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ABSTRACT

Multi-objective learning (MOL) is a popular paradigm for learning problems under
multiple criteria, where various dynamic weighting algorithms (e.g., MGDA and
MODO) have been formulated to find an updated direction for avoiding conflicts
among objectives. Recently, increasing endeavors have struggled to tackle the
black-box MOL when the gradient information of objectives is unavailable or
difficult to attain. Albeit the impressive success of zeroth-order method for single-
objective black-box learning, the corresponding MOL algorithm and theoretical
understanding are largely absent. Unlike single-objective problems, the errors
of MOL introduced by zeroth-order gradients can simultaneously affect both
the gradient estimation and the gradient coefficients λ, leading to further error
amplification. To address this issue, we propose a Stochastic Zeroth-order Multiple
Objective Descent algorithm (SZMOD), which leverages function evaluations to
approximate gradients and develops a new decomposition strategy to handle the
complicated black-box multi-objective optimization. Theoretically, we provide
convergence and generalization guarantees for SZMOD in both general non-convex
and strongly convex settings. Our results demonstrate that the proposed SZMOD
enjoys a promising generalization bound of O(n− 1

2 ), which is comparable to the
existing results of first-order methods requiring additional gradient information.
Experimental results validate our theoretical analysis.

1 INTRODUCTION

Multi-objective learning (MOL) aims to learn a single model that can optimize multiple potentially
conflicting objectives simultaneously. An unconstrained multi-objective optimization problem can be
defined as

min
x∈Rd

FS(x) := [fS,1(x), . . . , fS,M (x)] , (1)

where S = {zi}ni=1 is the training dataset, fS,m(x) is the m-th empirical objective for m ∈ [M ] =:
{1, 2, ...M}. Usually, we can set fS,m(x) =

∑n
i=1 fzi,m(x) as the empirical risk on the entire

training dataset S, where fz,m : Rd 7→ R measures the performance of a model x ∈ Rd on a datum z
for the m-th objective.

Multi-objective learning has gained increasing attention, due to the complex decision-making pro-
cesses involved in many challenging tasks, e.g., managing traffic systems (Felten et al., 2024),
electricity grids (Lu et al., 2022), and taxation policy design (Zheng et al., 2022). These burgeoning
fields in practice, which require trading off multiple conflict objectives, underscore the significance
of research in MOL. Specifically, balancing bias and variance (Neal et al., 2018), or accuracy and
calibration (Guo et al., 2017), are well-known common objectives in machine learning that need to be
optimized. To tackle these problems, this paper pays particular attention to multi-objective gradient
methods that aim to find a common descent direction for all objectives. Désidéri (2012) initially
introduced the concept of a Pareto stationary and the multi-gradient descent (MGDA) algorithm.
Since then, stochastic variants such as MOCO (Fernando et al., 2023) and MODO (Chen et al., 2024)
have been proposed. Those first-order multi-objective alpgrithms have have great performed in the
white-box problem.

However, when we consider the black box problem, where obtaining explicit gradients is either
unattainable or too expensive, these algorithms are no longer applicable. For instance, in the field

1
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Figure 1: An example from (Liu et al., 2021) involves two objectives in Figure 1(a) and 1(b) to
demonstrate the conflict between objectives. Figures 1(c)-1(e) show the optimization trajectories,
where the black dots indicate the initialization points of the trajectories, with the colors transitioning
from red (start) to yellow (end). The background solid/dotted contours represent the landscape
of the average empirical and population objectives, respectively. The gray/green bars mark the
empirical/population Pareto fronts, while the black ⋆ green ⋆ marks the solution to the average
objectives.

of multiple-objective reinforcement learning (Hu et al., 2023; Felten et al., 2024; Terry et al., 2021;
Gupta et al., 2017), agents often can only learn strategies through interaction and external reward
signals, without access to the internal state or dynamics of the environment. Similarly, in most
attack scenarios (Akhtar & Mian, 2018; Liu et al., 2022; Papernot et al., 2017; 2016), the attacker’s
knowledge of the classifier is very limited, which causes the attacker only to execute a black-box
attack. Liang et al. (2022) state that the black-box attacks can manipulate model outputs by adjusting
the trade-offs between true and false positives without direct access to the model’s internals. Williams
& Li (2023) consider a novel multi-objective sparse attack that can simultaneously reduce the number
and the individual size of modified pixels during the attack process.

Most of the black-box MOL scenarios discussed above are traditionally optimized using the hypervol-
ume indicator (Felten et al., 2024) as the standard performance metric and are typically solved using
methods such as evolutionary algorithms (Zhou et al., 2024; Mathai et al., 2020; Liu et al., 2024).
Unfortunately, these methods impose strict constraints on problem dimensionality. In contrast, zeroth-
order (ZO) optimization algorithms demonstrate greater versatility in handling higher-dimensional
problems and can achieve excellent performance, often comparable to or even surpassing that of
white-box models where gradients are explicitly available. (Sun et al., 2022; Papernot et al., 2017).
Unfortunately, there has been no endeavor to apply the zeroth-order optimization to multi-objective
optimization.

To fill this gap, we present the Stochastic Zeroth-order Multiple Objective Descent algorithm (SZ-
MOD), which integrates coordinate-based zeroth-order gradient estimations and employs a consistent
directional selection strategy during the λ iteration process. Specifically, by using the same direction
for gradient approximation throughout the iterations, SZMOD ensures that the update direction of the
dynamic weigh λt is updated in alignment with the chosen direction, thereby maintaining stability
and reducing variance in the optimization process. Combining coordinate zeroth-order techniques
and unified directional updates enhances the algorithm’s ability to effectively address black-box
multi-objective learning problems.

• Gradient Direction Conflict: In first-order multi-objective optimization algorithms, the
gradients of multiple objective functions are computed to determine a suitable direction for
optimization. However, in zeroth-order multi-objective problems, we rely on zeroth-order
gradient estimates, where the direction estimation depends entirely on a random vector u
(determined by the zeroth-order estimation process). This dependence makes it challenging
to identify an appropriate CA direction (the proper direction to update λ, will defined in
section 2.4), complicating the optimization process.

• Excessive Error Risk: Zeroth-order gradient estimation inherently introduces errors, which
also propagate into the iterative updates of λ. These compounded errors affect the term of
the CA direction, increasing the risk of divergence during the iteration of x. Therefore, it is
crucial to control these errors effectively to ensure convergence and maintain the stability of
the optimization process.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we first introduce MOL’s problem formulation, the analysis target, and the metric to
measure its optimization, generalization, and CA direction.

2.1 NOTATION

Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x) and
the population objective F (x) which are, respectively, defined as FS(x) := 1

n

∑n
i=1 Fzi(x) and

F (x) := Ez∼D [Fz(x)]. Their corresponding gradients are denoted as ∇FS(x) and ∇F (x) ∈ Rd×M .

2.2 METHOD OF MOL

Analogous to the stationary solution and optimal solution in single-objective learning, we define the
Pareto stationary point and Pareto optimal solution for MOL problem minx∈Rd F (x) as follows.
Definition 1 (Pareto stationary and Pareto optimal). If there exists a convex combination of the
gradient vectors that equals to zero, i.e., there exists λ ∈ ∆M such that ∇F (x)λ = 0, then x ∈ Rd

is Pareto stationary. If there is no x ∈ Rd and x ̸= x∗ such that, for all m ∈ [M ]fm(x) ≤ fm (x∗),
with fm′(x) < fm′ (x∗) for at least one m′ ∈ [M ], then x∗ is Pareto optimal. If there is no x ∈ Rd

such that for all m ∈ [M ], fm(x) < fm (x∗), then x∗ is weakly Pareto optimal.

By definition, at a Pareto stationary solution, there is no common descent direction for all objectives.
A necessary and sufficient condition for x being Pareto stationary for smooth objectives is that
minλ∈∆M ∥∇F (x)λ∥ = 0. Therefore, minλ∈∆M ∥∇F (x)λ∥ can be used as a measure of Pareto
stationarity (PS). We will refer to the aforementioned quantity as the PS population risk henceforth
and its empirical version as PS empirical risk or PS optimization error. We next introduce the target
of our analysis based on the above definitions.

2.3 ZEROTH-ORDER GRADIENT ESTIMZATION

Coordinate-wise Gradient Estimation. When only function evaluations are available, here, we
employ the deterministic coordinate-wise direction to derive the decent direction. Specifically, for
the smoothing constant v and vector ui(ui represents the unit vector where the i-th element is 1 and
the remaining elements are 0), the directional derivative of fz,m in the direction u for the smooth
function fi, i ∈ [n], can be estimated as:

∇̂fz,m(x, u, v) =

d∑
j=1

fz,m(x+ vuj)− fz,m(x)

v
uj . (2)

as the approximation of the full directional gradient. Since the smoothing constant v is fixed, for
simplicity, we leave out v in these gradient estimations and set

∇̂fz,m(x, u) := ∇̂fz,m(x, u, v). (3)

Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x)
and the population objective F (x) which are, respectively, defined as FS(x) := 1

n

∑n
i=1 Fzi(x)

and F (x) := Ez∼D [Fz(x)]. Their corresponding estimate gradients are denoted as ∇̂FS(x) and
∇̂F (x) ∈ Rd×M . Thus the zeroth-order estimate for all objectives on datum z should be written as
∇̂Fz(x) =

[
∇̂fz,1(x), . . . , ∇̂fz,M (x)

]
.

2.4 PROBLEM SETUP

Proposition 1 ((Tanabe et al., 2019) Lemma 2.2). . If fm(x) are convex or strongly convex for all
m ∈ [M ], and x ∈ Rd is a Pareto stationary point of F (x), then x is weakly Pareto optimal or Pareto
optimal.

3
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Next, we proceed to decompose the PS population risk.

Error Decomposition. Given a model x, the PS population risk can be decomposed into

min
λ∈∆M

∥∇F (x)λ∥︸ ︷︷ ︸
PS population risk Rpop(x)

= min
λ∈∆M

∥∇F (x)λ∥ − min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS generalization error Rgen (x)

+ min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS optimization error Ropt(x)

, (4)

where the optimization error quantifies the training performance, i.e., how well does model x perform
on the training data; and the generalization error (gap) quantifies the difference between the testing
performance on new data sampled from D and the training performance, i.e., how well the model x
performs on unseen testing data compared to the training data.

The zeroth-order optimization is a gradient-based black-box optimization that utilizes the difference in-
formation of function values to approximate the true gradient. Furthermore, this method does not alter
the optimization objective, only the optimization process differs from the first-order one. As for MOL
black-box problems, the optimization objective of the SZMOD remains minλ∈∆M ∥∇F (x)λ∥ = 0.

Let A : Zn 7→ Rd denote a randomized MOL algorithm. Given training data S, we are interested in
the expected performance of the output model x = A(S), which is measured by EA,S [Rpop(A(S))].
From equation 4 and linearity of expectation, it holds that

EA,S [Rpop(A(S))] = EA,S [Rgen(A(S))] + EA,S [Ropt(A(S))] . (5)

Distance to CA direction. Consider an update direction d = −∇FS(x)λ, where λ is the dynamic
weights from a simplex λ ∈ ∆M := {λ ∈ RM | 1⊤λ = 1, λ ≥ 0

}
. To obtain such a steepest CA

direction in unconstrained learning that maximizes the minimum descent of all objectives, we can
solve the following problem (Fliege et al., 2019)

CA direction d(x) = argmin
d∈Rd

max
m∈[M ]

{
⟨∇fS,m(x), d⟩+ 1

2
∥d∥2

}
(6)

equivalent to⇐⇒ d(x) = −∇FS(x)λ
∗(x) s.t. λ∗(x) ∈ argmin

λ∈∆M

∥∇FS(x)λ∥2 . (7)

Defining dλ(x) = −∇FS(x)λ given x ∈ Rd and λ ∈ ∆M , we measure the distance to d(x) via
(Fernando et al., 2023)

CA direction error Eca(x, λ) := ∥dλ(x)− d(x)∥2 . (8)

With the above definitions of measures that quantify the performance of algorithms in different
aspects, we then introduce a stochastic gradient algorithm for MOL that is analyzed in this work.

3 A STOCHASTIC ALGORITHM FOR BLACK-BOX MOL

In this section, we first introduce our main algorithm, Stochastic Zeroth-order Multiple Objective
Descent (SZMOD).

At each iteration t, αt, γt are step sizes, and Π∆M (·) denotes Euclidean projection to the simplex
∆M . Denoting zt,s as an independent sample from S with s ∈ [3], and ∇̂Fzt,s (xt) as the gradient
estimate of ∇Fzt,s (xt).
Remark 1. In the iteration process of λt, gradient direction conflicts prevent us from achieving
convergence. To ensure the algorithm converges, SZMOD requires that ∇̂fz,1(x) and ∇̂fz,2(x) use
the same stochastic direction. By this method, we have

Ezt,1,zt,2

[
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)λt

]
= ∇FS (xt)

⊤ ∇FS (xt)λt +O(v),

which means that we can stabilize the updates and control the error through v.

