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ABSTRACT

Multi-objective learning (MOL) is a popular paradigm for learning problems under
multiple criteria, where various dynamic weighting algorithms (e.g., MGDA and
MODO) have been formulated to find an updated direction for avoiding conflicts
among objectives. Recently, increasing endeavors have struggled to tackle the
black-box MOL when the gradient information of objectives is unavailable or
difficult to attain. Albeit the impressive success of zeroth-order method for single-
objective black-box learning, the corresponding MOL algorithm and theoretical
understanding are largely absent. Unlike single-objective problems, the errors
of MOL introduced by zeroth-order gradients can simultaneously affect both
the gradient estimation and the gradient coefficients A, leading to further error
amplification. To address this issue, we propose a Stochastic Zeroth-order Multiple
Objective Descent algorithm (SZMOD), which leverages function evaluations to
approximate gradients and develops a new decomposition strategy to handle the
complicated black-box multi-objective optimization. Theoretically, we provide
convergence and generalization guarantees for SZMOD in both general non-convex
and strongly convex settings. Our results demonstrate that the proposed SZMOD
enjoys a promising generalization bound of O(n~ 2 ), which is comparable to the
existing results of first-order methods requiring additional gradient information.
Experimental results validate our theoretical analysis.

1 INTRODUCTION

Multi-objective learning (MOL) aims to learn a single model that can optimize multiple potentially
conflicting objectives simultaneously. An unconstrained multi-objective optimization problem can be
defined as

min Fg(z) == [fs1(2), ..., fs,m(2)], )]

zER?
where S = {z;}1_, is the training dataset, fs,,(x) is the m-th empirical objective for m € [M] =:
{1,2,..M}. Usually, we can set fs,,(z) = Y., f»,m(z) as the empirical risk on the entire
training dataset S, where f, ,,, : R% — R measures the performance of a model z € R on a datum z
for the m-th objective.

Multi-objective learning has gained increasing attention, due to the complex decision-making pro-
cesses involved in many challenging tasks, e.g., managing traffic systems (Felten et al., [2024),
electricity grids (Lu et al.,2022), and taxation policy design (Zheng et al.,|2022)). These burgeoning
fields in practice, which require trading off multiple conflict objectives, underscore the significance
of research in MOL.. Specifically, balancing bias and variance (Neal et al.| 2018]), or accuracy and
calibration (Guo et al.,2017), are well-known common objectives in machine learning that need to be
optimized. To tackle these problems, this paper pays particular attention to multi-objective gradient
methods that aim to find a common descent direction for all objectives. [Désidéri (2012) initially
introduced the concept of a Pareto stationary and the multi-gradient descent (MGDA) algorithm.
Since then, stochastic variants such as MOCO (Fernando et al., 2023)) and MODO (Chen et al.| [2024)
have been proposed. Those first-order multi-objective alpgrithms have have great performed in the
white-box problem.

However, when we consider the black box problem, where obtaining explicit gradients is either
unattainable or too expensive, these algorithms are no longer applicable. For instance, in the field
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Figure 1: An example from (Liu et al., 2021)) involves two objectives in Figure 1(a) and 1(b) to
demonstrate the conflict between objectives. Figures 1(c)-1(e) show the optimization trajectories,
where the black dots indicate the initialization points of the trajectories, with the colors transitioning
from red (start) to yellow (end). The background solid/dotted contours represent the landscape
of the average empirical and population objectives, respectively. The gray/green bars mark the
empirical/population Pareto fronts, while the black * green x marks the solution to the average
objectives.

of multiple-objective reinforcement learning (Hu et al., 2023; [Felten et al.,|2024; Terry et al., 2021}
Gupta et al., [2017)), agents often can only learn strategies through interaction and external reward
signals, without access to the internal state or dynamics of the environment. Similarly, in most
attack scenarios (Akhtar & Mian, 2018 Liu et al., [2022} [Papernot et al., [2017;|2016), the attacker’s
knowledge of the classifier is very limited, which causes the attacker only to execute a black-box
attack. [Liang et al.| (2022) state that the black-box attacks can manipulate model outputs by adjusting
the trade-offs between true and false positives without direct access to the model’s internals. Williams
& Li|(2023) consider a novel multi-objective sparse attack that can simultaneously reduce the number
and the individual size of modified pixels during the attack process.

Most of the black-box MOL scenarios discussed above are traditionally optimized using the hypervol-
ume indicator (Felten et al.|[2024) as the standard performance metric and are typically solved using
methods such as evolutionary algorithms (Zhou et al., [2024; Mathai et al.| [2020; |Liu et al.| [2024)).
Unfortunately, these methods impose strict constraints on problem dimensionality. In contrast, zeroth-
order (ZO) optimization algorithms demonstrate greater versatility in handling higher-dimensional
problems and can achieve excellent performance, often comparable to or even surpassing that of
white-box models where gradients are explicitly available. (Sun et al., 2022; |Papernot et al., [2017).
Unfortunately, there has been no endeavor to apply the zeroth-order optimization to multi-objective
optimization.

To fill this gap, we present the Stochastic Zeroth-order Multiple Objective Descent algorithm (SZ-
MOD), which integrates coordinate-based zeroth-order gradient estimations and employs a consistent
directional selection strategy during the ) iteration process. Specifically, by using the same direction
for gradient approximation throughout the iterations, SZMOD ensures that the update direction of the
dynamic weigh ). is updated in alignment with the chosen direction, thereby maintaining stability
and reducing variance in the optimization process. Combining coordinate zeroth-order techniques
and unified directional updates enhances the algorithm’s ability to effectively address black-box
multi-objective learning problems.

* Gradient Direction Conflict: In first-order multi-objective optimization algorithms, the
gradients of multiple objective functions are computed to determine a suitable direction for
optimization. However, in zeroth-order multi-objective problems, we rely on zeroth-order
gradient estimates, where the direction estimation depends entirely on a random vector u
(determined by the zeroth-order estimation process). This dependence makes it challenging
to identify an appropriate CA direction (the proper direction to update \, will defined in
section 2.4), complicating the optimization process.

* Excessive Error Risk: Zeroth-order gradient estimation inherently introduces errors, which
also propagate into the iterative updates of A. These compounded errors affect the term of
the CA direction, increasing the risk of divergence during the iteration of . Therefore, it is
crucial to control these errors effectively to ensure convergence and maintain the stability of
the optimization process.
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2 PRELIMINARIES

In this section, we first introduce MOL’s problem formulation, the analysis target, and the metric to
measure its optimization, generalization, and CA direction.

2.1 NOTATION

Denote the vector-valued objective function on datum z as F,(z) = [f;1(x),..., f-,m(x)]. The
training and testing performance of  can then be measured by the empirical objective Fs(x) and
the population objective F(x) which are, respectively, defined as Fgs(x) := = > | F. (z) and
F(z) := E,p [F.(x)]. Their corresponding gradients are denoted as V Fs(x) and VF (z) € R¥*M,

2.2 METHOD OF MOL

Analogous to the stationary solution and optimal solution in single-objective learning, we define the
Pareto stationary point and Pareto optimal solution for MOL problem min, g« F(z) as follows.

Definition 1 (Pareto stationary and Pareto optimal). If there exists a convex combination of the
gradient vectors that equals to zero, i.e., there exists X € AM such that VF(x)\ = 0, then x € R?
is Pareto stationary. If there is no * € R¢ and x # x* such that, for all m € [M|f,(z) < fm (z%),
With fm: (2) < fms (x*) for at least one m' € [M), then x* is Pareto optimal. If there is no x € R?
such that for all m € [M], fm(x) < fm (z*), then ©* is weakly Pareto optimal.

By definition, at a Pareto stationary solution, there is no common descent direction for all objectives.
A necessary and sufficient condition for x being Pareto stationary for smooth objectives is that
minyeanm ||VE(z)A|| = 0. Therefore, minycan || VEF(2)A| can be used as a measure of Pareto
stationarity (PS). We will refer to the aforementioned quantity as the PS population risk henceforth
and its empirical version as PS empirical risk or PS optimization error. We next introduce the target
of our analysis based on the above definitions.

2.3 ZEROTH-ORDER GRADIENT ESTIMZATION

Coordinate-wise Gradient Estimation. When only function evaluations are available, here, we
employ the deterministic coordinate-wise direction to derive the decent direction. Specifically, for
the smoothing constant v and vector u;(u; represents the unit vector where the i-th element is 1 and
the remaining elements are 0), the directional derivative of f, ,, in the direction u for the smooth
function f;, ¢ € [n], can be estimated as:

d
ﬁfz,m(x; U,U) _ Z fz,m(x + qu) - fz,m(m) u;. 2)

° v
Jj=1

as the approximation of the full directional gradient. Since the smoothing constant v is fixed, for
simplicity, we leave out v in these gradient estimations and set

@fz,m(aﬁu) = @fz,m('rauav)- 3)

Denote the vector-valued objective function on datum z as F,(z) = [f,1(2),..., f.m(x)]. The
training and testing performance of x can then be measured by the empirical objective Fs(z)
and the population objective F'(z) which are, respectively, defined as Fg(x) := = > 7" | F. (x)
and F(z) := E,p [F.(z)]. Their corresponding estimate gradients are denoted as V Fg(z) and
VF(x) € R¥M_ Thus the zeroth-order estimate for all objectives on datum z should be written as

VE.(2) = [V (@), V().
2.4 PROBLEM SETUP
Proposition 1 ((Tanabe et al.,[2019) Lemma 2.2). . If f,,,(z) are convex or strongly convex for all

m € [M], and x € R¥ is a Pareto stationary point of F(x), then x is weakly Pareto optimal or Pareto
optimal.
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Next, we proceed to decompose the PS population risk.

Error Decomposition. Given a model z, the PS population risk can be decomposed into

in [|[VF(zx)\]| = min ||[VF(2)\|| — min [|[VF Al + in ||VF, A 4
i [VE@)A] = min [VE(@)A] - min |[VFs(@)Al+ min [[VEs@)Al . @)
PS population risk Rp,op () PS generalization error Rgen () PS optimization error Ropt ()

where the optimization error quantifies the training performance, i.e., how well does model x perform
on the training data; and the generalization error (gap) quantifies the difference between the testing
performance on new data sampled from D and the training performance, i.e., how well the model z
performs on unseen testing data compared to the training data.

The zeroth-order optimization is a gradient-based black-box optimization that utilizes the difference in-
formation of function values to approximate the true gradient. Furthermore, this method does not alter
the optimization objective, only the optimization process differs from the first-order one. As for MOL
black-box problems, the optimization objective of the SZMOD remains minyecam ||[VF ()| = 0.

