like to assess the GPS accuracy of my vehicle. The device ID is GPS-7524. Sorry, I made a mistake earlier—it
should be GPS-7526.

(answer)
{ "SignalAccuracyEvaluator":{ "device_id":"GPS-7526“ }}

(model output)
{"SignalAccuracyEvaluator":{ "device_id":"GPS-7524“}}

Figure 32: An error example of Wrong Param Value on Normal Data.

27

(question)
I‘m considering relocating my business to the Middle East. Can you provide me with a detailed list of major cities there,
sorted by internet speed?

(answer)
Missing necessary parameters (sort) for the API (Get_Middle_East_Cities)

(model output)
{
"Get_Middle_East_Cities": {

"sort": "desc",
"sort_by": "internet_speed",
"size": 10,
"page": 1

}
}

(The question did not mention the sort method)

Figure 34: An error example of Error Detection on Special Data.

(question)
I‘m considering relocating my business to the Middle East. Can you provide me with a detailed list of major cities there,
sorted by internet speed?

(answer)
Missing necessary parameters (sort) for the api (Get_Middle_East_Cities)

(model output)
Missing necessary parameters (sort by) for the api (Get_Middle_East_Cities)
(Find missing necessary parameters, but not correctly identified)

Figure 35: An error example of Error Correction on Special Data.

28