4
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Algorithm 1 Stochastic Zeroth-order Multiple Objective Descent (SZMOD)
Input: Training data S, initial model x0, weighting co- efficient λ0, and their learning rates

{αt}Tt=0 , {γt}
T
t=0.

Output: xT

1: for t = 0, . . . , T − 1 do
2: for m = 1, . . . ,M do
3: Compute zeroth-order gradients ∇̂fm,zt,s (xt) using same u, s ∈ [2]

4: Compute zeroth-order gradients ∇̂fm,zt,3 (xt) with coordinate
5: end for
6: Compute dynamic weight λt+1 following
7: Compute λt+1 = Π∆M

(
λt − γt∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)λt

)
8: Compute xt+1 = xt − αt∇̂Fzt,3 (xt)λt+1

9: end for

In the iteration process of xt, the zeroth-order method will also lead to excessive error risk, which
is caused by the error of λt+1 and ∇̂Fz,3. The error of λt+1 can be control by remark 1. Here, we
choose to use the coordinate zeroth-order estimate to minimize the error of ∇̂Fz,3.

4 OPTIMIZATION OF SZMOD

In this section, we bound the multi-objective PS optimization error minλ∈∆M ∥∇FS(x)λ∥ (Fernando
et al., 2023; Fliege et al., 2019; Désidéri, 2012). As discussed in Section 2.2, this measure being zero
implies the model x achieves a Pareto stationarity for the empirical problem.

Below, we list the standard assumptions used to derive the optimization error, which has been widely
used for theoretical analysis for (Chen et al., 2024; Lei, 2023; Fliege et al., 2019).
Assumption 1 (Lipschitz continuity of Fz(x) ). For all m ∈ [M ], fz,m(x) are ℓf -Lipschitz continu-
ous for all z. Then Fz(x) are ℓF -Lipschitz continuous in Frobenius norm for all z with ℓF =

√
Mℓf .

Assumption 2 (Lipschitz continuity of ∇Fz(x)). For all m ∈ [M ],∇fz,m(x) is ℓf,1-Lipschitz
continuous for all z. And ∇Fz(x) is ℓF,1-Lipschitz continuous in Frobenius norm for all z.
Assumption 3. For all m ∈ [M ], z ∈ Z, fz,m(x) is µ-strongly convex w.r.t. x with µ > 0.

Note that in the strongly convex case, the gradient norm ∥∇Fz(x)∥F can be unbounded in Rd.
Therefore, one cannot assume Lipschitz continuity of fz,m(x) w.r.t. x ∈ Rd. We address this
challenge by showing that {xt} generated by the SZMOD algorithm is bounded as stated in Lemma
1. Notably, combined with Assumption 1, we can derive that the gradient norm ∥∇Fz (xt)∥F is also
bounded.
Lemma 1 (Boundedness of xt for strongly convex and smooth objectives). Suppose Assumptions 2,
3 hold. For {xt} , t ∈ [T ] generated by SZMOD algorithm or other dynamic weighting algorithm
with weight λ ∈ ∆M , step size αt = α, and 0 ≤ α ≤ ℓ−1

f,1, there exists a finite positive constant cx
such that ∥xt∥ ≤ cx. And there exists finite positive constants ℓf , ℓF =

√
Mℓf , such that for all

λ ∈ ∆M , we have ∥∇F (xt)λ∥ ≤ ℓf , ∥∇F (xt)∥F ≤ ℓF .

4.1 DISTANCE TO CA DIRECTION

Theorem 1 (Distance to CA direction). Suppose either: 1) Assumptions 1, 3 hold; or 2) Assumptions
1, 2 hold, with ℓf and ℓF defined in Lemma 1. Consider {xt} , {λt} generated by the SZMOD
algorithm. For all λ ∈ ∆M , it holds that:

1

T

T−1∑
t=0

EA

[
∥dλt

(xt)− d (xt)∥2
]
≤ 4

γT
+ 6

√
Mℓf,1ℓ2f

α

γ
+ γMℓ4f + e (9)

Here e =
l2f,1v

2d

4 EA∥λt − λ∥1 +
lf,1v
2 EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1) caused by

zeroth-order error. We should mention that e can be seen as O(v). Analyzing convergence to

5
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the CA direction using the measure introduced in Section 2.4. By, e.g., choosing α = Θ
(
T− 3

4

)
,

γ = Θ
(
T− 1

4

)
and v = γ/10, the RHS of equation 9 converges in a rate of O

(
T− 1

4

)
.

4.2 PS OPTIMIZATION ERROR

Theorem 2. (PS optimization error of SZMOD). Suppose either 1) Assumptions 1, 3 hold or
2) Assumptions 1, 2 hold, with ℓf defined in Lemma 1. Define cF such that EA [FS (x0)λ0]−
minx∈Rd EA [FS(x)λ0] ≤ cF . Considering {xt} generated by SZMOD (Algorithm 1), with αt =
α ≤ 1/ (2ℓf,1) , γt = γ, then under either condition 1) or 2), it holds that

1

T

T−1∑
t=0

EA

[
min

λ∈∆M
∥∇FS (xt)λ∥

]
≤
√

cF
αT

+

√
3

2
γMℓ4f +

√
1

2
αℓf,1ℓ2f,d + e. (10)

The choice of step sizes α = Θ(T− 3
4 ), γ = Θ(T− 1

4 ), and smoothing constant v = γ/10 to ensure
convergence to CA direction is suboptimal for the convergence to Pareto stationarity. Then the RHS
of equation 10 converges in a rate of O

(
T− 1

8

)
.

5 GENERALIZATION OF SZMOD

In the following, we provide uniform stability for the black-box MOL algorithm, whose expected PS
generalization error can be further bounded under several convexity scenarios.
Proposition 2 ((Chen et al., 2024), Proposition 2). With ∥ · ∥F denoting the Frobenious norm,
Rgen(A(S)) in (2.2) can be bounded by

EA,S [Rgen (A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F] . (11)

With Proposition 2, we introduce the concept of MOL uniform stability tailored for MOL problems.
Then, we analyze their bounds in the general nonconvex and strongly convex cases, respectively.
Definition 2 (MOL uniform stability). A randomized algorithm A : Zn 7→ Rd, is MOL-uniformly
stable with ϵF iffor all neighboring datasets S, S′ that differ in at most one sample, we have

sup
z

EA

[
∥∇Fz(A(S))−∇Fz (A (S′))∥2F

]
≤ ϵ2F.

Next, we show the relation between the upper bound of PS generalization error in 4 and MOL uniform
stability in Proposition 3.
Proposition 3 ((Chen et al., 2024), proposition 3). Assume for any z, the function Fz(x) is differen-
tiable. If a randomized algorithm A : Zn 7→ Rd is MOL-uniformly stable with ϵF, then

EA,S [∥∇F (A(S))−∇FS(A(S))∥F] ≤ 4ϵF +
√

n−1ES [Vz∼D (∇Fz(A(S)))]. (12)

where Vz∼D (∇Fz(A(S))) = Ez∼D

[
∥∇Fz(A(S))− Ez∼D [∇Fz(A(S))]∥2F

]
is the variacne.

Proposition 3 establishes a connection between the upper bound of the PS generalization error and
the MOL uniform stability.

Theorem 3 (PS generalization error of SZMOD in nonconvex case). If supz EA

[
∥∇Fz(A(S))∥2F

]
≤

G2 for any S, then the MOL uniform stability, i.e., ϵ2F in Definition 2 is bounded by ϵ2F ≤ 4G2T/n.

And the PS generalization error EA,S [Rgen (A(S))] = O
(
T

1
2n− 1

2

)
.

Remark 2. The proof process of non-convex generalization does not involve parameter updates.
Therefore, zeroth-order gradient approximation does not affect the generalization results. At this
point, the generalization results of the first-order and zeroth-order methods are naturally the same.
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With Lemma 1 and Lemma 6, the stability bound and PS generalization is provided below.
Theorem 4 (PS generalization error of in strongly convex case). Suppose Assumptions 2 and
3 hold. Let A be the SZMOD algorithm (Algorithm 1). For the MOL uniform stability ϵF of
algorithm A in Definition 2, if the step sizes satisfy 0 < αt ≤ α ≤ 1/ (2ℓf,1), 0 < γt ≤ γ ≤

min

{
µ2

484ℓ2f,dℓg,1
, 1

8(3ℓ2f,d+2ℓg,1)

}
/T , and smooth constant v ≤ min

{
1
nd ,

1

nd(2ℓg,1+ℓ2g,1)

}
then it

holds that

ϵ2F ≤ 48

µn
ℓ2f,dℓ

2
F,1

(
α+

12 + 4Mℓ2f,d
µn

+
10Mℓ4fγ

µ

)
+

4

µn
ℓ2F,1

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)
.

(13)

and EA,S [Rgen(A(S))] = O
(
n− 1

2

)
.

Remark 3. Theorem 3, 4 implies setting proper step sizes for different convexity helps to improve the
generalization. Under strong convexity conditions, the proof process involving parameter updates
will inevitably introduce the cumulative error brought by zeroth-order estimation. We must constrain
the smoothness parameter v to achieve the same generalization convergence rate as the first-order
method.

6 CONNECTION BETWEEN OPTIMIZATION, CONFLICT AVOIDANCE AND
GENERALIZATION

In this section, we combine the proof process and theoretical results on optimization error, generaliza-
tion bounds, and the distance to the CA direction to discuss the impact of introducing zeroth-order
gradient approximations on multi-objective algorithms. Summarizing the findings from Sections 4
and 5, we derive the PS population risk. With At(S) = xt denoting the output of algorithm A at the
t-th iteration, we can decompose the PS population risk Rpop (At(S)) as (cf. equation 4,equation 11)

EA,S [Rpop (At(S))] ≤ EA,S

[
min

λ∈∆M
∥∇FS (At(S))λ∥

]
+EA,S [∥∇F (At(S))−∇FS (At(S))∥F]

Theorem 5 (The general nonconvex case). Suppose Assumptions 1, 2 hold. By the optimization error
in Theorem 2 and the generalization error bound in Theorem 3, the PS population risk of the output
of SZMOD can be bounded by

1

T

T−1∑
t=0

EA,S [Rpop (At(S))] = O
(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + T

1
2n− 1

2

)
+O (v) .

Remark 4. By selecting step sizes of α = Θ
(
T− 1

2

)
and γ = Θ

(
T− 1

2

)
, with the number of steps

T = Θ
(
n

2
3

)
, we can choose a smoothing parameter of v = Θ

(
n− 1

6

)
, which effectively limits the

impact of the zeroth-order approximation on optimization convergence. Under these conditions, the
expected PS population risk is O

(
n− 1

6

)
.

Theorem 6 (The strongly convex case). Suppose Assumptions 2, 3 hold. By the optimization error
and the generalization error given in Theorems 2 and 4, SZMOD’s PS population risk can be bounded
by

1

T

T−1∑
t=0

EA,S [Rpop (At(S))] = O
(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + n− 1

2

)
+O (v) .

Remark 5. Choosing step sizes α = Θ
(
T− 1

2

)
, γ = o

(
T−1

)
. Under strongly convex and smooth

conditions, generalization analysis requires smoothing parameter size of v = Θ
(
(nd)−1

)
. And
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number of steps T = Θ
(
n2
)
. We have the expected PS population risk in gradients is O

(
n− 1

2

)
,

aligning with the upper bound for the PS population risk in general nonconvex first-order methods as
shown in Chen et al. (2024).

Zeroth-order method demonstrates the connection between optimization, conflict avoidance,
and generalization.

The core of the SZMOD algorithm lies in its dynamic weighting mechanism, which uses approximate
gradient information to update λ. A high-quality λ is essential for balancing conflicts among
multiple objectives. The distance to the CA direction is a critical metric for assessing the quality
of these updates and plays a pivotal role in ensuring algorithmic convergence. In SZMOD, the
deviation from the CA direction arises from the data and limited iterations and the cumulative error
e introduced by the zeroth-order method. This CA direction error transfers the cumulative error e
into an optimization error. Theoretical results indicate that in corresponding first-order algorithms,
the relationship between CA direction error and optimization error is not as inherently inheritable
and may exhibit a degree of antagonism (Chen et al., 2024). Thus, zeroth-order optimization opens
a window into understanding the interaction between CA direction and optimization. Due to the
propagation of cumulative error, optimization error imposes constraints on the smooth parameter
v to ensure convergence. Furthermore, under strongly convex and smooth conditions, achieving
generalization depends on controlling the size of v. Therefore, determining the appropriate value of v
requires balancing the demands of both generalization and optimization.