Let A : Z" s R? denote a randomized MOL algorithm. Given training data S, we are interested in
the expected performance of the output model x = A(S), which is measured by E 4 g [Rpop(A(S))].
From equation d]and linearity of expectation, it holds that

Ea,s [Rpop(A(S))] = Ea,s [Rgen(A(S))] + Ea,s [Ropt (A(S))] - ®)

Distance to CA direction. Consider an update direction d = —V Fs(x)\, where ) is the dynamic
weights from a simplex A € AM .= (A e RM |1TA=1,A> O}. To obtain such a steepest CA
direction in unconstrained learning that maximizes the minimum descent of all objectives, we can
solve the following problem (Fliege et al.,|2019)

1
CA direction d(z) = argmin max {(st,m(:c), dy + d||2} (6)

deRe mE[M] 2
e d(z) = =V Fs(x)\*(z) s.t. \*(z) € argmin ||V Fg(z)A|?. ™)

AeAM
Defining dy(z) = —VFg(z)\ given z € R? and A € AM, we measure the distance to d(x) via
(Fernando et al., [2023)

CA direction error  Eea (2, A) := ||dx () — d(z)]°. (8)

With the above definitions of measures that quantify the performance of algorithms in different
aspects, we then introduce a stochastic gradient algorithm for MOL that is analyzed in this work.

3 A STOCHASTIC ALGORITHM FOR BLACK-BOX MOL

In this section, we first introduce our main algorithm, Stochastic Zeroth-order Multiple Objective
Descent (SZMOD).

At each iteration ¢, oy, y; are step sizes, and IIxn () denotes Euclidean projection to the simplex

AM  Denoting 2 , as an independent sample from S with s € [3], and V., _ (z;) as the gradient
estimate of VF, | (x¢).

Remark 1. In the iteration process of Ny, gradient direction conflicts prevent us from achieving

convergence. To ensure the algorithm converges, SZMOD requires that V fz1(z) and v fz2(x) use
the same stochastic direction. By this method, we have

E.oypz0s |VEs, (@) VEs,, (1) M| = VFs (20) " VFs (20) A + O(v),

which means that we can stabilize the updates and control the error through v.

t,s
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Algorithm 1 Stochastic Zeroth-order Multiple Objective Descent (SZMOD)
Input: Training data S, initial model x(, weighting co- efficient )y, and their learning rates
T T
{ar}izo {0
Output: zr
1: fort=0,..., T —1do
form=1,...,M do
Compute zeroth-order gradients V f,,, ., . () using same u, s € [2]

2

3

4 Compute zeroth-order gradients V fm,z5 (x¢) with coordinate
5: end for

6: Compute dynamic weight A\, following

7 Compute At+1 = HAM (>\t — ’Yt@th’l (xt)T @th,z ((ﬂt) >\t>

8

9:

: Compute x4 = x4 — at@sz,,s (z¢) A1
end for

In the iteration process of x;, the zeroth-order method will also lead to excessive error risk, which
is caused by the error of A\;;1 and VI, 3. The error of A\;;; can be control by remark Here, we
choose to use the coordinate zeroth-order estimate to minimize the error of VF, 3.

4  OPTIMIZATION OF SZMOD

In this section, we bound the multi-objective PS optimization error minycanm ||V Fs(x)A|| (Fernando
et al.| 2023} [Fliege et al.l 2019; |Désidéril [2012). As discussed in Section 2.2, this measure being zero
implies the model = achieves a Pareto stationarity for the empirical problem.

Below, we list the standard assumptions used to derive the optimization error, which has been widely
used for theoretical analysis for (Chen et al., [2024} [Lei, 2023} |[Fliege et al., 2019).

Assumption 1 (Lipschitz continuity of F(z) ). Forall m € [M], f. n(x) are {-Lipschitz continu-
ous for all z. Then F,(x) are {p-Lipschitz continuous in Frobenius norm for all z with {p = \/Mﬁf.
Assumption 2 (Lipschitz continuity of VF,(x)). For all m € [M],Vf, () is £ 1-Lipschitz
continuous for all z. And V' F,(x) is {p 1-Lipschitz continuous in Frobenius norm for all z.
Assumption 3. Forallm € [M],z € Z, f, ., (x) is p-strongly convex w.r.t.  with p > 0.

Note that in the strongly convex case, the gradient norm ||V F,(z)||; can be unbounded in R
Therefore, one cannot assume Lipschitz continuity of f, ,,(7) w.rt. z € R% We address this
challenge by showing that {x;} generated by the SZMOD algorithm is bounded as stated in Lemma
Notably, combined with Assumption 1, we can derive that the gradient norm ||V F, ()| is also
bounded.

Lemma 1 (Boundedness of z; for strongly convex and smooth objectives). Suppose Assumptions 2]
Blhold. For {z;} ,t € [T] generated by SZMOD algorithm or other dynamic weighting algorithm
with weight X € AM | step size oy = o, and 0 < o < é;} there exists a finite positive constant ¢,

such that ||x;|| < c,. And there exists finite positive constants £, {p = /MLy, such that for all
A € AM we have |V F (z) || < g, |VF (z4)||p < L.

4.1 DISTANCE TO CA DIRECTION

Theorem 1 (Distance to CA direction). Suppose either: 1) Assumptions 1, 3 hold; or 2) Assumptions
1, 2 hold, with {; and {r defined in Lemma 1. Consider {x:},{\} generated by the SZMOD
algorithm. For all A € AM it holds that:

T-1
1 2 4 «
—_ _ < 2 4
= ;:O Ea [lldy, () = d(@)]] < T O MU M e ©)

l?‘lvzd

Here e = LB 4|\ — Al + “2Ea(|Ae — A1V FsAll + d[VFs(As — A)|l1) caused by
zeroth-order error. We should mention that e can be seen as O(v). Analyzing convergence to
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the CA direction using the measure introduced in Section By, e.g., choosing « = © (T*%),
=0 (T*i) and v = 7/10, the RHS ofequationﬁconverges in a rate of O (T*%)

4.2 PS OPTIMIZATION ERROR

Theorem 2. (PS optimization error of SZMOD). Suppose either 1) Assumptions 1, 3 hold or
2) Assumptions 1, 2 hold, with Ly defined in Lemma 1. Define cp such that E 4 [Fs (z0) Ao] —
ming,cgd B4 [Fs(2)Xo] < cp. Considering {x:} generated by SZMOD (Algorithm 1), with oy =
a <1/(20s1),v =, then under either condition 1) or 2), it holds that

T-1

1 . 93 3 1
7 Z Ea LIGHE}W |V FEs (z+) )\|] S\ar T \/QWMZ‘} + \/2a€f,1€%d + e. (10)
=0

The choice of step sizes @ = O(T~ 1),y = ©(T~1), and smoothing constant v = ~/10 to ensure
convergence to CA direction is suboptimal for the convergence to Pareto stationarity. Then the RHS

of equation |10|converges in a rate of O (T‘ é) .

5 GENERALIZATION OF SZMOD

In the following, we provide uniform stability for the black-box MOL algorithm, whose expected PS
generalization error can be further bounded under several convexity scenarios.

Proposition 2 ((Chen et al., 2024), Proposition 2). With || - ||r denoting the Frobenious norm,
Rgen(A(S)) in (2.2) can be bounded by

Eas [Reen (A(S))] < Eas [[[VF(A(S)) = VEs(A(S))]g] - (11)

With Proposition 2, we introduce the concept of MOL uniform stability tailored for MOL problems.
Then, we analyze their bounds in the general nonconvex and strongly convex cases, respectively.

Definition 2 (MOL uniform stability). A randomized algorithm A : Z" — RY, is MOL-uniformly
stable with eg iffor all neighboring datasets S, S’ that differ in at most one sample, we have

supE4 [[[VEL(A(S)) - VE. (A(S)] < -

Next, we show the relation between the upper bound of PS generalization error in[d]and MOL uniform
stability in Proposition 3.

Proposition 3 ((Chen et al.,[2024), proposition 3). Assume for any z, the function F,(x) is differen-
tiable. If a randomized algorithm A : Z" + R® is MOL-uniformly stable with ey, then

Eas [[VF(A(S)) = VFs(A(S))Ilp] < 4er + /n71Es [Veup (VE(A(S)].  (12)

where V. .p (VFL(A(S))) = E.op [||VFZ(A(S)) —E..p [VE.(A(S))] ||§] is the variacne.

Proposition 3 establishes a connection between the upper bound of the PS generalization error and
the MOL uniform stability.

Theorem 3 (PS generalization error of SZMOD in nonconvex case). Ifsup, E 4 [HVF L(A(S)) ||%} <
G? for any S, then the MOL uniform stability, i.e., €& in Definition 2 is bounded by €% < 4AG*T /n.
And the PS generalization error E 4 g [Rgen (A(S))] = O <T%n—%),

Remark 2. The proof process of non-convex generalization does not involve parameter updates.
Therefore, zeroth-order gradient approximation does not affect the generalization results. At this
point, the generalization results of the first-order and zeroth-order methods are naturally the same.
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With Lemma T[] and Lemma 6] the stability bound and PS generalization is provided below.

Theorem 4 (PS generalization error of in strongly convex case). Suppose Assumptions 2| and
Bl hold. Let A be the SZMOD algorithm (Algorithm 1). For the MOL uniform stability ep of
algorithm A in Definition 2, if the step sizes satisfy 0 < oy < a < 1/(2051), 0 < 5 < 7 <

2 1

in k5 ,
48463 409,17 8(3L2 4 420y,1)
holds that

1

m } /T, and smooth constant v < min {1 —————— ¢ then it

nd’ nd(20g,14+¢2 ;)

pmn 1 pn i

48 12+ 4M P2 10M ¢4 4 10aM % 4y + 2002
612:‘ S Mﬁidﬂ%yl <(1 + f.d + f’y + /Lnei"l M + Oé(f,l + % .

and s [Reen(A(S))] = O (n—%) .

Remark 3. Theorem[3| H]implies setting proper step sizes for different convexity helps to improve the
generalization. Under strong convexity conditions, the proof process involving parameter updates
will inevitably introduce the cumulative error brought by zeroth-order estimation. We must constrain
the smoothness parameter v to achieve the same generalization convergence rate as the first-order
method.

6 CONNECTION BETWEEN OPTIMIZATION, CONFLICT AVOIDANCE AND
GENERALIZATION

In this section, we combine the proof process and theoretical results on optimization error, generaliza-
tion bounds, and the distance to the CA direction to discuss the impact of introducing zeroth-order
gradient approximations on multi-objective algorithms. Summarizing the findings from Sections 4]
and we derive the PS population risk. With A;(S) = x; denoting the output of algorithm A at the
t-th iteration, we can decompose the PS population risk Ryop (A¢(S)) as (cf. equation flequation

B [y (AdS)] < B s | i [VFs (A(S) M| +E4.5 [IVF (4()) = VFs (A

Theorem 5 (The general nonconvex case). Suppose Assumptions|I| 2|hold. By the optimization error
in Theorem[2]and the generalization error bound in Theorem|[3] the PS population risk of the output
of SZMOD can be bounded by

T-1

1 11 1 1 11

= D Eas [Rpop (A(9)] = 0 (a3 T 40l 49 + Thn7d) + 0 (0).
t=0

Remark 4. By selecting step sizes of « = © (T’%) and~y =0 (T*%), with the number of steps
T=0 (n%), we can choose a smoothing parameter of v = © n=% ), which effectively limits the

impact of the zeroth-order approximation on optimization convergence. Under these conditions, the

expected PS population risk is O (n_%).