7 EMPIRICAL VALIDATION

In this section, we systematically evaluate the performance of our proposed SZMOD algorithm on toy
examples and CIFAR-10 datasets. The experiments are designed to mimic a variety of multi-objective
landscapes with adjustable complexity levels. We employ synthetic datasets and realistic image
data that encapsulate the essential characteristics of multi-objective problems for evaluating the
optimization accuracy, generalization capability, conflict avoidance, and convergence performance of
our proposal SZMOD algorithm.

7.1 SYNTHETIC EXPERIMENT

In the following content, we explore the subtleties of the SZMOD algorithm’s efficacy across a
spectrum of hyperparameters, particularly emphasizing the trade-offs between optimization, general-
ization capabilities, and the mitigation of conflicting objectives. The synthetic experiments have been
meticulously crafted to emulate a multi-objective optimization context, which successfully evaluates
the influence exerted by diverse hyperparameters.

Strongly Convex Scenario: Inspired by (Chen et al., 2024), the following formulation is exploited
to generate the MOL examples, whose m-th objective function is

fz,m(x) =
1

2
b1,mx⊤Ax− b2,mz⊤x,

where b1,m > 0 for all m ∈ [M ], and b2,m is another scalar. We set M = 3, b1 = [b1,1; b1,2; b1,3] =
[1; 2; 1], and b2 = [b2,1; b2,2; b2,3] = [1; 3; 2]. Each experimental setting has been repeated ten times,
where the average results with standard deviation information are recorded in Figure 7.1. The detailed
experimental settings for nonconvex cases are left in Appendix A.

The number of iterations, T , plays a pivotal role in the convergence properties of the SZMOD
algorithm. As depicted in Figure 2a, we maintain α = 0.05 and γ = 0.001 while varying T . The
results indicate that an increase in T brings a decrease in both the optimization error and the distance
to the conflict-avoidant (CA) direction, aligning with our theoretical predictions in Theorem 1, 2. This
observation underscores the importance of sufficient training duration to achieve optimal solutions in
multi-objective landscapes.

The step size for model parameters, α, is another critical hyperparameter that influences the algo-
rithm’s ability to navigate the multi-objective space. In Figure 2b, we fix T = 500 and γ = 0.001
while adjusting α. The findings reveal an initial decrease in the optimization error as α increases,
while further enlarging α does not yield significant improvements. This non-linear relationship

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
T

0

1

2

3

4

5

6

Er
ro

rs

Rpop

Ropt

ca

Rgen

(a) Number of iterations T.

1 × e 3 1 × e 2 1 × e 1

0

2

4

6

8

10

Er
ro

rs

Rpop

Ropt

ca

Rgen

(b) Different step size

1 × e 3 1 × e 2 1 × e 1
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

rs

Rpop

Ropt

ca

Rgen

(c) Different step size

Figure 2: Optimization, generalization, and CA direction errors of SZMOD in the strongly convex
case under different T, α, γ. The default parameters are T = 500, α = 0.05, γ = 0.001, v = 0.0001.
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Figure 3: Optimization, generalization, and CA direction errors of SZMOD in the nonconvex case
for MNIST image classification under different T, α, γ. The default parameters are T = 500, α =
0.05, γ = 0.001, v = 0.0001.

between α and the optimization error highlights the need to carefully tune this hyperparameter to
balance rapid convergence and potential overshooting of optimal solutions.

The weight step size, γ, is a unique aspect of SZMOD, controlling the update pace of the weighting
parameters. In Figure 2c, with T = 500 and α = 0.05, one can observe that the increasing γ leads to
a decrease in the distance to the CA direction, suggesting that a more aggressive update of weights
can be beneficial for navigating conflicting objectives. However, too large γ might lead to instability
in convergence, indicating a delicate balance is required to harness the full potential of dynamic
weighting.

The synthetic experiments provide valuable insights into the role of hyperparameters in shaping the
trade-offs between optimization, generalization, and conflict avoidance in multi-objective learning.
By systematically varying T , α, and γ, we have demonstrated the nuanced interplay between these
parameters and their impact on the algorithm’s performance. These findings serve as a foundation for
developing more sophisticated hyperparameter tuning strategies and provide empirical evidence to
support theoretical analyses presented in prior sections. It is worth noting that, unlike the first-order
MODO algorithm, the trends of Ropt(γ) and are not always opposite. This is due to the error caused
by εca(γ), which is related to γ. When the trends are aligned, the graph of Ropt(γ) always shows
similar changes after changes occur in the graph of εca(γ). This is precisely due to error propagation,
which nicely validates our theory.

7.2 ATTACK EMPERIMENT ON CIFAR-10

Adversarial attacks trick machine learning models by adding carefully designed subtle perturbations
to inputs, leading to mispredictions. Black-box adversarial attacks occur when attackers can’t access a
model’s internals and must deduce its behavior from inputs and outputs. The Black-box attack method
is closer to real-world attack scenarios. Therefore, we consider a multi-objection adversarial attack.

9
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Table 1: Results for muti-objection black-box adverbial attacks
model Pixel ratio ASR L0_avg L2_avg AST_avg SSIM_avg
CNN 2% 0.99 0.019 357.87 13.98 0.9
CNN 5% 0.98 0.049 572.78 8.47 0.78
CNN 10% 0.98 0.097 746.87 7.18 0.65

VGG16 2% 0.99 0.02 25.92 2.46 0.92
VGG16 5% 0.98 0.049 40.23 3.52 0.82
VGG16 10% 1 0.097 477.15 2.3 0.64
Alexnet 2% 0.99 0.019 250.94 7.09 0.85
Alexnet 5% 1 0.049 394.19 7.75 0.71
Alexnet 10% 1 0.097 342.58 4.8 0.62

Densenet 2% 0.91 0.019 22.71 10.7 0.88
Densenet 5% 0.92 0.049 18.26 13.98 0.83
Densenet 10% 0.86 0.097 12.22 13.18 0.87
Res-net18 2% 0.99 0.019 6.81 11.69 0.95
Res-net18 5% 0.98 0.049 3.85 11.04 0.97
Res-net28 10% 0.98 0.097 4.96 18.86 0.95

Define the loss function L(x + δ). We aim to generate a δ that solves the following optimization
problem:

min
δ⃗

F (x+ δ⃗) s.t. ∥δ⃗∥0 ≤ ϵ, 0 ≤ x+ δ⃗ ≤ 1,

where F (x+ δ⃗) =
(
L(x+ δ⃗), ∥δ⃗∥2, ∥δ⃗∥0

)⊤
is the objective vector. δ⃗ is the universal perturbation

that we seek to optimize e use the pre-trained model on the CIFAR-10 dataset, we attacked five
classifiers: CNN, VGG16, AlexNet, DenseNet, and ResNet. Two types of attacks were implemented:
targeted and non-targeted attacks. In the targeted attack, the cross-entropy loss function was used to
misclassify the model into a specific target class, while the non-targeted attack employed margin loss
to force the model’s output to differ from the actual class. Additionally, the algorithm restricted per-
turbations to the discrete value set {−1, 1, 0}, which helped reduce the l2 norm and ensured sparsity,
enhancing both the effectiveness and stealth of the attack. Metrics to evaluate the performance of
attack methods include: Average Attack Success Rate (ASR_avg), which measures the average
success rate of misclassification due to adversarial attacks; Attack Success Rate (ASR), indicating the
proportion of successful misclassifications; l0 and l2 norms, where l0 counts the modified pixels and
l2 assesses perturbation magnitude; and Structural Similarity Index (SSIM), evaluating the similarity
between the adversarial example and the original image, with values closer to 1 indicating less
perceptible modifications.

We set M = 2, α = 0.1, γ = 0.001, v = 0.0001, the maximum number of attack attempts 1000,
and maximum modification per pixel 0.5. The corresponding results in Table 1 imply that the higher
accuracy of the model could bring better effectiveness of the attack, which aligns with the principles
of the zeroth-order multi-objective algorithm (the more accurate the loss, the more accurate the
gradient based on the loss). Moreover, our attack success rate is generally above 90 percent, further
demonstrating the advantages of our algorithm.

8 CONCLUSION

In this paper, we introduce the SZMOD algorithm, designed explicitly for black-box multi-objective
learning. Theoretically, we establish the statistical guarantees for optimization error, generalization
bound, and distance to conflict avoidance directions comparable to the relevant first-order method.
Furthermore, we discover that zeroth-order methods could bridge the above three evaluation criteria
of SZMOD. Experimentally, we validate SZMOD’s performance in terms of optimization accuracy,
generalization capability, and conflict avoidance. Additionally, we demonstrate the effectiveness of
our algorithm in practical black-box attack scenarios, as evidenced by high attack success rates and
low modification rates.
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Appendix

A ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

Implementation. Experiments are done on a machine with GPU NVIDIA RTX 4060. We use Python
3.8, CUDA 11.8, Pytorch 1.8.0 for all experiments. Unless otherwise stated, all experiments are
repeated with five random seeds. Their average performance and standard deviations are reported
throughout the whole manuscript.
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Figure 4: Convergence of static weighting, MoDo and SZMOD to the empirical (gray, upper)
and population (green, lower) Pareto fronts. The horizontal and vertical axes in the figures in the
first/second row are the values of the two empirical / population objectives. Three colormaps are used
for the trajectories from three initializations, respectively, where the same colormaps represent the
trajectories of the same initializations, darker colors in one colormap indicate earlier iterations, and
lighter colors indicate later iterations.

A.1 EXPERIMENTS ON NONCONVEX OBJECTIVES

Implementation details. The toy example is modified from (Liu et al., 2021) to consider stochastic
data. Denote the model parameter as x = [x1, x2]

⊤ ∈ R2, stochastic data as z = [z1, z2]
⊤ ∈ R2

sampled from the standard multi-variate Gaussian distribution. The individual empirical objectives
are defined as:

fz,1(x) = c1(x)h1(x) + c2(x)gz,1(x) and fz,2(x) = c1(x)h2(x) + c2(x)gz,2(x) where
h1(x) = log(max(|0.5(−x1 − 7)− tanh(−x2)|, 0.000005)) + 6,

h2(x) = log(max(|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005)) + 6

gz,1(x) = ((−x1 + 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20− 2 ∗ z1x1 − 5.5 ∗ z2x2,

gz,2(x) = ((−x1 − 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20 + 2 ∗ z1x1 − 5.5 ∗ z2x2,

c1(x) = max(tanh(0.5 ∗ x2), 0) and c2(x) = max(tanh(−0.5 ∗ x2), 0).

Since z is zero-mean, the individual population objectives are correspondingly:
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f1(x) = c1(x)h1(x) + c2(x)g1(x)andf2(x) = c1(x)h2(x) + c2(x)g2(x),where

g1(x) = ((−x1 + 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20,

g2(x) = ((−x1 − 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20.

The training dataset size is n = |S| = 20. For all methods, i.e., static weighting, MoDo, SZMOD,
the number of iterations is T = 10000. The initialization of λ is λ0 = [0.5, 0.5]⊤.

In Figure 4 and Figure 1, the trajectories of various methods from different initializations to the
empirical and population Pareto fronts (PF) are shown. In Figure 4a (first row), the static weighting
method with uniform weights shows one trajectory successfully converging to the center of the
empirical PF. In contrast, the other two trajectories oscillate around suboptimal parameters, forming
clusters of scattered points, with one failing to reach the empirical PF altogether. Only one empirically
suboptimal solution (shown by the red-to-yellow trajectory) achieves low population risk in the second
row. In Figures 4b and 4c, MODO and SZMOD demonstrate identical convergence rates in the
first row, with both methods converging to the center of the empirical PF, representing the optimal
solution for the uniform average of the two objectives. In the second row, all three solutions for both
MODO and SZMOD achieve relatively low population risk, highlighting their strong generalization
ability. Comparing Figures 4b and 4c, we observe that MODO and SZMOD exhibit nearly identical
convergence trajectories under the same parameter settings and initializations, confirming that
SZMOD maintains strong performance even without accurate gradients.
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Figure 5: Trajectories of SZMOD under different γ on the contour of the average of objectives.
The black · marks initializations of the trajectories, colored from red (start) to yellow (end). The
background solid/dotted contours display the landscape of the average empirical/population objectives.
The gray/green bar marks empirical/population Pareto front, and the black ⋆/ green ⋆ marks solution
to the average objectives.

To demonstrate how the choice of γ impacts the performance of SZMOD, we further conduct
experiments with different SZMOD. We should mention that when γ ≥ 10−2, SZMOD did not
converge to the Pareto front. This is because the error term of SZMOD is related to the value of γ.
If the γ is large enough, it will cause the error term to be too large, resulting in the algorithm not
converging.

B PRELIMINARIES FOR PROOF

B.1 ZEROTH-ORDER GRADIENT ESTIMZATION

When only function evaluations are available, we employ the deterministic coordinate-wise direction
to derive the decent direction. Specifically, for the smoothing constant v and vector ui(ui represents
the unit vector where the i-th element is 1 and the remaining elements are 0), the directional derivative
of fz,m in the direction u for the smooth function fi, i ∈ [n], can be estimated as:

∇̂fz,m(x, u, v) =

d∑
j=1

fz,m(x+ vuj)− fz,m(x)

v
uj .

As the approximation of the full directional gradient. Since the smoothing constant v is fixed, for
simplicity, we leave out v in these gradient estimations and set

∇̂fz,m(x, u) := ∇̂fz,m(x, u, v)

14
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(c) γ = 10−2
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(d) γ = 10−1

Figure 6: Convergence of SZMOD to the empirical (gray, upper) and population (green, lower)
Pareto fronts under different γ. The horizontal and vertical axes in the first/second-row figures are the
values of the two empirical / population objectives. Three colormaps are used for the trajectories from
three initializations, respectively, where the same colormaps represent the trajectories of the same
initializations; darker colors in one colormap indicate earlier iterations, and lighter colors indicate
later iterations.

Lemma 2. For the lf,1-smooth function fz,m and any x ∈ Rd, i ∈ [n],define sz(x, uj) ∈ [0, 1] and
sz = [sz(x, u1), sz(x, u2), . . . , sz(x, ud)], s = [s1; s2; . . . ; sm] the estimator in satisfies:

∇̂F (x)λ = ∇F (x)λ+
lf,1v

2
s(x, u)λ ≤ ∇F (x)λ+

lf,1v

2
1d (14)

Proof:

∇̂fz,m(x, u) =

d∑
j=1

fz,m(x+ vuj)− fz,m(x)

v
uj

(a)
=

d∑
j=1

(uju
⊤
j ∇fz,m(x) +

v

2
uj∇2fz,m(x)u⊤

j uj)

(b)
= ∇fz,m(x) +

d∑
j=1

lf,1v

2
sz,j(x, u)∥uj∥2uj

= ∇fz,m(x) +
lf,1v

2
sz(x, u)

Here (a) is based on Taylor expansion, and (b) is based on 0 ≤ uj∇2fz,m(x)u⊤
j ≤ l2f,1.Then, by the

definition of ∇̂F (x), we have:

∇̂F (x)λ = [∇̂fz,1, ∇̂fz,2, . . . , ∇̂fz,m]λ

= ∇F (x)λ+
lf,1v

2
s(x, u)λ

≤ ∇F (x)λ+
lf,1v

2
1d

The inequality is based on the definition of λ. Here, we complete the proof.

In Eq.(4), si(x, u) measures the curvature scaled by L along the specified direction u at the given
point x. By taking the maximum value of si(x, u) (i.e., si(x, u) := 1 ), we derive the upper bound
of the distance between estimator ∇̂fi(x, u) and the full gradient ∇f(x) in Eq.(6). This bound

15
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comprises three components: the norm of the true gradient ∇f(x); the trivial perturbation; and
the last error ∥∇fi(x)−∇f(x)∥2 induced by the random sampling of i. Similarly, the following
corollary establishes the nearly unbiased and bounded variance properties of ∇̂f(x, u).

B.2 LEMMAS FOR PROOF

B.3 PROOF OF LEMMA 1

Lemma 3. Suppose Assumptions 2, 3 hold. WLOG, assume infx∈Rd fm,z(x) < ∞ for all
m ∈ [M ] and z ∈ Z . For any given λ ∈ ∆M , and stochastic sample z ∈ Z , define

x∗
λ,z = argminx∈Rd Fz(x)λ, then infx∈Rd Fz(x)λ < ∞ and

∥∥∥x∗
λ,z

∥∥∥ < ∞, i.e., there exist finite
positive constants cF∗ and cx∗ such that

inf
x∈Rd

Fz(x)λ ≤ cF∗ and
∥∥x∗

λ,z

∥∥ ≤ cx∗

Proofed by (Chen et al., 2024).

Lemma 4. Suppose Assumptions 2, 3 hold, and define κ = 3ℓf,1/µ ≥ 3. For any given λ ∈ ∆M ,
and a stochastic sample z ∈ Z , define x∗

λ,z = argminx Fz(x)λ. Then by Lemma 3 , there exists

a positive finite constant cx,1 ≥ cx∗ such that
∥∥∥x∗

λ,z

∥∥∥ ≤ cx∗ ≤ cx,1. Recall the multi-objective
gradient update is

Gλ,z(x) = x− α∇̂Fz(x)λ

with step size 0 ≤ α ≤ ℓ−1
f,1. Defining v′ = dv/cx,1 cx,2 = (1+

lf,1v
′

2

√
(2 + v′)κ)cx,1, we have that

if ∥x∥ ≤ cx,2, then ∥Gλ,z(x)∥ ≤ cx,2

Proof. We divide the proof into two cases:
1) when ∥x∥ < cx,1. That is ∥x∥ < cx,1 ≤ cx,2, then we have

∥Gλ,z(x)∥ ≤ ∥Gλ,z(x)− x∗∥+ ∥x∗∥
(a)
=
∥∥∥x−∇Fz (x)λ− (x∗ −∇Fz (x

∗)λ) +∇Fz (x)λ− ∇̂Fz (x)λ
∥∥∥+ ∥x∗∥

≤ ∥x−∇Fz (x)λ− (x∗ −∇Fz (x
∗)λ)∥+

∥∥∥∇Fz (x)λ− ∇̂Fz (x)λ
∥∥∥+ ∥x∗∥

(b)

≤ ∥x− x∗∥+ ∥x∗∥+ ℓf,1vd

2

≤ ∥x∥+ 2 ∥x∗∥+ ℓf,1vd

2
≤ (3 +

lf,1v
′

2
)cx,1 ≤ (1 +

√
6)cx,1 ≤ (1 +

lf,1v
′

2

√
(2 + v′)κ)cx,1 ≤ cx,2

where (a) follows from ∇Fz (x
∗)λ = 0, and (b) follows from the non-expansiveness of the gradient

update for strongly convex and smooth function.
2) cx,1 ≤ ∥x∥ ≤ cx,2, we first consider α = ℓ−1

f,1. Let µ′ = µ/3. Note that since Fz(x)λ is µ-strongly
convex, it is also µ′-strongly convex. By strong convexity and smoothness of Fz(x)λ, the gradients
are co-coercive [36, Theorem 2.1.12], i.e., for any x we have

(∇Fz(x)λ)
⊤
(x− x∗) ≥

ℓ−1
f,1 ∥∇Fz(x)λ∥2

1 + κ−1
+

µ′ ∥x− x∗∥2

1 + κ−1
.

For the ZO version we have:(
∇̂Fz(x)λ

)⊤
(x− x∗) = (∇Fz(x)λ)

⊤
(x− x∗) +

(
lf,1v

2
s(x, v)λ

)⊤

(x− x∗)

≥
ℓ−1
f,1 ∥∇Fz(x)λ∥2

1 + κ−1
+

µ′ ∥x− x∗∥2

1 + κ−1
+

(
lf,1v

2
s(x, v)λ

)⊤

(x− x∗)

16
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Rearranging and applying Cauchy-Schwartz inequality, we have(
∇̂Fz(x)λ

)⊤
x ≥ (∇Fz(x)λ)

⊤
x∗ +

lf,1v

2
s(x, v)⊤λx+

ℓ−1
f,1 ∥∇Fz(x)λ∥2

1 + κ−1
+

µ′ ∥x− x∗∥2

1 + κ−1
.

≥ −cx,1 ∥∇Fz(x)λ∥ −
cx,1lf,1dv

2
+

ℓ−1
f,1 ∥∇Fz(x)λ∥2

1 + κ−1
+

µ′ ∥x− x∗∥2

1 + κ−1
.

(15)

By the definition of Gλ,z(x),

∥Gλ,z(x)∥2 =

∥∥∥∥x− 1

ℓf,1
∇̂Fz(x)λ

∥∥∥∥2 = ∥x∥2 + 1

ℓ2f,1

∥∥∥∇̂Fz(x)λ
∥∥∥2 − 2

ℓf,1

(
∇̂Fz(x)λ

)⊤
x (16)

From (15) and (16), we have:

∥Gλ,z(x)∥2 ≤ ∥x∥2 + 1

ℓ2f,1

∥∥∥∇̂Fz(x)λ
∥∥∥2 + 2

ℓf,1
(cx,1 ∥∇Fz(x)λ∥

+
cx,1lf,1dv

2
−

ℓ−1
f,1 ∥∇Fz(x)λ∥2

1 + κ−1
− µ′ ∥x− x∗∥2

1 + κ−1
)

≤ ∥x∥2 + 2

ℓf,1
(
cx,1lf,1dv

2
− µ′ ∥x− x∗∥2

1 + κ−1
)

+
2

ℓf,1
sup
γ∈R

(cx,1 · γ − 1

2ℓf,1

(
1− κ−1

1 + κ−1

)
γ2︸ ︷︷ ︸

I1

)

(17)

Since κ ≥ 3, thus 1−κ−1

1+κ−1 > 0, then I1 is a quadratic function w.r.t. , and is strictly concave, thus can
be bounded above by

sup
∈R

cx,1 · −
1

2ℓf,1

(
1− κ−1

1 + κ−1

)2

≤
c2x,1ℓf,1

2

1 + κ−1

1− κ−1

Substituting this back into (17) gives that

∥Gλ,z(x)∥2 ≤ ∥x∥2 + 2

ℓf,1
(
cx,1lf,1dv

2
− µ′ ∥x− x∗∥2

1 + κ−1
+

c2x,1ℓf,1

2

1 + κ−1

1− κ−1
)

= ∥x∥2 + c2x,1
1 + κ−1

1− κ−1
+ cx,1dv +

lf,1v
2

4
− 2

κ−1

1 + κ−1
∥x− x∗∥2

≤ ∥x∥2 + c2x,1
1 + κ−1

1− κ−1
− 2

κ−1

1 + κ−1
(∥x∥ − ∥x∗∥)2 + cx,1v

≤ ∥x∥2 + 2c2x,1 − κ−1 (∥x∥ − cx,1)
2︸ ︷︷ ︸

I2

+cx,1dv

Here 2
ℓf,1

≥ min{ lf,1v
2

2 , (∥x∥− cx,1)
2} where the last inequality follows from κ ≥ 3, thus 1+κ−1

1−κ−1 ≤
2,−2 κ−1

1+κ−1 ≤ −κ−1, and ∥x∗∥ ≤ cx,1 ≤ ∥x∥ by assumption. For cx,1 ≤ ∥x∥ ≤ cx,2, I2 is a
strictly convex quadratic function of ∥x∥, which achieves its maximum at ∥x∥ = cx,1 or ∥x∥ = cx,2.
Therefore,

∥Gλ,z(x)∥2 ≤ max
{
3c2x,1 + cx,1v, c

2
x,2 + 2c2x,1 − κ−1 (cx,2 − cx,1)

2
+ cx,1v

}
(c)
= max

{
3c2x,1 + cx,1v, c

2
x,2+

} (d)
< c2x,2

17
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where ( c ) follows from the definition that cx,2 = (1 +
lf,1v

′

2

√
(2 + v′)κ)cx,1; (d) follows from

κ ≥ 3, and thus (3 + v′)c2x,1 < (1 +
lf,1v

′

2

√
(2 + v′)κ)2c2x,1 = c2x,2 We have proved the case for

α = ℓ−1
f,1. The result for 0 ≤ α < ℓ−1

f,1 follows by observing that,

∥Gλ,z(x)∥ =
∥∥∥x− α∇̂Fz(x)λ

∥∥∥
=
∥∥∥(1− αℓf,1)x+ αℓf,1

(
x− ℓ−1

f,1∇̂Fz(x)λ
)∥∥∥

≤ (1− αℓf,1) ∥x∥+ αℓf,1

∥∥∥x− ℓ−1
f,1∇̂Fz(x)λ

∥∥∥ ≤ cx,2

The proof is complete.