Theorem 6 (The strongly convex case). Suppose Assumptions|2] [3|hold. By the optimization error
and the generalization error given in Theorems2land[] SZMOD's PS population risk can be bounded
by

T-1

1 11 1 1 _1

7D Eas [Bpop (A(9)] = O (a3 T 40l 49 +078) + 0 (0).
t=0

Remark 5. Choosing step sizes « = © (T’%) , Y =0 (Tﬁl). Under strongly convex and smooth

conditions, generalization analysis requires smoothing parameter size of v = © ( (nd)_l). And
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number of steps T = © (nz) We have the expected PS population risk in gradients is O (n*%),

aligning with the upper bound for the PS population risk in general nonconvex first-order methods as
shown in|Chen et al.|(2024).

Zeroth-order method demonstrates the connection between optimization, conflict avoidance,
and generalization.

The core of the SZMOD algorithm lies in its dynamic weighting mechanism, which uses approximate
gradient information to update A. A high-quality A is essential for balancing conflicts among
multiple objectives. The distance to the CA direction is a critical metric for assessing the quality
of these updates and plays a pivotal role in ensuring algorithmic convergence. In SZMOD, the
deviation from the CA direction arises from the data and limited iterations and the cumulative error
e introduced by the zeroth-order method. This CA direction error transfers the cumulative error e
into an optimization error. Theoretical results indicate that in corresponding first-order algorithms,
the relationship between CA direction error and optimization error is not as inherently inheritable
and may exhibit a degree of antagonism (Chen et al.,2024). Thus, zeroth-order optimization opens
a window into understanding the interaction between CA direction and optimization. Due to the
propagation of cumulative error, optimization error imposes constraints on the smooth parameter
v to ensure convergence. Furthermore, under strongly convex and smooth conditions, achieving
generalization depends on controlling the size of v. Therefore, determining the appropriate value of v
requires balancing the demands of both generalization and optimization.

7 EMPIRICAL VALIDATION

In this section, we systematically evaluate the performance of our proposed SZMOD algorithm on toy
examples and CIFAR-10 datasets. The experiments are designed to mimic a variety of multi-objective
landscapes with adjustable complexity levels. We employ synthetic datasets and realistic image
data that encapsulate the essential characteristics of multi-objective problems for evaluating the
optimization accuracy, generalization capability, conflict avoidance, and convergence performance of
our proposal SZMQOD algorithm.

7.1 SYNTHETIC EXPERIMENT

In the following content, we explore the subtleties of the SZMOD algorithm’s efficacy across a
spectrum of hyperparameters, particularly emphasizing the trade-offs between optimization, general-
ization capabilities, and the mitigation of conflicting objectives. The synthetic experiments have been
meticulously crafted to emulate a multi-objective optimization context, which successfully evaluates
the influence exerted by diverse hyperparameters.

Strongly Convex Scenario: Inspired by (Chen et al 2024), the following formulation is exploited
to generate the MOL examples, whose m-th objective function is

1
fom(x) = iblﬂnxTAx — bg,szx,

where by ., > 0 for all m € [M], and b, is another scalar. We set M = 3,by = [b1,1;b1.2;b1 3] =
[1;2;1], and by = [b2,1; b2 2; b2 3] = [1; 3; 2]. Each experimental setting has been repeated ten times,
where the average results with standard deviation information are recorded in Figure[7.1] The detailed
experimental settings for nonconvex cases are left in Appendix A.

The number of iterations, 7', plays a pivotal role in the convergence properties of the SZMOD
algorithm. As depicted in Figure 2a, we maintain o = 0.05 and v = 0.001 while varying T". The
results indicate that an increase in 7" brings a decrease in both the optimization error and the distance
to the conflict-avoidant (CA) direction, aligning with our theoretical predictions in Theorem|I][2] This
observation underscores the importance of sufficient training duration to achieve optimal solutions in
multi-objective landscapes.

The step size for model parameters, «, is another critical hyperparameter that influences the algo-
rithm’s ability to navigate the multi-objective space. In Figure 2b, we fix T' = 500 and = 0.001
while adjusting «.. The findings reveal an initial decrease in the optimization error as o increases,
while further enlarging o does not yield significant improvements. This non-linear relationship
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Figure 2: Optimization, generalization, and CA direction errors of SZMOD in the strongly convex
case under different 7', v, v. The default parameters are 7' = 500, o = 0.05,~v = 0.001, v = 0.0001.
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Figure 3: Optimization, generalization, and CA direction errors of SZMOD in the nonconvex case
for MNIST image classification under different T, o, y. The default parameters are T' = 500, o =
0.05,~ = 0.001, v = 0.0001.

between a and the optimization error highlights the need to carefully tune this hyperparameter to
balance rapid convergence and potential overshooting of optimal solutions.

The weight step size, 7, is a unique aspect of SZMOD, controlling the update pace of the weighting
parameters. In Figure 2¢, with 7" = 500 and o = 0.05, one can observe that the increasing -y leads to
a decrease in the distance to the CA direction, suggesting that a more aggressive update of weights
can be beneficial for navigating conflicting objectives. However, too large ~ might lead to instability

in convergence, indicating a delicate balance is required to harness the full potential of dynamic
weighting.

The synthetic experiments provide valuable insights into the role of hyperparameters in shaping the
trade-offs between optimization, generalization, and conflict avoidance in multi-objective learning.
By systematically varying 7, , and 7y, we have demonstrated the nuanced interplay between these
parameters and their impact on the algorithm’s performance. These findings serve as a foundation for
developing more sophisticated hyperparameter tuning strategies and provide empirical evidence to
support theoretical analyses presented in prior sections. It is worth noting that, unlike the first-order
MODO algorithm, the trends of R,,.(y) and are not always opposite. This is due to the error caused
by e.a(7), which is related to y. When the trends are aligned, the graph of R, () always shows
similar changes after changes occur in the graph of £.a(y). This is precisely due to error propagation,
which nicely validates our theory.

7.2 ATTACK EMPERIMENT ON CIFAR-10

Adversarial attacks trick machine learning models by adding carefully designed subtle perturbations
to inputs, leading to mispredictions. Black-box adversarial attacks occur when attackers can’t access a
model’s internals and must deduce its behavior from inputs and outputs. The Black-box attack method
is closer to real-world attack scenarios. Therefore, we consider a multi-objection adversarial attack.
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Table 1: Results for muti-objection black-box adverbial attacks
model Pixel ratio ASR LO_avg L2 _avg AST avg SSIM_avg

CNN 2% 0.99 0.019  357.87 13.98 0.9
CNN 5% 098 0.049  572.78 8.47 0.78
CNN 10% 098 0.097 746.87 7.18 0.65
VGG16 2% 0.99 0.02 25.92 2.46 0.92
VGGI16 5% 098  0.049 40.23 3.52 0.82
VGG16 10% 1 0.097  477.15 23 0.64
Alexnet 2% 0.99 0.019 25094 7.09 0.85
Alexnet 5% 1 0.049  394.19 7.75 0.71
Alexnet 10% 1 0.097  342.58 4.8 0.62
Densenet 2% 091  0.019 22.71 10.7 0.88
Densenet 5% 092  0.049 18.26 13.98 0.83
Densenet 10% 0.86  0.097 12.22 13.18 0.87
Res-net18 2% 0.99  0.019 6.81 11.69 0.95
Res-net18 5% 098  0.049 3.85 11.04 0.97
Res-net28 10% 098  0.097 4.96 18.86 0.95

Define the loss function £(x + ¢). We aim to generate a § that solves the following optimization
problem:

min F(x +6) st [|[6lo<e, 0<x+d<1,
4

- -

- S\ T -
where F'(x +9) = (L',(x +9), 19112, 1|6 H0> is the objective vector. ¢ is the universal perturbation

that we seek to optimize e use the pre-trained model on the CIFAR-10 dataset, we attacked five
classifiers: CNN, VGG16, AlexNet, DenseNet, and ResNet. Two types of attacks were implemented:
targeted and non-targeted attacks. In the targeted attack, the cross-entropy loss function was used to
misclassify the model into a specific target class, while the non-targeted attack employed margin loss
to force the model’s output to differ from the actual class. Additionally, the algorithm restricted per-
turbations to the discrete value set {—1, 1,0}, which helped reduce the 12 norm and ensured sparsity,
enhancing both the effectiveness and stealth of the attack. Metrics to evaluate the performance of
attack methods include: Average Attack Success Rate (ASR_avg), which measures the average
success rate of misclassification due to adversarial attacks; Attack Success Rate (ASR), indicating the
proportion of successful misclassifications; /y and l> norms, where [y counts the modified pixels and
Iy assesses perturbation magnitude; and Structural Similarity Index (SSIM), evaluating the similarity
between the adversarial example and the original image, with values closer to 1 indicating less
perceptible modifications.

We set M = 2, a« = 0.1, v = 0.001, v = 0.0001, the maximum number of attack attempts 1000,
and maximum modification per pixel 0.5. The corresponding results in Table 1 imply that the higher
accuracy of the model could bring better effectiveness of the attack, which aligns with the principles
of the zeroth-order multi-objective algorithm (the more accurate the loss, the more accurate the
gradient based on the loss). Moreover, our attack success rate is generally above 90 percent, further
demonstrating the advantages of our algorithm.

8 CONCLUSION

In this paper, we introduce the SZMOD algorithm, designed explicitly for black-box multi-objective
learning. Theoretically, we establish the statistical guarantees for optimization error, generalization
bound, and distance to conflict avoidance directions comparable to the relevant first-order method.
Furthermore, we discover that zeroth-order methods could bridge the above three evaluation criteria
of SZMOD. Experimentally, we validate SZMOD’s performance in terms of optimization accuracy,
generalization capability, and conflict avoidance. Additionally, we demonstrate the effectiveness of
our algorithm in practical black-box attack scenarios, as evidenced by high attack success rates and
low modification rates.

10
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Appendix

A ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

Implementation. Experiments are done on a machine with GPU NVIDIA RTX 4060. We use Python
3.8, CUDA 11.8, Pytorch 1.8.0 for all experiments. Unless otherwise stated, all experiments are
repeated with five random seeds. Their average performance and standard deviations are reported
throughout the whole manuscript.

5 5
0 0
-5 4 -5
k‘L‘:"-—lo k-—lo
15 -15
-20 -20
-25 N -25
-30 Te— -30

30 25 20 15 10 -5 0 5 30 25 20 15 10 -5 0 5 ~30 25 —20 15 10 =5 0 5

fs1 fs1 fs1

(a) Statics (b) MODO (c) SZMOD

Figure 4: Convergence of static weighting, MoDo and SZMOD to the empirical (gray, upper)
and Pareto fronts. The horizontal and vertical axes in the figures in the
first/second row are the values of the two empirical / population objectives. Three colormaps are used
for the trajectories from three initializations, respectively, where the same colormaps represent the
trajectories of the same initializations, darker colors in one colormap indicate earlier iterations, and
lighter colors indicate later iterations.