Lemma 5. Suppose Assumptions 2, 3 hold. For all λ ∈ ∆M and z ∈ S, define x∗
λ,z =

argminx Fz(x)λ, then there exist finite positive constants cF∗ and cx∗ such that Fz

(
x∗
λ,z

)
λ ≤ cF∗

and
∥∥∥x∗

λ,z

∥∥∥ ≤ cx∗ . And for x ∈ Rd such that ∥x∥ is bounded, i.e., there exists a finite positive

constant cx such that ∥x∥ ≤ cx, then

∥∇Fz(x)λ∥ ≤ ℓf,1 (cx + cx∗) , and Fz(x)λ ≤ ℓf,1
2

(cx + cx∗)
2
+ cF∗

Proof. Under Assumptions 2, 3 by Lemma 3, there exist finite positive constants cF∗ and cx∗ such
that Fz

(
x∗
λ,z

)
λ ≤ c∗F and

∥∥∥x∗
λ,z

∥∥∥ ≤ cx∗ . By Assumption 1, the ℓf,1-Lipschitz continuity of the
gradient ∇Fz(x)λ, we have

∥∇Fz(x)λ∥ =
∥∥∇Fz(x)λ−∇Fz

(
x∗
λ,z

)
λ
∥∥

≤ ℓf,1
∥∥x− x∗

λ,z

∥∥ ≤ ℓf,1
(
∥x∥+

∥∥x∗
λ,z

∥∥) ≤ ℓf,1 (cx + cx∗)

where the first equality uses the fact that ∇Fz

(
x∗
λ,z

)
λ = 0. For the function value, by Assumption

2, the ℓf,1-Lipschitz smoothness of Fz(x)λ, we have

Fz(x)λ ≤ Fz

(
x∗
λ,z

)
λ+

〈
∇Fz

(
x∗
λ,z

)
λ, x− x∗

λ,z

〉
+

ℓf,1
2

∥∥x− x∗
λ,z

∥∥2
≤ Fz

(
x∗
λ,z

)
λ+

ℓf,1
2

∥∥x− x∗
λ,z

∥∥2
≤ cF∗ +

ℓf,1
2

(cx + cx∗)
2

from which the proof is complete.

Corollary 1. Suppose Assumptions 2, 3 hold and v < 1
T . Define κ = 3ℓf,1/µ and x∗

λ,z =

argminx Fz(x)λ with λ ∈ ∆M . Then there exists a finite positive constant cx∗ such that
∥∥∥x∗

λ,z

∥∥∥ ≤
cx∗ . Choose the initial iterate to be bounded, i.e., there exists a finite positive constant cx0

such that
∥x0∥ ≤ cx0

, then for {xt} generated by SZMOD algorithm with αt = α and 0 ≤ α ≤ ℓ−1
f,1, we have

∥xt∥ ≤ cx, with cx = max

{
(1 +

lf,1v
′

2

√
(2 + v′)κ)cx∗ +

lf,1v

4
, cx0

}
(18)

Proof. Under Assumptions 2, 3, by Lemma 3,
∥∥∥x∗

λ,z

∥∥∥ < ∞, i.e., there exists a finite positive

constant cx∗ such that
∥∥∥x∗

λ,z

∥∥∥ ≤ cx∗ . Let cx,1 = max
{
(1 +

lf,1v
′

2

√
(2 + v′)κ)−1cx0

, cx∗

}
, and

18
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cx,2 = (1 +
lf,1v

′

2

√
(2 + v′)κ)cx,1 = max

{
cx0

, (1 +
lf,1v

′

2

√
(2 + v′)κ)cx∗

}
in Lemma 4. We

then consider the following two cases: 1) If (1 + lf,1v
′

2

√
(2 + v′)κ)cx∗ ≤ cx0

, then
∥∥∥x∗

λ,z

∥∥∥ ≤ cx∗ ≤

(1 +
lf,1v

′

2

√
(2 + v′)κ)−1cx0

. Then it satisfies the condition in Lemma 4 that
∥∥∥x∗

λ,z

∥∥∥ ≤ cx,1 and

∥x0∥ ≤ cx,2. Applying Lemma 4 yields ∥x1∥ ≤ cx,2. 2) If (1 +
lf,1v

′

2

√
(2 + v′)κ)cx∗ > cx0

,

then ∥x0∥ ≤ cx0
< (1 +

lf,1v
′

2

√
(2 + v′)κ)cx∗ . Then it satisfies the condition in Lemma 4 that∥∥∥x∗

λ,z

∥∥∥ ≤ cx,1 and ∥x0∥ ≤ cx,2. Applying Lemma 4 yields ∥x1∥ ≤ cx,2. Therefore, equation 18
holds for t = 1. We then prove by induction that equation 18 also holds for t ∈ [T ]. Assume
equation 18 holds at 1 ≤ k ≤ T − 1, i.e.,1

∥xk∥ ≤ cx = cx,2

Then by Lemma 4, at k + 1,

∥xk+1∥ =
∥∥Gλk+1,zk,3

(xk)
∥∥ ≤ cx,2

Since ∥x1∥ ≤ cx,2, for t = 0, . . . , T − 1, we have

∥xt+1∥ =
∥∥Gλt+1,zt,3 (xt)

∥∥ ≤ cx,2

Therefore, by mathematical induction, ∥xt∥ ≤ cx,2 = cx, for all t ∈ [T ]. The proof is complete.
Proof of Lemma 1. By Corollary 1, for {xt} generated by SZMOD algorithm with αt = α and
0 ≤ α ≤ ℓ−1

f,1, we have

∥xt∥ ≤ cx, with cx = max

{
(2 +

lf,1v
′

2

√
(2 + v′)κ)cx∗ +

lf,1v

4
, cx0

}

According to Lemma 3, define ℓf = ℓf,1 (cx + cx∗), and ℓF =
√
Mℓf , then it holds for all λ ∈ ∆M

∥∇F (xt)λ∥ ≤ ℓf and ∥∇F (xt)∥ ≤ ∥∇F (xt)∥F ≤ ℓF

Lemma 6. Suppose Assumptions 2, 3 hold. For all λ ∈ ∆M and z ∈ S, according to Lemma 1, we
have ∥∇F (xt)λ∥ ≤ ℓf , and ∥∇F (xt)∥ ≤ ℓF , then

∥∥∥∇̂Fz(x)λ
∥∥∥ ≤ ℓf,d, and

∥∥∥∇̂Fz(x)
∥∥∥ ≤ ℓF,d

Where ℓf,d = ℓf +
lf,1vd

2 , and ℓF,d = ℓF +
lf,1v

√
Md

2 .

Proof of Lemma 6 By Lemma 2, for the lf,1-smooth function fz,m and any x ∈ Rd, i ∈ [n],define
sz(x, uj) ∈ [0, 1] and sz = [sz(x, u1), sz(x, u2), . . . , sz(x, ud)], s = [s1; s2; . . . ; sm]. By Lemma
1, ∥∇F (xt)λ∥ ≤ ℓf and ∥∇F (xt)∥ ≤ ℓF . Then the estimator satisfies:∥∥∥∇̂F (x)λ

∥∥∥ =

∥∥∥∥∇F (x)λ+
lf,1v

2
s(x, u)λ

∥∥∥∥
≤ ∥∇F (xt)λ∥+

∥∥∥∥ lf,1v2 s(x, u)λ

∥∥∥∥
≤ ℓf +

lf,1vd

2
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and

∥∥∥∇̂F (x)
∥∥∥ =

∥∥∥∥∇F (x) +
lf,1v

2
s(x, u)

∥∥∥∥
≤ ∥∇F (xt)∥+

∥∥∥∥ lf,1v2 s(x, u)

∥∥∥∥
≤

√
Mℓf +

lf,1v
√
Md

2
= ℓF +

lf,1v
√
Md

2

Defining ℓf,d = ℓf +
lf,1vd

2 , and ℓF,d = ℓF +
lf,1v

√
Md

2 , then it holds for all λ ∈ ∆M

∥∥∥∇̂F (xt)λ
∥∥∥ ≤ ℓf,d and

∥∥∥∇̂F (xt)
∥∥∥ ≤ ∥∇F (xt)∥F ≤ ℓF,d

C BOUNDING THE OPTIMIZATION ERROR

Lemma 7. Suppose Assumption 1 holds. Consider the sequence {xt} , {λ1} generated by SZMOD
in umbounded domain for x. Define

S1,T =
1

T

T−1∑
t=0

EA

∥∥∥∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)λt

∥∥∥2
S3,T =

1

T

T−1∑
t=0

EA

∥∥∥∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)λt

∥∥∥∥∥∥∇FS (xt)
⊤ ∇FS (xt)λ1

∥∥∥
S4,T =

1

T

T−1∑
t=0

EA

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2

Then it holds that

1

T

T−1∑
t=0

EA ∥∇FS (xt)λ
∗
t (xt)∥2 ≤ 1

2αT
EA [FS (x1)− FS (xT+1)]λ1+

1

2
γS1,T+γS3,T+

1

2
αℓf,1S4,T+e.

Proof. By the ℓf,1-Lipschitz smoothness of FS(x)λ for all λ ∈ ∆M , we have

FS (xt+1)λ− FS (xt)λ ≤ (∇FS (xt)λ, xt+1 − xt⟩+
ℓf,1
2

∥xt+1 − xt∥2

= −αt

〈
∇FS (xt)λ,∇Fzt,3 (xt)λt+1

〉
+

ℓf,1
2

α2
t

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2 .
Taking expectation over zℓ,3 on both sides of the above inequality gives

Exzt,3,u
[FS (xt+1)]λ−FS (xt)λ ≤ −αt

(
∇FS (xt)λ, (∇FS (xt) +

Lv

2 i
(x, u))λt+1

〉
+
ℓf,1
2

α2
tExzt,3,u

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2 .
By Lemma 8, we have

2γtEA

(
λt − λ,

(
∇FS (xt)

⊤ ∇FS (xt)
)
λt

)
≤ EA ∥λt − λ∥2 − EA ∥λt+1 − λ∥2 + γ2

t EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzi,2 (xt)

)
λt

∥∥∥2 + e.
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Rearranging the above inequality and letting γt = γ > 0 gives

−EA

〈
λ,∇FS (xt)

⊤ ∇FS (xt)λt

〉
≤− EA λt,

(
∇FS (xt)

⊤ ∇FS (xt)
)
λt

〉
+

1

2γ
EA

(
∥λt − λ∥2 − ∥λt+1 − λ∥2

)
+

1

2
γEA

∥∥∥(∇Fz1,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 + e

≤− EA ∥∇FS (xt)λt∥2 +
1

2γ
EA

(
∥λt − λ∥2 − ∥λt+1 − λ∥2

)
+

1

2
γEA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 + e

Plugging the above inequality into, and setting αt = α > 0, we have

EA [FS (xt+1)λ− FS (xt)λ] ≤− αEA

〈
∇FS (xt)λ,∇FS (xt)λt+1 +

Lv

2 i
(x, u)λt+1

〉
≤− αEA ∥∇FS (xt)λt∥2 +

α

2γ
EA

[
∥λt − λ∥2 − ∥λt+1 − λ∥2

]
+

L2v2i (x, u)

8
∥∇t + 1−∇∥+ αEA ⟨∇FS (xt)λ,∇FS (xt) (λt − λt+1)⟩

+
1

2
α2lf,1EA

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2 + ℓf,1
2

α2EA

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2
+

1

2
αEA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 + e

Taking telescope sum and rearranging yields, for all λ ∈ ∆M ,

1

T

T−1∑
t=0

EA ∥∇FS (xt)λt∥2

≤ 1

2γT

T−1∑
t=0

EA

[
∥λt − λ∥2 − ∥λt+1 − λ∥2

]
+

1

αT

T−1∑
t=0

EA [FS (xt)− FS (xt+1)]λ

+
1

2T

T−1∑
t=0

(
γEA

∥∥∥∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)λt

∥∥∥2 + αℓf,1EA

∥∥∇Fzt,3 (xt)λt+1

∥∥2 + e.

+2EA ⟨∇FS (xt)λ,∇FS (xt) (λt − λt+1)⟩)

≤ 1

2γT
EA

[
∥λ1 − λ∥2 − ∥λT+1 − λ∥2

]
+

1

αT
EA [FS (x1)− FS (xT+1)]λ+

1

2
γS1,T + γS3,T +

1

2
αℓf,1S4,T + e.

Setting λ = λ1 in the above inequality yields

1

T

T−1∑
t=0

EA ∥∇FS (xt)λt∥2 ≤ 1

αT
EA [FS (x1)− FS (xT+1)]λ1+

1

2
γS1,T+γS3,T+

1

2
αℓf,1S4,T+e

Finally, the results follow from the definition of λ∗
t (xt).

Proof of Theorem 1:Then we proceed to bound S1,T , S3,T , S4,T . Under either Assumptions 1,
2, or Assumptions 2, 3 with ℓf , ℓF defined in Lemma 1, we have that for all z ∈ S and λ ∈
∆M , ∥∇Fz (xt)λ∥ ≤ ℓf , and ∥∇Fz (xt)∥ ≤ ℓF . Then S1,T , S3,T , S4,T can be bounded below

S1,T =
1

T

T−1∑
t=0

EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 ≤ Mℓ4f

S3,T =
1

T

T−1∑
t=0

EA

∥∥∥∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)λt

∥∥∥∥∥∥∇FS (xt)
⊤ ∇FS (xt)λ1

∥∥∥ ≤ ℓ2F ℓ
2
f = Mℓ4f

S4,T =
1

T

T−1∑
t=0

EA

∥∥∥∇̂Fzt,3 (xt)λt+1

∥∥∥2 ≤ ℓ2f,d
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which proves that

1

T

T−1∑
t=0

EA ∥∇FS (xt)λ
∗
t (xt)∥2 ≤ 1

αT
cF +

3

2
γMℓ4f +

1

2
αℓf,1ℓ

2
f,d + e

We arrive at the results by 1
T

∑T−1
t=0 EA ∥∇FS (xt)λ

∗
t (xt)∥ ≤(

1
T

∑T−1
t=0 EA ∥∇FS (xt)λ

∗
t (xt)∥2

) 1
2

from the Jensen’s inequality and the convexity of the
square function, as well as the subadditivity of square root function.