A.1 EXPERIMENTS ON NONCONVEX OBJECTIVES

Implementation details. The toy example is modified from (Liu et al.| 2021) to consider stochastic
data. Denote the model parameter as x = [1,22] " € R2, stochastic data as z = [21, 20] T € R?
sampled from the standard multi-variate Gaussian distribution. The individual empirical objectives
are defined as:

fz,1(x) = c1(@)hi(v) + c2(2)gz1(2) and  fra(x) = c1(@)ha(z) + c2(2)gz.2(x)  where
) = log(max(|0.5(—z1 — 7) — tanh(—z»)|,0.000005)) + 6,
ha(z) = log(max(]0.5(—x1 + 3) — tanh(—z2) + 2/,0.000005)) + 6

(=

(=
)= (( 21 +3.5)2 +0.1% (—xy — 1)?)/10 — 20 — 2 % 2121 — 5.5 % 2o,

922 :v) (=21 —3.5)2 + 0.1 % (=22 — 1)%)/10 — 20 + 2 % 2121 — 5.5 * 20,
= max(tanh(0.5 % 22),0) and ¢a(z) = max(tanh(—0.5 * z2), 0).

Since z is zero-mean, the individual population objectives are correspondingly:

13
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fi(@) = c1(@)hi(z) + c2(2)g1(x)and fo(z) = c1(z)ha(z) + ca(z)g2(z), where
g1(z) = (=21 +3.5)2 + 0.1 % (=25 — 1)%)/10 — 20,
go(x) = (=1 — 3.5)> + 0.1 % (—a5 — 1)) /10 — 20.

The training dataset size is n = |S| = 20. For all methods, i.e., static weighting, MoDo, SZMOD,
the number of iterations is 7' = 10000. The initialization of X is Ao = [0.5,0.5] .

In Figure [4 and Figure [I] the trajectories of various methods from different initializations to the
empirical and population Pareto fronts (PF) are shown. In Figure 4a (first row), the static weighting
method with uniform weights shows one trajectory successfully converging to the center of the
empirical PF. In contrast, the other two trajectories oscillate around suboptimal parameters, forming
clusters of scattered points, with one failing to reach the empirical PF altogether. Only one empirically
suboptimal solution (shown by the red-to-yellow trajectory) achieves low population risk in the second
row. In Figures 4b and 4c, MODO and SZMOD demonstrate identical convergence rates in the
first row, with both methods converging to the center of the empirical PF, representing the optimal
solution for the uniform average of the two objectives. In the second row, all three solutions for both
MODO and SZMOD achieve relatively low population risk, highlighting their strong generalization
ability. Comparing Figures 4b and 4c, we observe that MODO and SZMOD exhibit nearly identical
convergence trajectories under the same parameter settings and initializations, confirming that
SZMOD maintains strong performance even without accurate gradients.

Nk

X2

5 e
10 5 0 5 10
X1

0 s 0 5 10
X1

(@) y=10"" (b)y=10"" (¢)y =102 (d)y=10"

Figure 5: Trajectories of SZMOD under different v on the contour of the average of objectives.
The black - marks initializations of the trajectories, colored from red (start) to (end). The
background solid/dotted contours display the landscape of the average empirical/population objectives.
The gray/ bar marks empirical/population Pareto front, and the black %/ green x marks solution
to the average objectives.

To demonstrate how the choice of v impacts the performance of SZMOD, we further conduct
experiments with different SZMOD. We should mention that when v > 1072, SZMOD did not
converge to the Pareto front. This is because the error term of SZMOD is related to the value of ~.
If the ~ is large enough, it will cause the error term to be too large, resulting in the algorithm not
converging.

B PRELIMINARIES FOR PROOF

B.1 ZEROTH-ORDER GRADIENT ESTIMZATION

When only function evaluations are available, we employ the deterministic coordinate-wise direction
to derive the decent direction. Specifically, for the smoothing constant v and vector u;(u; represents
the unit vector where the i-th element is 1 and the remaining elements are 0), the directional derivative
of f.m in the direction w for the smooth function f;,i € [n], can be estimated as:

d
= fzm($+vu)_fzm($)
\Y T,U,V) = : J : Uy
Fem(@u0) =3 : ’
Jj=1
As the approximation of the full directional gradient. Since the smoothing constant v is fixed, for
simplicity, we leave out v in these gradient estimations and set

@fz,m(xy U) = @fz,m(xa u, U)
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Figure 6: Convergence of SZMOD to the empirical (gray, upper) and

Pareto fronts under different . The horizontal and vertical axes in the first/second-row figures are the
values of the two empirical / population objectives. Three colormaps are used for the trajectories from
three initializations, respectively, where the same colormaps represent the trajectories of the same
initializations; darker colors in one colormap indicate earlier iterations, and lighter colors indicate
later iterations.

Lemma 2. For the s 1-smooth function f, ., and any x € R%,i € [n],define s.(x,u;) € [0,1] and
sz = [s.(x,u1), s2(x,u2), ..., 8. (2,uq)], $ = [81;82; . .. ; Sm| the estimator in satisfies:

VE(z)\ = VE(2)A + I

s(x,u)A < VE(x)\ +

- lrav
. 1y 14
D) (14

Proof:

v

d
@fz,m(l',u) = Z fz,m(l' +,qu) — fz1m(m)uj
J=1

—~

M=

a)

v
(uju] V fom(@) + 51 V2 fom (@) uy)

j=1

—~

d
) lyav
= Vfem(@) + Y T s () ug P

j=1
lf711}

2
Here (a) is based on Taylor expansion, and (b) is based on 0 < u; v? fwn(x)ujT < lj%’l.Then, by the
definition of VF(z), we have:

@F(ﬂ?))\ = [@fz,l, @fz,% LR ﬁfz,m])\

= vfzm@(I) +

Sx(x,u)

~ VF(a) 4 L2

s(x, u)A

< VF(a)A 4+ L1

1qg

The inequality is based on the definition of A. Here, we complete the proof.

In Eq.(4), s;(x, u) measures the curvature scaled by L along the specified direction u at the given
point z. By taking the maximum value of s;(z,u) (i.e., s;(x,u) := 1), we derive the upper bound

of the distance between estimator V f;(z,u) and the full gradient V f(z) in Eq.(6). This bound
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comprises three components: the norm of the true gradient V f(z); the trivial perturbation; and
the last error |V f;(2) — Vf(z)||” induced by the random sampling of . Similarly, the following
corollary establishes the nearly unbiased and bounded variance properties of V f(z, u).

B.2 LEMMAS FOR PROOF
B.3 PROOF OF LEMMA 1

Lemma 3. Suppose Assumptions E] hold. WLOG, assume inf,cpa fm..(x) < oo for all
m € [M] and z € Z. For any given \ € AM, and stochastic sample z € Z, define

z3 , = argmingcra I (z)A then inf,cpa I (2)

" . . .
z) || < 00, Le., there exist finite

positive constants cg~ and ¢~ such that

. )\ < * <
lnld l Z(.Z’) Cpx* Clnd Hx)\’ZH Cyp*
PrOOfed by (Chen et al 2024)

Lemma 4. Suppose Assumptlonsl Ihold and deﬁne k = 3ls1/p > 3. For any given \ € AM,
and a stochastic sample z € Z, define x , = argmin, F’ (). Then by Lemma I there exists

a positive finite constant c;1 > Cq+ such that HmA .

< ¢z < cg1. Recall the multi-objective
gradient update is

G- (z) = & — aVF,(z)\
with step size 0 < a < E;i Defining v' = dv/cy 1 ¢z o = (14 # (2 4 v')K)cy 1, we have that
if |z]] < a2, then |G 2(2)]] < co 2
Proof. We divide the proof into two cases:
1) when ||z|| < ¢z1. Thatis ||2]] < ¢z,1 < 4,2, then we have
[Gxz(@)[ <Gz (@) — 27| + [l27]
@ Hx _VE, (1) A — (¢ — VF, (z*)\) + VF, (2) A — VF, () /\H + 2]
<z — VE, () A — (z* — VE, (z*) \)|| + HVF YA —VE, ( ))\H + |z

Eﬁl’l}d

®) .
< o =2 + e + =5

< [l + 2]« +

(24 V)K)Ca1 < Ca

d lrqv
bt g e L < (14 VB)eas < (

where (a) follows from VE, (z*) A = 0, and (b) follows from the non-expansiveness of the gradient
update for strongly convex and smooth function.

2) cz1 < ||z|| < ¢y 2, we first consider o = E;% Let 1/ = p1/3. Note that since F, (x)\ is p-strongly
convex, it is also u/-strongly convex. By strong convexity and smoothness of F (), the gradients
are co-coercive [36, Theorem 2.1.12], i.e., for any = we have

_ 2
éf& IVE. ()| L |z — 2*|?
1+k1 1+k-1 7

(VE(2)\) (z—a%) >

For the ZO version we have:
.
(YE@A) (@—a") = (VE@N (@ —a")+ (lﬂ;)su,m) (&~ 2°)

CUIVE@M? |z — 2|2 !
palVE@NE ol — o] +<lf’2ws(a:,v))\) (z —a¥)

1+x1 1+x1
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Rearranging and applying Cauchy-Schwartz inequality, we have

- 2
G IVE@M [z — %)

(@Fz(x))\)-r > (VE(z)\) =" + lf"—lvs(x, v) T \x +

2 1+ k-1 1+ k-1
-1 2 2
coplpadv | Lpq VM g ||lo — 2|
> —c, F. ()| — —= : )
> 0 [VF(2)N] - %22 - e
15)
By the definition of G . (z),
2 1 - 2 2 T
1GA=@)I = |}z = —=VE@)A| = 2]+ HVF A = (FR0) = as
£l
From (I5) and (I6), we have:
G- (@)I < 2l + 5 HVF [+ (cx LIVE @)
n Ca;,1lf,1dv B ]7,1 ||VFz(1’)>\|| W= z*|? )
2 1+t 1+t
2 canlpadv  pf||x— | (17)
< ew||? + (B —
— ||.'L'|| + £f71( 2 1 +K/71 )
2 1 [(1-r"1\
+ — sup(cg, - —
gflwe%( B <1+'f1)7)
I
Since xk > 3, thus % +“,1 > 0, then I; is a quadratic function w.r.t. , and is strictly concave, thus can
be bounded above by

SUp Cg1 - —

€R 2054

1 1—x~1\? - Al 14571
1+x1 2 1-—-k"1

Substituting this back into (T7) gives that

2 conlpad plle—atP il 1y s

G 2 < lz)?
G (@) < ol + e (S22 el S T
1+ & ly.10? K1 o2
*Hx”2+%171 +epadv+ L — 2y e
1+t k1 w12
< Jlzll* + 3 Uzl = 1lz"I)” + ceav

T 11 -1 - 1 + /{,71
< al® +2¢3, = k7 (2] = con)? +epado

I

Here [ > mln{lf 10” , (|z|| = cz.1)?} where the last inequality follows from s > 3, thus }J_r:: <
2, QH% < —k7 1 and ||z*]| < ¢z < ||z|| by assumption. For ¢, 1 < ||z|| < cyp0, 12 is a

strictly convex quadratic function of ||z||, which achieves its maximum at ||z|| = ¢, 1 or ||z|| = ¢z 2.
Therefore,

|Gz (@) < max {3035,1 + a1,y + 22, — K7 (Con — Ca1)” F Cw,lv}

c (d)
© max {30 1t 10,65 2+} < c
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where ( ¢ ) follows from the definition that ¢, 5 = (1 + 1% 1” (2 4+ v")K)ey,1; (d) follows from
K>3, andthus (B+v)ez, < (1 + lflv (24 v)k)? ;%1 = ¢2 5, We have proved the case for

o =1{;7. Theresultfor 0 < oo < £ follows by observing that,
1G-@)ll = |2~ aVE.(@)A|
= |a=at)a+ats (v - IVE@N))|
< (1—alpy) 2] + oty Hz —(;IVE (2 )\H < o

The proof is complete.