C.1 CA DIRECTION

C.2 LEMMAS

Lemma 8. Consider {xt} , {λt} generated by the SZMOD algorithm. For all λ ∈ ∆M , it holds that

2γtEA

〈
λt − λ,

(
∇FS (xt)

⊤ ∇FS (xt)
)
λt

〉
≤ EA ∥λt − λ∥2 − EA ∥λt+1 − λ∥2 + γ2

t EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 ,
+

l2f,1v
2d

4
EA∥λt − λ∥1 +

lf,1v

2
EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1)

(19)

and γtEA

(
∥∇FS (xt)λt∥2 − ∥∇FS (xt)λ∥2

)
≤ EA ∥λt − λ∥2 − EA ∥λt+1 − λ∥2 + γ2

t EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2
+

l2f,1v
2d

4
EA∥λt − λ∥1 +

lf,1v

2
EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1)

(20)

Proof. By the update of λ, for all λ ∈ ∆M , we have

∥λt+1 − λ∥2

=
∥∥∥Π∆M

(
λt − γt

(
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)
)
λt

)
− λ

∥∥∥2
≤
∥∥∥λt − γt

(
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)
)
λt − λ

∥∥∥2
= ∥λt − λ∥2 − 2γt

〈
λt − λ,

(
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)
)
λt

〉
+ γ2

t

∥∥∥(∇̂Fzt,1 (xt)
⊤ ∇̂Fzt,2 (xt)

)
λt

∥∥∥2
(21)
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Now we focus on
〈
λt − λ,

(
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)
)
λt

〉
, we have:〈

λt − λ,
(
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)
)
λt

〉
=
〈
λt − λ,

(
∇Fzt,1 (xt)

⊤ ∇Fzt,2 (xt)
)
λt

〉
+

l2f,1v
2

4
(λt − λ)⊤szt,1(x, u)

⊤szt,2(x, u)λ

+
lf,1v

2
((λt − λ)⊤szt,1(x, u)

⊤∇fz,2λ+ (λt − λ)⊤∇f⊤
zt,1szt,2(x, u)λ)

≥
〈
λt − λ,

(
∇Fzt,1 (xt)

⊤ ∇Fzt,2 (xt)
)
λt

〉
−

l2f,1v
2d

4
∥λt − λ∥1

− lf,1v

2
(∥λt − λ∥11⊤

d ∇fz,2λ+ (λt − λ)⊤∇f⊤
zt,11d)

≥
〈
λt − λ,

(
∇Fzt,1 (xt)

⊤ ∇Fzt,2 (xt)
)
λt

〉
−

l2f,1v
2d

4
∥λt − λ∥1

− lf,1v

2
(∥λt − λ∥1∥∇fz,2λ∥1 + d∥(λt − λ)∇fzt,1∥1)

(22)

Taking expectation over zt,1, zt,2 on both sides and rearranging proves equation 19. By the convexity
of the problem, minλ∈∆M

1
2 ∥∇FS (xt)λ∥2, we have

γtEA

(
∥∇FS (xt)λt∥2 − ∥∇FS (xt)λ∥2

)
≤2γtEA

〈
λt − λ,

(
∇FS (xt)

⊤ ∇FS (xt)
)
λt

〉
(22)

≤ 2γtEA

〈
λt − λ,

(
∇̂FS (xt)

⊤ ∇̂FS (xt)
)
λt

〉
+

l2f,1v
2d

4
∥λt − λ∥1

+
lf,1v

2
(∥λt − λ∥1∥∇fz,2λ∥1 + d∥(λt − λ)∇fzt,1∥1)

(21)

≤ EA ∥λt − λ∥2 − EA ∥λt+1 − λ∥2 + γ2
t EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2
+

l2f,1v
2d

4
EA∥λt − λ∥1 +

lf,1v

2
EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1)

Rearranging the above inequality proves equation 20

Lemma 9. Given any ρ > 0 and x ∈ Rd, define λ∗
ρ(x) = argminλ∈∆M

1
2 ∥∇FS(x)λ∥2 + 1

2ρ∥λ∥
2,

then the following inequality holds

∥∥λ∗
ρ(x)− λ∗

ρ (x
′)
∥∥ ≤ ρ−1

∥∥∥∇F (x)⊤∇F (x)−∇F (x′)
⊤ ∇F (x′)

∥∥∥
Suppose either 1) Assumptions 1, 3 hold, or 2) Assumptions 1, 2 hold, with ℓF defined in Lemma 1.
Then for x ∈ {xt}Tt=1 , x

′ ∈ {x′
t}

T
t=1 generated by MoDo algorithm on training dataset S and S′,

respectively, it implies that

∥∥λ∗
ρ(x)− λ∗

ρ (x
′)
∥∥ ≤ 2ρ−1ℓF,1ℓF ∥x− x′∥

Proofed in (Chen et al., 2024).
Lemma 10. Suppose Assumption 2 holds. Let {xt} , {λt} be the sequences produced by the SZMOD
algorithm. With a positive constant ρ̄ > 0, define

S1,T =
1

T

T−1∑
t=0

EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2
S2,T =

1

T

T−1∑
t=0

EA ∥∇FS (xt+1) +∇FS (xt)∥
∥∥∇Fzt,3λt+1

∥∥
23
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Then it holds that

1

T

T−1∑
t=0

EA

[
∥∇FS (xt)λt∥2 − ∥∇FS (xt)λ

∗ (xt)∥2
]
≤ ρ̄+

4

γT

(
1 + ρ̄−1αℓF,1TS2,T

)
+ γS1,T

Proof: Define λ∗
ρ̄ (xt) = argminλ∈∆M

1
2 ∥∇FS (xt)λ∥2+ ρ̄

2∥λ∥
2 with ρ̄ > 0. Note that ρ̄ is strictly

positive and is used only for analysis but not for algorithm update. Substituting λ = λ∗
ρ̄ (xt) in

Lemma 8, we have

γtEA

(
∥∇FS (xt)λt∥2 −

∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2)
≤EA

∥∥λt − λ∗
ρ̄ (xt)

∥∥2 − EA

∥∥λt+1 − λ∗
ρ̄ (xt)

∥∥2 + γ2
t EA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2
+

l2f,1v
2d

4
EA∥λt − λ∥1 +

lf,1v

2
EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1)︸ ︷︷ ︸

e

Setting γt = γ > 0, taking expectation and telescoping the above inequality gives

1

T

T−1∑
t=0

EA

[
∥∇FS (xt)λt∥2 −

∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2]
≤ 1

T

T−1∑
t=0

1

γ
EA

[∥∥λt − λ∗
ρ̄ (xt)

∥∥2 − ∥∥λt+1 − λ∗
ρ̄ (xt)

∥∥2]+ 1

T

T−1∑
t=0

γEA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 + e

=
1

γT

(
T−1∑
t=0

EA

[∥∥λt − λ∗
ρ̄ (xt)

∥∥2 − ∥∥λt+1 − λ∗
ρ̄ (xt)

∥∥2])
︸ ︷︷ ︸

I1

+
1

T

T−1∑
t=0

γEA

∥∥∥(∇Fzt,1 (xt)
⊤ ∇Fzt,2 (xt)

)
λt

∥∥∥2 + e

(23)

where I1 can be further derived as

I1 =

T−1∑
t=0

EA

∥∥λt − λ∗
ρ̄ (xt)

∥∥2 − EA

∥∥λt+1 − λ∗
ρ̄ (xt)

∥∥2
=EA

∥∥λ0 − λ∗
ρ̄ (x0)

∥∥2 − EA

∥∥λT − λ∗
ρ̄ (xT )

∥∥2 + T−2∑
t=0

EA

[∥∥λt+1 − λ∗
ρ̄ (xt+1)

∥∥2 − ∥∥λt+1 − λ∗
ρ̄ (xt)

∥∥2]
≤EA

∥∥λ0 − λ∗
ρ̄ (x0)

∥∥2 − EA

∥∥λT − λ∗
ρ̄ (xT )

∥∥2
+

T−2∑
t=0

EA

[∥∥2λt+1 − λ∗
ρ̄ (xt+1)− λ∗

ρ̄ (xt)
∥∥∥∥λ∗

ρ̄ (xt+1)− λ∗
ρ̄ (xt)

∥∥]
≤4 + 4

T−2∑
t=0

EA

∥∥λ∗
ρ̄ (xt+1)− λ∗

ρ̄ (xt)
∥∥

where
∥∥λ∗

ρ̄ (xt+1)− λ∗
ρ̄ (xt)

∥∥, by Lemma 9, can be bounded by∥∥λ∗
ρ̄ (xt+1)− λ∗

ρ̄ (xt)
∥∥ ≤ ρ̄−1 ∥∇FS (xt+1) +∇FS (xt)∥ ∥∇FS (xt+1)−∇FS (xt)∥
≤ ρ̄−1ℓF,1 ∥∇FS (xt+1) +∇FS (xt)∥ ∥xt+1 − xt∥
≤ ρ̄−1αℓF,1 ∥∇FS (xt+1) +∇FS (xt)∥

∥∥∇Fzt,3λt+1

∥∥
24
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Hence, it follows that.

I1 ≤ 4 + 4ρ̄−1αℓF,1

T−1∑
t=0

EA ∥∇FS (xt+1) +∇FS (xt)∥ ∥∇Fzt,3λt+1∥

= 4 + 4ρ̄−1αℓF,1TS2,T

plugging which into (23) gives

1

T

T−1∑
t=0

EA

[
∥∇FS (xt)λt∥2 −

∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2] ≤ 4

γT

(
1 + ρ̄−1αℓF,1TS2,T

)
+ γS1,T + e

(24)

Define λ∗ (xt) ∈ argminλ∈∆M ∥∇FS (xt)λ∥2. Then

1

T

T−1∑
t=0

EA

[
∥∇FS (xt)λt∥2 − ∥∇FS (xt)λ

∗ (xt)∥2
]

=
1

T

T−1∑
t=0

EA

[
∥∇FS (xt)λt∥2 −

∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2 + ∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2 − ∥∇FS (xt)λ
∗ (xt)∥2

]
+ e

(24)

≤ 4

γT

(
1 + ρ̄−1αℓF,1TS2,T

)
+ γS1,T +

1

T

T−1∑
t=0

EA

[∥∥∇FS (xt)λ
∗
ρ̄ (xt)

∥∥2 − ∥∇FS (xt)λ
∗ (xt)∥2

]
+ e

≤ 4

γT

(
1 + ρ̄−1αℓF,1TS2,T

)
+ γS1,T + ρ̄+ e

The proof is complete.

D BOUNDING THE GENERALIZATION ERROR

D.1 PROOF OF THEOREM 3-PS GENERALIZATION ERROR IN NONCONVEX CASE

In this subsection, we prove Theorem 3, which establishes the PS generalization error of SZMOD in
the nonconvex case.

Organization of proof. To prove the PS generalization error of SZMOD, we first define the concept
of Sampling-determined algorithms in Definition 3. This concept has been described in [22] for
the analysis of single-objective learning. Then, we show that SZMOD is sampling-determined in
Proposition 4. Finally, combining Propositions 2-4, we can prove Theorem 1, the MOL uniform
stability and PS generalization error of SZMOD.
Definition 3 (Sampling-determined algorithm ). Let A be a randomized algorithm that randomly
chooses an index sequence I(A) = {it,s} to compute stochastic gradients. We say a symmetric
algorithm A is sampling-determined if the output model is fully determined by {zi : i ∈ I(A)}.
Proposition 4 (SZMOD is sampling determined (Lei, 2023)). SZMOD (Algorithm 3) is sampling
determined. In other words, Let I(A) = {it} be the sequence of index chosen by these algorithms
from training set S = {z1, . . . , zn}, and zi

i.i.d.∼ P for all i ∈ [n] to build stochastic gradients, the
output A(S) is determined by {zj : j ∈ I(A)}. To be precise, A(S) is independent of zj if j /∈ I(A).