Lemma 5. Suppose Assumptions hold. For all A\ € AM and z € S, define 3, =

arg ming, F,(x)A, then there exist finite positive constants cp~ and c,+ such that F, <x§\2> A< cp=

and Hx}‘\ ZH < cy+. And for x € R such that ||z|| is bounded, i.e., there exists a finite positive

constant ¢, such that ||z|| < ¢, then

14

1

IVF. ()N < lfa(cz+ o), and F.(x)\ < (o + o= )’ + Cpe

Proof. Under Assumptions 2} [3|by Lemma[3] there exist finite positive constants ¢z« and ¢+ such
that F, (I§Z> A < c} and
gradient VF,(x)\, we have

x5 H < cz+. By Assumption 1, the £ ;-Lipschitz continuity of the

IVE.(2)A]| = [|[VF.(2)A — VF. (23 .) Al
<Lra o — a3l < lpa (2l + [J23 2 ]]) < £ra (ea + cov)

where the first equality uses the fact that VF, (sz) A = 0. For the function value, by Assumption
the £ 1-Lipschitz smoothness of F,(x)\, we have

F.@)A < F. (25.) A+ (VF, (23.) Mo — a3 [

from which the proof is complete.

Corollary 1. Suppose Assumptions EI E|hold and v < % Define k = 3l /1 and Ty, =
‘ <
cy+. Choose the initial iterate to be bounded, i.e., there exists a finite positive constant c,,, such that
lzol| < cuy, then for {x+} generated by SZMOD algorithm with oy = a and 0 < v < E;&, we have

arg min, F, (z)\ with A € AM. Then there exists a finite positive constant c,* such that ‘

x/\

|zl < oy with ¢y = max{( .

!
21 V)R)ey + L1 cmo} (18)

x) .|| < oo, i.e., there exists a finite positive

Proof. Under Assumptions , by Lemma

constant c,~ such that ijz < ¢y Let ¢; 1 = max {(1 + llev (2+0)K) ey, Cor } and
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cr2 = (1+ %\/(2 +V)K)cp1 = max{cmo, (1+ %\/(2 +v’)m)cm*} in Lemma 4l We

then consider the following two cases: 1) If (1 + % (24 v")K)egr < gy, then <epe <

*
‘r/\,z

1+ # (2 4+ v')k) "Lcy,. Then it satisfies the condition in Lemma that ‘

Ty ZH < ¢z,1 and

lzo|l < ¢g,2. Applying Lemmalé-_l|yields lzill < cp2. 2) If (1 + # (24 V)K)Cy > Cay,
then ||zo|| < ¢z < (1 + lfTw (2 + v')K)cy+. Then it satisfies the condition in Lemma 4] that

holds for ¢ = 1. We then prove by induction that equation [18| also holds for ¢t € [T]. Assume
equation[I8lholdsat 1 < k < T —1,i.e.,1

x’j\’z‘ < ¢z and ||zgl] < ¢z,2. Applying Lemma W) yields ||z1|| < ¢z 2. Therefore, equation

ekl < o = co2

Then by Lemmal] at k + 1,

”karIH = ’|GA’<‘,+17Z1€,3 (xk)H < Cz,2
Since ||z1]| < ¢p2,fort =0,...,T — 1, we have
||xt+1|| = ||GAt+1,Zt,3 (wt)H < Cz,2

Therefore, by mathematical induction, ||z;|| < ¢, 2 = ¢, for all ¢ € [T]. The proof is complete.
Proof of Lemma 1. By Corollary 1} for {z;} generated by SZMOD algorithm with a; = « and
0<a< Eﬁ, we have

lrqv
(2+v’)/<;)cx*+7fi c}

lf,l’U/

lze]] < ¢y with ¢, = max {(2 +
According to Lemma define £y = ¢y 1 (cy + cp+), and £p = v/ My, then it holds for all X € AM
IVE(z) Al < £y and  [[VF (z0)[| < [VF (21)]lp < CF
Lemma 6. Suppose AssumptionsIZI hold. Forall \ € AM and = € S, according to Lemma 1, we

have ||VF (x) || < £y, and ||V F (z¢)|| < Lp, then

H@Fz(x))\H <Ul¢q, and H@Fz(m)H </lpgq

Where (s 4= (5 + lfévd, and lpq = lp + M.

Proof of Lemma@By Lemma 2] for the /7 1-smooth function f, ,, and any = € R%,i € [n],define
s;(z,u;) € [0,1] and s, = [s.(z,u1), s.(x, u2), ..., s:(x,uq)], s = [s1;82;...;Sm). By Lemma
L||VF (z¢) A|| <47 and ||[VF (2¢)| < £ . Then the estimator satisfies:

H@F(@AH - HVF(a:)/H— lf;”s(x,u)AH

l
< | VF()A)| + H f;“s(x,u)AH
<y + Lévd
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and

lf71v

5 s(x,u)

H@F(@H - HVF(a:) +

Us(x,u)

l

< |VF<xt>||+\ 1
M M

< VTG 4 LAY LoV

F 2

Defining ¢ 4 = ¢ + flv and€pd—€F+lf”)7M then it holds for all A € AM
gLf, f

<|IVE (zi)lp < Llra

H@F (xt))\H <Yl;q and H@F (x¢)

C BOUNDING THE OPTIMIZATION ERROR

Lemma 7. Suppose Assumption 1 holds. Consider the sequence {x:} ,{\1} generated by SZMOD
in umbounded domain for x. Define

2
Eal||VE,, (2) VFE.,, (T M

1
Sor == > Eal|VE.,, (@) VF., xt))\tH"VFS(:ct)TVFS(xt))\lH

! Ea §th,3 (z¢) /\t+1H2

Then it holds that

T—

1 1 1

Z E4 HVFS xt )\ ( )H < ﬁEA [FS (171) Fg (JZT_HH )\1+§’YSLT+’)’537T+§a£f7154’T+6.
t=0

Proof. By the ¢ ;-Lipschitz smoothness of Fis(z) for all A € AM, we have

s,
Fs (w111) A = Fs () A < (VFs (2) X\ wen = 20) + =55 e — 2

2
b (T1) /\t+1H .

l
= —Qy <VFS (.’Et) )\, VFZt,s (xt) )\t+1> + L

Taking expectation over z, 3 on both sides of the above inequality gives

Lo l - :
B [P (a1 )] A= Fis ()X < = (Vs (@) M (VP (20) 4 5 (@) hvss )+ 5 0B g [P (@) Mo

By Lemma 8] we have

27 E A ()\t Y (VFS ()T VFs (xt)> /\t)

2
<Ealh = AP = Ealdess = AP + 974 || (TF, (@0 VE.., (@0) A +e
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Rearranging the above inequality and letting v; = v > 0 gives
1
—E4 (X VFs (2)" Vs (20) A ) < —Ea M, (VEs (2) T VFs (@) M) + 5B (I = A = 21 = AP

+ %V]EA H (VFZL1 (th)T VF.,, (act)) >‘tH2 .

1
<_ 2 1 a2 2
< —Eal[VEs (m) Ael|” + 5 4 (IIAt AT = [[Ae = All )

1 2
+ 57Ea | (VP (0) T VE (@) M|+
Plugging the above inequality into, and setting oy = o > 0, we have
Lv
]EA [FS (l't+1) )\ — FS (.’Et) )\} S — OZEA <VFS (l't) )\7 VFS (.’Et) )\t+1 + 2v(m,u))\t+1>
7

«
< = aBA [V Fs (e Ml + 5B [ = A = s = A
L?v2(z,u
% HVt + 1-— VH + OZ]EA <VFS (l't) )\, VFS (.’L’t) ()\t — >\t+1)>

Ly = 2 Ef,l 2 = 2
+ 50%174Ea HVFM (xt))\tHH + Lok, HVFZ,&,S (:ct)/\mH

+

+ %O&EA H (VFZM (@) VF.,, (:ct)) x| e
Taking telescope sum and rearranging yields, for all A € AM
= ,
T ;EA IVEs (z¢) A
| T-1 , , =
S 2 Ea [0 = A7 = Mo = AP+ 2 3B lFs (o) = P ()]

-1

o ; (v]EA [VE., @) VE.,, @) x

+2EA (Vs (2¢) A\, Vs (1) (At — Ag1)))

2
+alpaBa |VE., , (2) A || + e

1 1 1 1
S (M = M = IArs = M|+ mBAlFS (01) = Fs ()] A+ 57800 43857 + 5alpaSar +e.

Setting A = \; in the above inequality yields

T-1
LS B [VEs (@) Ml> € =B [Fs (31) — Fs (o741)) M+ 2981 707857+ 20l 1 Sa ke
Tt:()A s{Te) All” = —tea s (1 s (ZT+1)] M5 YOLT Y93, T 5 Abp 154,

Finally, the results follow from the definition of A} (z;).

Proof of Theorem 1:Then we proceed to bound S; 7, S5 1,54, 7. Under either Assumptions |I|,
or Assumptions |Z|, |§| with £¢,{r defined in Lemma 1, we have that for all z € S and A €

AM |\ VE, (z) A| < 4y, and || VF, (@) < €p. Then Si 7, S37, S4,r can be bounded below

T—1
1 T 2
Sir=7 Y Ea (VFZH (@) VE.,, (:ct)) )\tH < M
t=0

T-1
1
Sow = Y Ba |[VFoy (00) T VF, (o) M| [VFs (@) VEs (o) M| < 6.6 = b}
t=0

T-1
1 . 2
Sy = T E Ea|VE;, , (xt)/\t-'rlH <4
t=0
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which proves that

T-1
1 . 2 1 3 4 1 2
T ; E4 |[VEs (z) Af (z0)]|” < i CF + §7M€f + §Oé€f,1ff,d +e
We arrive at the results by * tT;()l E4 |VEs (z) Af ()] <

1
(% tT:_Ol E4 ||VFEs (x4) A} (xt)H2> * from the Jensen’s inequality and the convexity of the

square function, as well as the subadditivity of square root function.
C.1 CA DIRECTION

C.2 LEMMAS

Lemma 8. Consider {z;} ,{)\} generated by the SZMOD algorithm. For all \ € AM it holds that

27 E A <)\t Y (VFS ()T VFs (mt)> /\t>

2
< Bl = AP = Ba hr = AP+ 7B | (VE (@) V., ) M

) (19)
2 2
1Y lf,l’U
+- EallAe = All1 + 5 Ea([[Ae = All1[[VFsAllx + d[VEFs(Ae — A1)
2 2
and - Ea (|IVEs (20 M = IV (2:) A?)
2 2 | o T 2
<Ea = A = Ealss = AP 974 | (VEes @) VL @) M| 20
1§ 10%d lyav
+ LBl = M+ LEEA(IA = AR VEsAl + dI s = M)]1)

Proof. By the update of A, for all A € AM  we have

i1 — Al
- HHAM (At - M (ﬁFZM (z)" VF,, (xt)> /\t) B )\Hz

<A =7 (VE.,, (z) " VE,,, (x)) A — A
2

= 1A — A% — 27, <)\t Y (@Fzm () VFL,, (xt)) )\t> + A2 ’

(VFos (@) V. (20) N
2D
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Now we focus on </\t - (@th,l (z¢)" @Fz,ﬂ (xt)) /\t>, we have:

<)\t Y (@Fzm (@) VE.,, (xt)) )\t>

2
_ <)\t — A\ (VFZM (20) VF.,, (xt)) )\t> + f1 (>\ N 51 (2, 0) 55, 2(z, W)

lyqv
+ L <<At—A)Tszt,mx,ufwz,m(&—A) \ZARESEICRTRY
12 v?d
> (A=A (V0 (@) T, (@) Ac) = L2 = Al (22)

l
= LA =AMLV Eoh 4+ (= 2V 110)

> (3 =\ (VB (00) VE.,, () M) - lf"l:HAt VR

l v
L = NIV o2+ (A = NV o ally)

Taking expectation over 2; 1, 2,2 on both sides and rearranging proves equation @ By the convexity

of the problem, minyean 3 |V Fs (2¢) %, we have

WE (IVFs (@) M|* = IV Es () A

<2y Ea <>\t Y (VFS () VFs (xt)> )\t>

2%IEA <)\t Y (WS (2)T VFs (xt)> At> i 2d||A,5 “Alh

leqiv
+ L= (e = ALV Fz2Mll + dll e = V)V fpa )

<Ea ||/\t*)\H2*EA Peer = A +37Ea || (V. (20 TR, (@0) A

2 2

flv

d
EalAe = Al + EA(IAe = M1[[VEsA|lL +d||[VFs(A: — A1)

Rearranging the above inequality proves equation 20]

Lemma 9. Given any p > 0 and = € RY, define X(x) = arg minyean 3 IVEs(z)A|* + Lol Al
then the following inequality holds

[IXp(@) = As @) < o7t ||VF(@) VF (@) - VF (@) VF (')
Suppose either 1) Assumptions 1, 3 hold, or 2) Assumptions 1, 2 hold, with (. defined in Lemma 1.

Then for x € {xt}z;l ,x' € {xé}z;l generated by MoDo algorithm on training dataset S and S,
respectively, it implies that

‘ Ap(x) = A (x’)” <20 YUpilr |z — 2|

Proofed in (Chen et al., [2024)).

Lemma 10. Suppose Assumption@holds. Let {x;} ,{\+} be the sequences produced by the SZMOD
algorithm. With a positive constant p > 0, define

Sir= Z]EAH< e ( )VFZpgxt)>)\tH2
T-1

1
Sor = Z]EA IVFs (xt41) + VFs (24)]] HV ztg,)\t—&-lH
Py
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Then it holds that
1 4

= D Ea [IVFs (@) M = [V Fs (@) A @)l € 5+ —= (1+ 5~ aleaTSr) + 751
T Pt ~T

Proof: Define \’ (z;) = arg minyean & |V Fs (¢) M| >+ £||\||2 with 5 > 0. Note that  is strictly
positive and is used only for analysis but not for algorithm update. Substituting A = A% (z;) in

Lemmal|8] we have
2 " 2
WEA (IVFs () M = [V Fs (20) Ay (@0)||*)
2
<Ea [ = N @)]|* = Ea [Aes = 45 @0)|* +22Ba || (VEer, (@) VE., (20) A

lfc 1’02d lf 1v
+-7 EallXe = Allr + ’T]EA(H% = AMlIVEsA[ +d||[VEs(A: — A)|l1)

(&

Setting v, = v > 0, taking expectation and telescoping the above inequality gives

T-1
% Ea [IVFs (2) M = |V Fs (20) A (@0)]|]
t=0
121 2 2 1= T 2
<7 ;EA [HAt = A (@) ||” = Ao = A5 ()| } t7 > Ea H (Vth,l (ze) VF.p (It)) >\tH +e
1 t:OT_l 2 2 1tl:(;_l 2
:77 (Z EA |:HAt - )\:; (l‘t)” - H>\t+1 - A;; (l‘t)” :|> +T Z ’7]EA H (Vth,l (JUt)T Vth72 (l‘t)> >\tH +e
t= t=0
(23)

Iy

where /7 can be further derived as

T-1
L= Z Ea A —As (ﬁct)H2 —Eal[As1 — A (xt)H2
t=0

T—2
=Eat [ ho = X (@0)|* = Ea [Ar = X5 (@n)||” + D Ba [[Aes = X @) |* = [ Aeer = 25 (@)
t=0

<E4 || Ao = N5 (@0)[|* = Ea [|Ar — X (2r)|”

T2
+ Z Ea [[[20401 = A5 (@e41) = A (o) || [ X5 (2es1) = A (20) ]
=0
T—2
<A+4Y Ea || (@) = A ()
=0

, by LemmaEI, can be bounded by

where H/\;; (Ty11) — A% (@)
I3 @) = 5 ()| < 7 IV Es (@esr) + VEs (@)l [ VEs (we41) = VES ()]
<0 e [V (2sn) + VFs (@) s — i

<P alpy |[VFs (2041) + VEs ()] [|[VEz, Ao |
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Hence, it follows that.
T-1
L <4+4p alpy Y Ea|VFs (2e41) + Vs (20)]| ||V Fet s A |
t=0

=4+ 4ﬁ_104€F,1TSQ7T

plugging which into (23) gives

T-1

1 4
=D Ea [HVFS (@) Mll? = ||V Es (20) X5 (a0)]| ] T (14 5 LalpTSar) +7Sur +e
= (24)
Define \* (z;) € argminyean ||V Fs (2;) A||>. Then
1 T-1
= D Ea [[VEs (20) M|* = [V Fs () A" ()|
t=0
1= 2
= = S Ea [IVFs (@) Ml = [V Fs () X @0l + [V Fs (w0 3 (w)|[* = 19 Fs () 3 (@)|] +e
t=0
D 4 = 2 2
< S (47 alraTSar) + 951+ 5 3 Ea [[[VFs (@) 3 @) = IVFs (@) A" )] +e
t=0
4
7T(1+p aﬁplTSQT)Jr’YSlT+P+€

The proof is complete.

D BOUNDING THE GENERALIZATION ERROR

D.1 PROOF OF THEOREM[3LPS GENERALIZATION ERROR IN NONCONVEX CASE

In this subsection, we prove Theorem E} which establishes the PS generalization error of SZMOD in
the nonconvex case.

Organization of proof. To prove the PS generalization error of SZMOD, we first define the concept
of Sampling-determined algorithms in Definition 3. This concept has been described in [22] for
the analysis of single-objective learning. Then, we show that SZMOD is sampling-determined in
Proposition 4. Finally, combining Propositions 2-4, we can prove Theorem 1, the MOL uniform
stability and PS generalization error of SZMOD.

Definition 3 (Sampling-determined algorithm ). Let A be a randomized algorithm that randomly
chooses an index sequence I(A) = {i, s} to compute stochastic gradients. We say a symmetric
algorithm A is sampling-determined if the output model is fully determined by {z; : i € I(A)}.

Proposition 4 (SZMOD is sampling determined (Leil [2023)). SZMOD (Algorithm[3) is sampling
determined. In other words, Let I(A) = {i;} be the sequence of index chosen by these algorithms

from training set S = {z1,...,2n}, and z; P foralli € [n] to build stochastic gradients, the
output A(S) is determined by {zj j € I(A)}. To be precise, A(S) is independent of z; if j & I(A).

Proof of Proposition 4. Let I(A) = {I1,...,Ir}, I, = {it7s}i’=1 andi; s € [n] forall 1 <¢ <T.
And Sr(ay = {;,, }. By the description in Algorithm 1, A(S) = Gy, 000Gy (w0), where
G (+) is the stochastic update function of the model parameter given random sample z. Therefore,
for all possible sample realization z, we have
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P(AS) =2 |2 =2j ¢ I(A) =P (Gyp 00 Gy, (w0) = | 5= 2,5 ¢ I(A))

=P (Gyyp 000Gy, (w0) = | ] £ 1(A))

=P(A(S) =z | j ¢ I(A))
where the last equality holds because z; ¢ S7(a), and z; is independent of all elements in Sy 4 by
i.i.d. sampling. Therefore, A(S) is independent of z; if j ¢ I(A). The proof is complete.

Note that, besides SZMOD, other popular stochastic randomized MTL algorithms such as MODO
(Chen et al., [2024) and MOCO (Fernando et al., 2023)) are also sampling-determined. Therefore, the
result is also applicable to these algorithms.

Lemma 11 ((Lei, 2023), Theorem 5 (b)). . Let A be a sampling-determined random algorithm
(Deﬁm'tion and S, S’ be neighboring datasets with n data points that differ only in the i-th data

point. Ifsup, E4 {HVFZ(A(S))H% |ie I(A)} < G? for any S, then
supE4 [||VFZ(A(S>) _VE. (A (s’))||§} < 4G? - P{i € I(A)}

Proof of Theorem [3| From Proposition 4, algorithm A, SZMOD is sampling-determined. Then
based on Lemma , its MOL uniform stability in Definition 2 can be bounded by

& <4G* -P{ic I(A)} (25)

Let i; be the index of the sample selected by A at the ¢-th step, and i* be the index of the data point
that is different in .S and S’. Then

L 26)
n

T—1
P{it € I(A)} < 3 Pliy ="} <
t=0

Combining equation [25]and equation 26| gives

4G?T

G%S
n

Then based on Propositions 2-3, we have

E a5 [Rgen(A(S))] < Ea s [[VF(A(S)) = VEs(A(S))llg]
< dep 4+ /n"1Eg [V.up (VF.(A(S)))]

The proof is complete.