Proof of Proposition 4. Let I(A) = {I1, . . . , IT } , It = {it,s}3s=1 and it,s ∈ [n] for all 1 ≤ t ≤ T .
And SI(A) =

{
zit,s

}
. By the description in Algorithm 1, A(S) = GzIT

◦ · · · ◦ GzI1
(x0), where

Gz(·) is the stochastic update function of the model parameter given random sample z. Therefore,
for all possible sample realization z, we have
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P (A(S) = x | zj = z, j /∈ I(A)) = P
(
GzIT

◦ · · · ◦GzI1
(x0) = x | zj = z, j /∈ I(A)

)
= P

(
GzIT

◦ · · · ◦GzI1
(x0) = x | j /∈ I(A)

)
= P(A(S) = x | j /∈ I(A))

where the last equality holds because zj /∈ SI(A), and zj is independent of all elements in SI(A) by
i.i.d. sampling. Therefore, A(S) is independent of zj if j /∈ I(A). The proof is complete.

Note that, besides SZMOD, other popular stochastic randomized MTL algorithms such as MODO
(Chen et al., 2024) and MOCO (Fernando et al., 2023) are also sampling-determined. Therefore, the
result is also applicable to these algorithms.
Lemma 11 ((Lei, 2023), Theorem 5 (b)). . Let A be a sampling-determined random algorithm
(Definition 3) and S, S′ be neighboring datasets with n data points that differ only in the i-th data
point. If supz EA

[
∥∇Fz(A(S))∥2F | i ∈ I(A)

]
≤ G2 for any S, then

sup
z

EA

[
∥∇Fz(A(S))−∇Fz (A (S′))∥2F

]
≤ 4G2 · P{i ∈ I(A)}

Proof of Theorem 3. From Proposition 4, algorithm A, SZMOD is sampling-determined. Then
based on Lemma , its MOL uniform stability in Definition 2 can be bounded by

ϵ2F ≤ 4G2 · P{i ∈ I(A)} (25)

Let it be the index of the sample selected by A at the t-th step, and i∗ be the index of the data point
that is different in S and S′. Then

P {i∗ ∈ I(A)} ≤
T−1∑
t=0

P {it = i∗} ≤ T

n
(26)

Combining equation 25 and equation 26 gives

ϵ2F ≤ 4G2T

n

Then based on Propositions 2-3, we have

EA,S [Rgen(A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F]

≤ 4ϵF +
√

n−1ES [Vz∼D (∇Fz(A(S)))]

= O
(
T

1
2n− 1

2

)
The proof is complete.

D.2 EXPANSIVENESS AND BOUNDEDNESS OF SZMOD UPDATE

Lemma 12. [Boundedness of update function of SZMOD] Let ℓf be a positive constant. If∥∥∥∇̂Fz(x)λ
∥∥∥ ≤ ℓf for all λ ∈ ∆M , z ∈ S and x ∈ {xt}Tt=1 generated by the SZMOD algorithm with

step size αt ≤ α, then Gλ,z(x) is (αℓf )-bounded on the trajectory of SZMOD, i.e.,

sup
x∈{xt}T

t=1

∥Gλ,z(x)− x∥ ≤ αℓf
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Proof. For all x ∈ {xt}Tt=1 , λ ∈ ∆M , and z ∈ S, since
∥∥∥∇̂Fz(x)λ

∥∥∥ ≤ ℓf , we have

∥Gλ,z(x)− x∥ ≤
∥∥∥α∇̂Fz(x)λ

∥∥∥ ≤ αℓf

which proves the boundedness.
Lemma 13 (Properties of update function of SZMOD in convex case). Suppose Assumptions 2, 3
hold. Let ℓf be a positive constant. If for all λ, λ′ ∈ ∆M , z ∈ S, and x ∈ {xt}Tt=1 , x

′ ∈ {x′
t}

T
t=1

generated by the SZMOD algorithm on datasets S and S′, respectively, we have ∥∇Fz(x)λ∥ ≤
ℓf , ∥∇Fz (x

′)λ′∥ ≤ ℓf , and ∥∇Fz(x)∥ ≤ ℓF , ∥∇Fz (x
′)∥ ≤ ℓF , we have

∥∥∥∇̂Fz(x)λ
∥∥∥ ≤ ℓf,d,∥∥∥∇̂Fz (x

′)λ′
∥∥∥ ≤ ℓf,d, and

∥∥∥∇̂Fz(x)
∥∥∥ ≤ ℓF,d,

∥∥∥∇̂Fz (x
′)
∥∥∥ ≤ ℓF,d, and step sizes of SZMOD satisfy

αt ≤ α, γt ≤ γ, it holds that

∥Gλ,z(x)−Gλ′,z (x
′)∥2 ≤

(
1− 2αµ+ 2α2ℓ2f,1 + αℓf,1vd

)
∥x− x′∥2

+ 2αℓF,d ∥x− x′∥ ∥λ′ − λ∥+ 2α2ℓ2F,d ∥λ′ − λ∥2

+ αℓf,1vd+ 2α2ℓ2f,1v
2d2

∥Gx,z1,z2(λ)−Gx′,z1,z2 (λ
′)∥2 ≤

((
1 + ℓ2F,dγ

)2
+
(
1 + ℓ2F,dγ

)
ℓg,1γ +

(
1 + ℓ2F,dγ

)
ℓg,1vdγ

)
∥λ− λ′∥2

+
((
1 + ℓ2F γ

)
ℓg,1γ + ℓ2g,1γ

2 + ℓ2g,1vdγ
)
∥x− x′∥2

+
(
1 + ℓ2F,dγ

)
ℓg,1vdγ + ℓ2g,1vdγ

Proof. The squared norm of the difference of Gλ,z(x) and Gλ′,z (x
′) can be bounded by

∥Gλ,z(x)−Gλ′,z (x
′)∥2

= ∥x− x′∥2 − 2α
〈
x− x′, ∇̂Fz(x)λ− ∇̂Fz (x

′)λ′
〉
+ α2

∥∥∥∇̂Fz(x)λ− ∇̂Fz (x
′)λ′

∥∥∥2
(a)

≤ ∥x− x′∥2 − 2α
〈
x− x′,

(
∇̂Fz(x)− ∇̂Fz (x

′)
)
λ
〉
+ 2α2

∥∥∥(∇̂Fz(x)− ∇̂Fz (x
′)
)
λ
∥∥∥2

+ 2α
〈
x− x′, ∇̂Fz (x

′) (λ′ − λ)
〉
+ 2α2

∥∥∥∇̂Fz (x
′) (λ− λ′)

∥∥∥2
(b)
= ∥x− x′∥2 − 2α

〈
x− x′, (∇Fz(x)−∇Fz (x

′))λ+

(
ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

〉
+ 2α2

∥∥∥∥(∇Fz(x)−∇Fz (x
′))λ+

(
ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

∥∥∥∥2
+ 2α

〈
x− x′, ∇̂Fz (x

′) (λ′ − λ)
〉
+ 2α2

∥∥∥∇̂Fz (x
′) (λ− λ′)

∥∥∥2
(c)

≤ ∥x− x′∥2 − 2α ⟨x− x′, (∇Fz(x)−∇Fz (x
′))λ⟩+ 2α2 ∥(∇Fz(x)−∇Fz (x

′))λ∥2

− 2α

〈
x− x′,

(
ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

〉
+ 2α2

∥∥∥∥(ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

∥∥∥∥2
+ 2α

〈
x− x′, ∇̂Fz (x

′) (λ′ − λ)
〉
+ 2α2

∥∥∥∇̂Fz (x
′) (λ− λ′)

∥∥∥2
(d)

≤
(
1− 2αµ+ 2α2ℓ2f,1

)
∥x− x′∥2 + 2α

〈
x− x′, ∇̂Fz (x

′) (λ′ − λ)
〉
+ 2α2ℓ2F,d ∥λ′ − λ∥2

− 2α

〈
x− x′,

(
ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

〉
+ 2α2

∥∥∥∥(ℓf,1v

2
s(x, u)− ℓf,1v

2
s(x′, u)

)
λ

∥∥∥∥2
(e)

≤
(
1− 2αµ+ 2α2ℓ2f,1 + αℓf,1vd

)
∥x− x′∥2 + 2αℓF,d ∥x− x′∥ ∥λ′ − λ∥+ 2α2ℓ2F,d ∥λ′ − λ∥2

+ αℓf,1vd+ 2α2ℓ2f,1v
2d2
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where (a) follows from rearranging and that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2;(b) follows from ∇̂F (x) =

∇F (x) +
lf,1v
2 s(x, u);(c) follows from that ∥a+ b∥ ≤ ∥a∥ + ∥b∥; (d) follows from the µ-strong

convexity of Fz(x)λ, ℓf,1-Lipschitz continuity of ∇Fz(x)λ, and that
∥∥∥∇̂Fz (x

′)
∥∥∥ ≤ ℓF,d for x′ ∈

{x′
t}

T
t=1; and, (e) follows from Cauchy-Schwartz inequality.

And ∥Gx,z1,z2(λ)−Gx′,z1,z2 (λ
′)∥ can be bounded by

∥Gx,z1,z2(λ)−Gx′,z1,z2 (λ
′)∥

=
∥∥∥Π∆M

(
λ− γ

(
∇̂Fz1(x)

⊤∇̂Fz2(x)
)
λ
)
−Π∆M

(
λ′ − γ

(
∇̂Fz1 (x

′)
⊤ ∇̂Fz2 (x

′)
)
λ′
)∥∥∥

(f)

≤
∥∥∥λ− λ′ − γ

(
∇̂Fz1(x)

⊤∇̂Fz2(x)λ− ∇̂Fz1 (x
′)
⊤ ∇̂Fz2 (x

′)λ′
)∥∥∥

(g)

≤ ∥λ− λ′∥+ γ
∥∥∥∇̂Fz1(x)

⊤∇̂Fz2(x) (λ− λ′)
∥∥∥+ γ∥

(
∇̂Fz1(x)

⊤∇̂Fz2(x)− ∇̂Fz1 (x
′)
⊤ ∇̂Fz2 (x

′)
)
λ′∥

(h)

≤ ∥λ− λ′∥+ γℓ2F,d ∥λ− λ′∥+ γ
∥∥∥(∇̂Fz1(x)

⊤∇̂Fz2(x)− ∇̂Fz1 (x
′)
⊤ ∇̂Fz2 (x

′)
)
λ′
∥∥∥

(i)

≤ ∥λ− λ′∥+ γℓ2F,d ∥λ− λ′∥+ γ

(∥∥∥∥(∇̂Fz1(x)− ∇̂Fz1 (x
′)
)⊤

∇̂Fz2(x)λ
′
∥∥∥∥

+
∥∥∥∇̂Fz1 (x

′)
⊤
(
∇̂Fz2(x)− ∇̂Fz2 (x

′)
)
λ′
∥∥∥)

≤
(
1 + ℓ2F,dγ

)
∥λ− λ′∥+ (ℓf,dℓF,1 + ℓF,dℓf,1) γ ∥x− x′∥+ (ℓf,dℓF,1 + ℓF,dℓf,1) γvd

where (f) follows from non-expansiveness of projection; (g) follows from triangle inequality, (h) fol-
lows from

∥∥∥∇̂Fz(x)
∥∥∥ ≤ ℓF,d for x ∈ {x′

t}
T
t=1 , (i) follows from triangle inequality; and (j) follows

from ℓF,1-Lipschitz continuity of ∇Fz(x)λ
′, ℓf,1 Lipschitz continuity of ∇Fz(x),

∥∥∥∇̂Fz(x)
∥∥∥ ≤ ℓF,d

for x ∈ {x′
t}

T
t=1, and ∥∇Fz(x)λ

′∥ ≤ ℓf for x ∈ {xt}Tt=1. Let ℓg,1 = ℓf,dℓF,1 + ℓF,dℓf,1. Taking
square on both sides of above yields

∥Gx,z1,z2(λ)−Gx′,z1,z2 (λ
′)∥2

≤
((
1 + ℓ2F,dγ

)
∥λ− λ′∥+ ℓg,1γ ∥x− x′∥+ γℓg,1vd

)2
=
(
1 + ℓ2F,dγ

)2 ∥λ− λ′∥2 + ℓ2g,1γ
2 ∥x− x′∥2 + γ2ℓ2g,1v

2d2 + 2
(
1 + ℓ2F,dγ

)
ℓg,1γ ∥λ− λ′∥ ∥x− x′∥

+ 2
(
1 + ℓ2F,dγ

)
ℓg,1vdγ ∥λ− λ′∥+ 2ℓ2g,1vdγ ∥x− x′∥

≤
(
1 + ℓ2F,dγ

)2 ∥λ− λ′∥2 + ℓ2g,1γ
2 ∥x− x′∥2 +

(
1 + ℓ2F,dγ

)
ℓg,1γ

(
∥λ− λ′∥2 + ∥x− x′∥2

)
+
(
1 + ℓ2F,dγ

)
ℓg,1vdγ

(
∥λ− λ′∥2 + 1

)
+ ℓ2g,1vdγ

(
∥x− x′∥2 + 1

)
=
((

1 + ℓ2F,dγ
)2

+
(
1 + ℓ2F,dγ

)
ℓg,1γ +

(
1 + ℓ2F,dγ

)
ℓg,1vdγ

)
∥λ− λ′∥2

+
((
1 + ℓ2F γ

)
ℓg,1γ + ℓ2g,1γ

2 + ℓ2g,1vdγ
)
∥x− x′∥2 +

(
1 + ℓ2F,dγ

)
ℓg,1vdγ + ℓ2g,1vdγ

The proof is complete.