D.2 EXPANSIVENESS AND BOUNDEDNESS OF SZMOD UPDATE

Lemma 12. [Boundedness of update function of SZMOD] Let {; be a positive constant. If
H@Fz(x)/\H <Ulpforallxe AM z € Sandz € {xt}thl generated by the SZMOD algorithm with
step size ap < «, then G ,\Z(sc) is (ol f)-bounded on the trajectory of SZMOD, i.e.,

sup - [|G 2(z) — 2| < aff

ze{zi}i_,
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Proof. Forall x € {a:t}thl A€ AM and z € S, since H@Fz(x))\H < Yy, we have

G (z) — ]| < Hsz(x)AH < aly

which proves the boundedness.
Lemma 13 (Properties of update function of SZMOD in convex case). Suppose Assumptions|2}[3]

hold. Let { be a positive constant. If for all \,\' € AM 2z € S, and x € {xt}thl ,x € {xi}tT:l
generated by the SZMOD algorithm on datasets S and S, respectively, we have ||V F,(z)\|| <

U IVE, ()N < €4, and |VF.(z)| < p, ||VE, (') we have H@Fz(x)AH < lpa

H?FZ (") N|| < €y,4, and H@Fz(m)H </lpgq, VE, (x’)H < Up,q4, and step sizes of SZMOD satisfy
ar < o, ¢ < 7, it holds that

IGx2 (@) = Gy (@)]° < (1= 20 + 20263, + alyyvd) o — 2|
+2alpa v — 2| IN = Al + 20264 | X = A|I”
+ alyjvd + 2a2€?c’1v
Gz 2a(N) = Gy 2y (NI ((1 )+ (L4 ) Ly + (L+ i) g, wdv) A=l

+ (14 B9) gy + 172 + 2 yvdy) o — 2|
+ (1 + @wv) Ly 1vdy + ﬂgylvdw

2

Proof. The squared norm of the difference of G ,(«) and G/, (z") can be bounded by

1Gx.:(2) = G, (2]

X
A ~ 2
= |z — || 72a<xfx VE,(2)\ — VE, (z ))\'>+a2HVFZ(x))\—VFZ(:z:’)

Do — 2P = 20 <x ( (z) — VF, (ac’)) A>+2a2”<w;( )~ VE, ( ))\H
+2a<x—x’,VFz (@) (N )>+2a HVF @) =)

Oy~ | — 20 <x—x (2) = VE. (@) A + (gf’;vs(m,u) - gf’les(Jc',u)) )\>

Y, 2
+20&2 fl'U

(VE,(z) — VE, (2')) A + ( s(z, u) — gf’;vs(x’,u)> A

+20 (w2, VF. (@) (¥ = N)) + 202 |[VF. (&) (A= X) :

2w — I = 20 (0 — o, (VE.(2) — VF: (7)) X) + 202 [ (VF (@) - V. (&) AP
— 2« <x -, <£f’21vs(x,u) £f2 (x',u)) /\> +2a? <£f2lvs(:1:,u) - Ef’;vs(:c',u)) A
42 <x 2 \VE. () (N — A)> + 202 H@Fz @)=

(d) N
< (1-2ap+422%6,) |z — /| + 20 <x — & VF, (&) (N — >\)> +2026 4 [N = Al

— 2« <x —a, (éfgvs(m,u) — gf’;vs(x’,u)) )\> + 202 (zjc;}s(x,u) - gfélvs(x',u)) A

(e)
< (1= 20p+ 2070, + alpvd) |z = 2 |* + 20lpa o — &/ [N = M| + 2026 4[| X = A
+olyivd + 2a2€f71v2d2

2

2
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where (a) follows from rearranging and that [|a + b|? < 2|a||? + 2|6]|;(b) follows from V F(z) =

VF(z)+ lfgvs(a: u);(c) follows from that |la + b|| < ||a|| + ||b]|; (d) follows from the u-strong

convexity of F,(x)A, £5 1-Lipschitz continuity of VF,(x)\, and that HVF H <Ulpgqfora' e

{xt}tzl; and, (e) follows from Cauchy Schwartz inequality.
And |Gy 21 20 (A) — Gar 2y 2, (A')]| can be bounded by

1G21,20(A) = Gt 2y 20 (V)|
- HHAM ()\ — (@le (x)TVE,, (m)) A) N (X — (@le ) VE, (m’)) A’)
2 \

(VE. (@) TVE, (@) - VE, (&) VE, (&) X|

’)\ N (@le (2)TVE,, (2)A — VE, (/) VE,, (') X)

) 1 = T 1
< I = NI+ 7|V (@) TV (@) (A= X)

LI N+ A A - N4+ || (Ve (@) TV Fy (@) = VE, () VE, (@) X

~ T .
S =N+ =N ([ (70 - TR @) IR

+ H@le () (VFL () = VE., () V]))
< (L4 GE7) IN= NI+ (raley + Cralpa) v Iz — 2| + (Crale + Lralya) yod

where (f) follows from non-expansiveness of projection; (¢g) follows from triangle inequality, (h) fol-
lows from H@FZ(I) H <Ulpqforz e {x;}thl , (@) follows from triangle inequality; and (j) follows
from ¢ 1 -Lipschitz continuity of VF, (z)X, £; 1 Lipschitz continuity of VF,(z), ‘ x) H <lpa

forz € {xé}f:l, and |VF,(z)X|| < ¢y forz € {xt}thl. Letly1 = Lyalpy1 + €raly 1. Taking
square on both sides of above yields

1G22 (A) = Gty 2y (NI

<((1+ ) 1A - xn + 817 |z — 2’| + 14y 10d)”

= (14 G.) I =X+ 6097 e =2/ I” + 770 0P +2 (14 G ) gy [A = X [z — ']
+2(1 +€Fd’y) gavdy [A =N +2€§71vd7 |z — 2’|

<+ 80)" IV =X+ 192 e = 21 + (14 Bgn) gy (N = NI + e = o/))°)
+ (1 + E%d’y) Ly 1vdy <||)\ — )\'H2 + 1) + E;lvdw (Hx — av/||2 + 1)
((1 )+ (L4 o) by + (14 o) 4y, 1vd7) A= N2
+ ((1 + EF’y) lg1y + E 17 + K 1vd’y) |l — = || + (1 + €F d’y) Ly 1vdy + é;lvdv
The proof is complete.
D.3 GROWTH RECURSION
Lemma 14 (Growth recursion with approximate expansiveness). Fix an arbitrary sequence of

updates Gy, ..., Gr and another sequence G, ..., G'.. Let xo = x{, be a starting point in ) and
define 6y = ||z} — xt|| where x4, x} are defined recursively through

zop1 =G (1), 2 =Gy(xy) (6>0)
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Letn; > 0,1y > 0, and sy > 0. Then, for any p > 0, and t € [T, we have the recurrence relation
(with §o = 0)

ne02 + v, Gy = G, is (n, 1) -approximately expansive in square
6711 < < (1 + p)min {62 + 14,62} + (1 + %) 42 Gy and G, are ;-bounded,

Gy is (ng, vy) -approximately expansive in square.

Proof. When G; and G}, are ¢;-bounded, we can bound d;1 by

Oty1 = thﬂ - $Q+1H = |Gy (z4) — G} (23]
= |Gt (1) — 2 — Gy () + o + 21 — 3|
<N Gi (o) = ol + |Gy (1) — 2|l + e — ]|
< 2¢; + 0y

Alternatively, when G; and G, are ¢;-bounded, G is (1, v¢)-approximately expansive, we have

Opa1 = |21 — wipa || = 1Ge (20) = Gy ()]

When G; = G, is (1, 14)-approximately expansive in square, given 67,67, ; can be bounded by

2
671 = ||wer — iy || = 1Ge (20) — Gy @IP < e llwe — 24)° + vy = 0e87 + 12

When G, and G|, are g;-bounded, applying (B.57), we can bound 67, ; by

620 < (8 +26)* < (14 )82 + (1 + 1/p)de?

where p > 0 and the last inequality follows from (a + b)? < (1 + p)a® + (1 + 1/p)b?. Alternatively,
when G; and G} are ¢;-bounded, G is (1, v¢)-approximately expansive in square, the following
holds

0201 = |lwess — s | = 1Ge (@) = G (@)

=[Gt (z:) — Gt (2}) + G4 (a) — G} ()|

< A +p)IGs (20) = Go @)I* + (1 +1/p) |Gy () — G} ()|

< (1+p) (me0? + ) + (1+1/p) |Gy () -z — G} (2}) + )|
(1+p) (md? + 1) + 200+ 1/p) (G (@) — o> + G} (a7) — 24
(14 p) (1:62 + v1) + (1 + 1/p)4s?

IN

IN

The proof is complete.

D.4 UPPER BOUND OF SZMOD UNIFORM STABILITY

In Theorem @] we bound the argument stability, which is then used to derive the MOL uniform stability
and PS generalization error in Theorem 4]

Theorem 7 (Argument stability bound in strongly convex case). Suppose Assumptions [2} [B]
hold. Let A be the SZMOD algorithm in Algorithm Choose the step sizes oy < a <

2

3 2 : 7 1 .
min {1/ (2041), 1/ (2€f71) }, and v < v < min B, 3(36+20y1) } /T. Then it holds
that
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48 12 + 4M 12 10M 4y 4 [10aME:Z y+
Ea [A(S) - A($))°] < o <a+ o L 4 ? ! o ,iad

Proof of Theorem Under Assumptions Lemma|§|implies that for {z;} generated by the

H@FZ (xt))\H <lpq. and H@Fz (xt)H < lpg
For notation simplicity, denote §;, = ||z, — ||, § = [| A — Ai||, zr = Ar(S) and =7, = Ay (57).

Denote the index of the different sample in S and S’ as i*, and the set of indices selected at the ¢-th
iteration as I, i.e., I; = {it,s}izl- When ¢* ¢ I, for any ¢; > 0, based on Lemma we have

61 < (1 —20p+ Qaf@,l + agly1vd) 62 + 204lp adiCey1 + 20[?6%@@2“ +ouly vd + 2af€?’1v2dd

+alsq+

2
2al i
n

)

1

< (1= 20qp+ 20705 1 + alpivd) 6 + aulpa (167 + ¢ ' CFyy) + 20703 4GPy + aulpavd + 20005 1 0°d?

< (1= opp+ aulyyvd) 67 + aulpa (167 + 7' CGEry) + 20705 4G + aelyivd + 20305 0P d?

where the second last inequality is due to Young’s inequality; the last inequality is due to choosing
ar < pf (26?1). When i* € I, from Lemma the (a;ls q)-boundedness of the update at ¢-th
iteration, and Lemma 9 , the growth recursion, for a given constant p > 0, we have

5t2+1 < +p)5t2 +(1+ 1/27)4%?@@

Taking expectation of 67, ; over I;, we have

Ep, [6701] <P (" ¢ 1) (1 — aup + culyvd) 67 + aulpaci6f + (owlpacy -+ 204?@1(1) Ey, [¢F1 |4 ¢ L))

+ alyyvd + 20705 02 d* + P (i* € 1) (14 p)o7 + (1+1/p)dail; )
<1 —ar (p—Lpger —Lpavd) P (i" & 1) + pP (i* € 1)) 6,52
_ " " 1 .
+ay (Cpacyt + 2003 ) By, [¢By | 1° ¢ L) P ¢ L) + <1 + p> P (i* € I;) 40765 4

C2

+ adyivd + 2a§€%1v2d2

27

At each iteration of SZMOD, we randomly select three independent samples (instead of one) from
the training set S. Then the probability of selecting the different sample from S and S’ at the ¢-th
iteration, P (¢* € I;) in the above equation, can be computed as follows

3
P(i*e[t):l—(n_1> <3

n n

Consequently, the probability of selecting the same sample from S and S’ at the ¢-th iteration is
P(*¢ ;) =1—-P@G* €ly). Letlyr = Ly qlpy + Lpaly. Recalling when i* ¢ I, (i1 <

(1 + @wﬂ) Gt + Lg,170: + L4, 1vd from Lemma 8, it follows that

2
(P < ((1 +0g) + L+ gy) bgay + (1 + 05 47) Eg,lvd')/) ¢
+ (L G5y) ooy + 617 + €6 vdy) 6 + (1+ G yy) Lgavdy + £ jody
< (14 (3654 + 40y 1) 1)CF + 4Ly 17087 + (20g1 + €2 ) Jvdy,
N———

Cc3

30
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where the last inequality follows from ¢, 1y, < 1, and @’,d% < 1. And since (; and §; are
independent of I, it follows that

Er, [P |7 ¢ L) < (1+ esme) GF + 4lg 1y + (2091 + 02 1 )vdrye (28)

Combining equation[27)and equation 28] we have

1
Er, [6701] < (1 —cu (0= lpacr — Lpavd) P (i* ¢ 1) + pP (i € 1)) 67 + (1 + p) P@i* € I) 40%2@@
+ ey ((1 + c3ve) Cf + 46971%5? + (20,1 + é?ﬁl)vd%) P ¢ L) + alyvd + 204,526?,1’02612
=1 —oq(u—Lract —Lpavd —dealg 1) P (6 € 1) + pP (i° € 1)) 53 + (1 + p) P(i* e I) 40[?63‘,(1
+azeo (L4 esm) ¢ + (201 + 63’1)vd'yt) P(:* ¢ It) + aplyvd + 20[?(?’11]2612
= PG* ¢ L)+ pP(i* € I,)) 62 + (1 + p) P (i* € Iy) 4007 4

+agea (T4 esm) ¢+ (201 + K?jl)vd%) PG* ¢ 1)+ alyvd + 2@?5?711126[2
(29)

where we define g, = 1 — a(pu — lpqgc1 — Uy avd — dealy 1ve)

While when ¢* € I, for a given constant p, > 0, we have

Gr = [Tan (A = 9V (@) T VFE2 (@) M) = Tlan (N = VLT (@) T VFG (2) 1) |
< =X = (VB @) VE2 (@) h = VE ()T VEL, @) ) |

< A = Ml + 29elralya < G + 2wV ME
iy < (1+p2) G+ (14 1/p2) dZ ML,

Taking expectation of ¢? ‘1 over I; gives

Er, [C] =Ep, [P | i* € L] P(* € L) + By, [¢Fy | 4° ¢ L] P(i* ¢ 1)
< (A +p2) G+ 1+ 1/py) 4%2M€;lf,d) P(i* € I) + (1 + c37e) (7 + 3Ly 1707 ) P (i ¢ 1)

3 1 3
< (1 +c3ve + np2> G+ (1 + m) 4731\46;%H + 4l 17207 + (2091 + € )) vdye.
(30)

Based on linearity of expectation and applying equation [30]recursively yields
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t’'=0 k=t'+1

t t
1 3 3
Bl =2, ((” » ) VMG Al B [57] + %JHZMW) ( 11 <1+Csv+ np))

I
Mw

t'=0

3 t—t
(1 + > 472M£4 + 40,1 VE [67] + (2091 + £ )) vd’yt) (1 + ez + an)
8T

t—t
( 1+ ) 2M€4 ~ +40y17E 35 ] + (2£g71+e§71)vd%) <1+21T>

INE
M~

0

0(

t
29> ((1 + 8T> AyMeG= k L ZR1D [67] + (2651 + € 1) vd%>

t’'=0

t

)

—
<

M~

3
(1 - ) 472Mé4E + 41 vE [67] + (2091 + 6 1) vd%> e
t/

(c)

(3D

where (a) follows from choosing v; < v < 1/ (8¢3T) ,p2 = n/(8T), (b) follows from ¢t — ¢’ < T,
and (1+ & T < %, and the inequality (c) follows from e2 < 2. Note that dy = 0,(; = 0. Applying
equation [27|at ¢ = 0 gives

3 1
E [5?} < - (1 + p) 4a25f a T oulyvd+ QOszf 1112d2 + aico (26971 + 5371) vdyy

which together with equation [30] gives

1
E [¢3] < 4€517m67 + (1 + p) AV MG 4= + (29,1 + 02 1) vdy,
2

Therefore, for 0 < ¢ < 1, it satisfies that

3 1 8T
E [67] < (n < ) 40205 4+ 24M (5 400 ( ZL + 7) % + (202 + 1) (201 + €2 1) vdy + oely1vd + 20705 1v2d2)

5 (1t ) )

t’'=0

~

Bt
1 T
= (2 <1 + p) 40203 4+ 24M (5 e (81 + v) % + (2acy 4+ 1) (28,1 + €2 ) vdy + oplyavd + 20703, 1v2d2) |
(32)

Next, we will prove by induction that equation [32]also holds for ¢ > 1. Assuming that equation 32]
holds for all 0 < ¢t < k < T — 1, we apply equation[29]to the case where ¢ = k to obtain
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3 3 1
E [5,3+1] < (Uk + f) E [6,%] + agea (14 esvi) E € [ ] (i ¢ 1)+ ( p) 40‘%@,(1
+ (2041 + €2 1) vdv P (i* ¢ 1) + aplyvd + 2at2€?,102d2
0

(a) 3
< (ﬂk-i- f E [67]

8T
+ 2ac07y ( <(1 + ) 4ry M£4 + 4l E[67] + (2091 + 2 1) vd’yt)> P(i* ¢ I,)
/=

3 1
+(1+)
n p

3

k
4ai€? + (2051 + 63’1) vdyP (i* ¢ It) + alyvd + 2af€%1v2d2
(b) D

t'=1

k
< <<77k + n) Br + 14 8agca (14 c3ve) g1y <Z 51:/) P(i* ¢ It))

J1

3 2 8T @ 2 292 22
- 1 —|— 40703 4+ 24M U 4eo )t (2acy + 1) (20g1 + €2 1) vdy + alypvd + 20763 10°d? ) .
(33)

where (a) follows from equation and (b) follows from equation for 0 < t < k and that
vk < ~T < 1. The coefficient J; in equation[33]can be further bounded by

k
3 ok
Ji = (Uk + f) Br + 1+ 8agez (1 +e37) Ly 1y (Z Ct/) P(i* ¢ I)

t'=1

(C) 3 Lk
< <17k, + p> Br + 1+ 16aycaly 1 kyBilP (i* ¢ I)
n (34)

< (1 — Qg (/J, — €F,d01 — €f,1vd — 4626971’)/ — 1662fg71k"}/) ( ¢ It) ) Br+1
1 3

<1—au+p) Bk +1
2 n

where (c¢) follows from ; < Biy1,7: < yforallt = 0,...,T;(d) follows from the definition of

ks (€) is because v < p?/ (12002641 T) , o0 < 1/ (2€5,1) < 1/(2p) and choosing ¢1 = p1/ (40p,q)
leads to

€F7dcl + Efvlvd + 40255]71’}/ + 166269,1]{5’7 < ép,dcl + 21 (6}7@6{1 + 20&6%760 ég,l(k + 1)’)/

2
k+1 I <

1 1
< -pu+21 (4M +2a)€ by T W_ 5,”.
F.dts,

4

Combining equation [33]and equation 34]implies

E[67,1] < <<11au+3 )5k+1)
( < 1)4025 4+ 24M 05 4o <+ )Z
— (n( +p) 40202 d+24M£‘},ch< )

Ck+41

+ (2002 + 1) (2041 + 557 ) vdy + ailyvd + 20¢t€f w3d )

3\@

+ (200 + 1) (2041 + K;)l) vdry + alyvd + 2af€?’1v2d2)

(35)
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where the equality follows by the definition of 3, given in equation[32] The above statements from
equation 33}equation [33]show that if equation [32]holds for all ¢ such that 0 < ¢ < k < T — 1, it also
holds for ¢t = k + 1.

Therefore, we can conclude that for 1" > 0, it follows

E [07]

3 1 8T
< < (1 + p) 40203 4+ 24M L5 e (ZL + 7) % + (2aca + 1) (2091 + €2 1) vdy + by rvd + 204?5?«711;2(12)

n
3 1 22 4 8yT o 2 242 252
= (n (1 + p) daly 4+ 24M UG 4co (n + 7 -~ + (2002 + 1) (2041 + 69’1) vdy + alyivd + 20505 v7d
T-1 T—k—1
1 3
< (1 — zau+ p) )
2 n
k=0

3 1 8T
= (n (1 + p) 40?03 4 + 24 ML} 4eo (ZL + 7) % + (2acy 4+ 1) (2g1 + 05 1) vdy + il yvd + 26@@,10242)

1\ 1 \"
(i) <1 (=) ) |
where the last equality follows from taking p = aun /12, and compute the sum of geometric series.
By plugging in ¢; = p/ (4lp,q) ,c2 = fF,dCfl + QaE%yd, cg = 3@,@ + 2{, 1, we have that
3 1 8T @
E [6%} < (ﬁ (1 + p) 4042@,(1 4 24MZ4}7d02 (ZL + 7) - + (2aca + 1) (2€g71 + E;l) vdry

1 —1
+ olyavd + 20707 07 d?) <4a,u>

48 12 2MP2 cocit 4 [ 10aMZ v+ pry 2002
< —Z? d (a + — + T fdEE + 2M€?c a2y | + — t.d +alpg + u
un n ’ ©n J7%e!

4 12 4 4 M P2 10M ¢4 4 (10aMZ v+ 20
< 78@%(1 (a—l— fd Y 4 F.dY T Y Fali + nf,l

pn pn I pn frex

. . . L 1 . .
where the second inequality follows from v < min { nd (2,2 ) }, and the last inequality

follows from ¢y = €%, ; (4p~" + 200) < 5ML% ;u~", and cocg ' < 503 '/ (36?%) <2u~th
D.5 PROOF OF THEOREM[4]

Proof of Theorem 2. Combining the argument stability in Theorem[7] and Assumption 2] the MOL
uniform stability can be bounded by

supE [[[VEL(A(S)) ~ VE. (A ()]
<Ea [}, 1A(S) - A(S)]

48 1244M6, 10M€‘}7> LA <10aM£%d'y AL 2046?-71)

<—02 0% ot
S b <

un

1674
pmn T el e H

by Assumption 2]
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Finally, based on Propositions 2-3, we have

Ea.s [Rgen(A(S))] < Eas [[VE(A(S)) = VEs(A(S))]|]

<dep +/n"1Eg [V.up (VF.(A(S)))]
=0 (n_%) .

The proof is completed.
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