D.3 GROWTH RECURSION

Lemma 14 (Growth recursion with approximate expansiveness). Fix an arbitrary sequence of
updates G1, . . . , GT and another sequence G′

1, . . . , G
′
T . Let x0 = x′

0 be a starting point in Ω and
define δt = ∥x′

t − xt∥ where xt, x
′
t are defined recursively through

xt+1 = Gt (xt) , x′
t+1 = G′

t (x
′
t) (t > 0)
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Let ηt > 0, νt ≥ 0, and st ≥ 0. Then, for any p > 0, and t ∈ [T ], we have the recurrence relation
(with δ0 = 0)

δ2t+1 ≤


ηtδ

2
t + νt, Gt = G′

t is (ηt, νt) -approximately expansive in square

(1 + p)min
{
ηtδ

2
t + νt, δ

2
t

}
+
(
1 + 1

p

)
4ς2t Gt and G′

t are ςt-bounded,

Gt is (ηt, νt) -approximately expansive in square.

Proof. When Gt and G′
t are ςt-bounded, we can bound δt+1 by

δt+1 =
∥∥xt+1 − x′

t+1

∥∥ = ∥Gt (xt)−G′
t (x

′
t)∥

= ∥Gt (xt)− xt −G′
t (x

′
t) + x′

t + xt − x′
t∥

≤ ∥Gt (xt)− xt∥+ ∥G′
t (x

′
t)− x′

t∥+ ∥xt − x′
t∥

≤ 2ςt + δt

Alternatively, when Gt and G′
t are ςt-bounded, Gt is (ηt, νt)-approximately expansive, we have

δt+1 =
∥∥xt+1 − x′

t+1

∥∥ = ∥Gt (xt)−G′
t (x

′
t)∥

When Gt = G′
t, is (ηt, νt)-approximately expansive in square, given δ2t , δ

2
t+1 can be bounded by

δ2t+1 =
∥∥xt+1 − x′

t+1

∥∥2 = ∥Gt (xt)−Gt (x
′
t)∥

2 ≤ ηt ∥xt − x′
t∥

2
+ νt = ηtδ

2
t + νt

When Gt and G′
t are ςt-bounded, applying (B.57), we can bound δ2t+1 by

δ2t+1 ≤ (δt + 2ςt)
2 ≤ (1 + p)δ2t + (1 + 1/p)4ς2t

where p > 0 and the last inequality follows from (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2. Alternatively,
when Gt and G′

t are ςt-bounded, Gt is (ηt, νt)-approximately expansive in square, the following
holds

δ2t+1 =
∥∥xt+1 − x′

t+1

∥∥2 = ∥Gt (xt)−G′
t (x

′
t)∥

2

= ∥Gt (xt)−Gt (x
′
t) +Gt (x

′
t)−G′

t (x
′
t)∥

2

≤ (1 + p) ∥Gt (xt)−Gt (x
′
t)∥

2
+ (1 + 1/p) ∥Gt (x

′
t)−G′

t (x
′
t)∥

2

≤ (1 + p)
(
ηtδ

2
t + νt

)
+ (1 + 1/p) ∥Gt (x

′
t)− x′

t −G′
t (x

′
t) + x′

t∥
2

≤ (1 + p)
(
ηtδ

2
t + νt

)
+ 2(1 + 1/p)

(
∥Gt (x

′
t)− x′

t∥
2
+ ∥G′

t (x
′
t)− x′

t∥
2
)

≤ (1 + p)
(
ηtδ

2
t + νt

)
+ (1 + 1/p)4ς2t

The proof is complete.

D.4 UPPER BOUND OF SZMOD UNIFORM STABILITY

In Theorem 4 we bound the argument stability, which is then used to derive the MOL uniform stability
and PS generalization error in Theorem 4.

Theorem 7 (Argument stability bound in strongly convex case). Suppose Assumptions 2, 3,
hold. Let A be the SZMOD algorithm in Algorithm 3. Choose the step sizes αt ≤ α ≤

min
{
1/ (2ℓf,1) , µ/

(
2ℓ2f,1

)}
, and γt ≤ γ ≤ min

{
µ2

484ℓ2f,dℓg,1
, 1

8(3ℓ2f+2ℓg,1)

}
/T . Then it holds

that
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EA

[
∥A(S)−A (S′)∥2

]
≤ 48

µn
ℓ2f,d

(
α+

12 + 4Mℓ2f,d
µn

+
10Mℓ4fγ

µ

)
+

4

µn

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)

Proof of Theorem 7. Under Assumptions 2, 3, Lemma 6 implies that for {xt} generated by the∥∥∥∇̂Fz (xt)λ
∥∥∥ ≤ ℓf,d. and

∥∥∥∇̂Fz (xt)
∥∥∥ ≤ ℓF,d

For notation simplicity, denote δt = ∥xt − x′
t∥ , ζt = ∥λt − λ′

t∥ , xT = AT (S) and x′
T = AT (S′).

Denote the index of the different sample in S and S′ as i∗, and the set of indices selected at the t-th
iteration as It, i.e., It = {it,s}3s=1. When i∗ /∈ It, for any c1 > 0, based on Lemma 13, we have

δ2t+1 ≤
(
1− 2αtµ+ 2α2

t ℓ
2
f,1 + αtℓf,1vd

)
δ2t + 2αtℓF,dδtζt+1 + 2α2

t ℓ
2
F,dζ

2
t+1 + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2dd

≤
(
1− 2αtµ+ 2α2

t ℓ
2
f,1 + αℓf,1vd

)
δ2t + αtℓF,d

(
c1δ

2
t + c−1

1 ζ2t+1

)
+ 2α2

t ℓ
2
F,dζ

2
t+1 + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2dd

≤ (1− αtµ+ αtℓf,1vd) δ
2
t + αtℓF,d

(
c1δ

2
t + c−1

1 ζ2t+1

)
+ 2α2

t ℓ
2
F,dζ

2
t+1 + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

where the second last inequality is due to Young’s inequality; the last inequality is due to choosing
αt ≤ µ/

(
2ℓ2f,1

)
. When i∗ ∈ It, from Lemma 12, the (αtℓf,d)-boundedness of the update at t-th

iteration, and Lemma 9 , the growth recursion, for a given constant p > 0, we have

δ2t+1 ≤ (1 + p)δ2t + (1 + 1/p)4α2
t ℓ

2
f,d

Taking expectation of δ2t+1 over It, we have

EIt

[
δ2t+1

]
≤P (i∗ /∈ It)

(
(1− αtµ+ αtℓf,1vd) δ

2
t + αtℓF,dc1δ

2
t +

(
αtℓF,dc

−1
1 + 2α2

t ℓ
2
F,d

)
EIt

[
ζ2t+1 | i∗ /∈ It

])
+ αℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2 + P (i∗ ∈ It)
(
(1 + p)δ2t + (1 + 1/p)4α2

t ℓ
2
f,d

)
≤ (1− αt (µ− ℓF,dc1 − ℓf,1vd)P (i∗ /∈ It) + pP (i∗ ∈ It)) δ

2
t

+ αt

(
ℓF,dc

−1
1 + 2αℓ2F,d

)︸ ︷︷ ︸
c2

EIt

[
ζ2t+1 | i∗ /∈ It

]
P (i∗ /∈ It) +

(
1 +

1

p

)
P (i∗ ∈ It) 4α

2
t ℓ

2
f,d

+ αtℓf,1vd+ 2α2
t ℓ

2
f,1v

2d2

(27)

At each iteration of SZMOD, we randomly select three independent samples (instead of one) from
the training set S. Then the probability of selecting the different sample from S and S′ at the t-th
iteration, P (i∗ ∈ It) in the above equation, can be computed as follows

P (i∗ ∈ It) = 1−
(
n− 1

n

)3

≤ 3

n

Consequently, the probability of selecting the same sample from S and S′ at the t-th iteration is
P (i∗ /∈ It) = 1 − P (i∗ ∈ It). Let ℓg,1 = ℓf,dℓF,1 + ℓF,dℓf,1. Recalling when i∗ /∈ It, ζt+1 ≤(
1 + ℓ2F,dγ

)
ζt + ℓg,1γδt + γℓg,1vd from Lemma 8, it follows that

ζ2t+1 ≤
((

1 + ℓ2F,dγ
)2

+
(
1 + ℓ2F,dγ

)
ℓg,1γ +

(
1 + ℓ2F,dγ

)
ℓg,1vdγ

)
ζ2t

+
((
1 + ℓ2F γ

)
ℓg,1γ + ℓ2g,1γ

2 + ℓ2g,1vdγ
)
δ2t +

(
1 + ℓ2F,dγ

)
ℓg,1vdγ + ℓ2g,1vdγ

≤ (1 +
(
3ℓ2F,d + 4ℓg,1

)︸ ︷︷ ︸
c3

γt)ζ
2
t + 4ℓg,1γtδ

2
t + (2ℓg,1 + ℓ2g,1)vdγt
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where the last inequality follows from ℓg,1γt ≤ 1, and ℓ2F,dγt ≤ 1. And since ζt and δt are
independent of It, it follows that

EIt

[
ζ2t+1 | i∗ /∈ It

]
≤ (1 + c3γt) ζ

2
t + 4ℓg,1γtδ

2
t + (2ℓg,1 + ℓ2g,1)vdγt (28)

Combining equation 27 and equation 28, we have

EIt

[
δ2t+1

]
≤ (1 −αt (µ− ℓF,dc1 − ℓf,1vd)P (i∗ /∈ It) + pP (i∗ ∈ It)) δ

2
t +

(
1 +

1

p

)
P (i∗ ∈ It) 4α

2
t ℓ

2
f,d

+ αtc2
(
(1 + c3γt) ζ

2
t + 4ℓg,1γtδ

2
t + (2ℓg,1 + ℓ2g,1)vdγt

)
P (i∗ /∈ It) + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

= (1 −αt (µ− ℓF,dc1 − ℓf,1vd− 4c2ℓg,1γt)P (i∗ /∈ It) + pP (i∗ ∈ It)) δ
2
t +

(
1 +

1

p

)
P (i∗ ∈ It) 4α

2
t ℓ

2
f,d

+ αtc2
(
(1 + c3γt) ζ

2
t + (2ℓg,1 + ℓ2g,1)vdγt

)
P (i∗ /∈ It) + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

= (ηt P (i∗ /∈ It) + pP (i∗ ∈ It)) δ
2
t +

(
1 +

1

p

)
P (i∗ ∈ It) 4α

2
t ℓ

2
f,d

+ αtc2
(
(1 + c3γt) ζ

2
t + (2ℓg,1 + ℓ2g,1)vdγt

)
P (i∗ /∈ It) + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

(29)

where we define ηt = 1− α(µ− ℓF,dc1 − ℓf,1vd− 4c2ℓg,1γt)

While when i∗ ∈ It, for a given constant p2 > 0, we have

ζt+1 =
∥∥∥Π∆M

(
λt − γt∇̂Ft,1 (xt)

⊤ ∇̂Ft, 2 (xt)λt

)
−Π∆M

(
λ′
t − γt∇̂Ft, 1′ (x′

t)
⊤ ∇̂Ft, 2′ (x′

t)λ
′
t

)∥∥∥
≤
∥∥∥λt − λ′

t − γt

(
∇̂Ft,1 (xt)

⊤ ∇̂Ft,2 (xt)λt − ∇̂F ′
t,1 (x

′
t)

⊤ ∇̂F ′
t,2 (x

′
t)λ

′
t

)∥∥∥
≤ ∥λt − λ′

t∥+ 2γtℓF,dℓf,d ≤ ζt + 2γt
√
Mℓ2f,d

ζ2t+1 ≤ (1 + p2) ζ
2
t + (1 + 1/p2) 4γ

2
tMℓ4f,d

Taking expectation of ζ2t+1 over It gives

EIt

[
ζ2t+1

]
= EIt

[
ζ2t+1 | i∗ ∈ It

]
P (i∗ ∈ It) + EIt

[
ζ2t+1 | i∗ /∈ It

]
P (i∗ /∈ It)

≤
(
(1 + p2) ζ

2
t + (1 + 1/p2) 4γ

2
tMℓ4f,d

)
P (i∗ ∈ It) +

(
(1 + c3γt) ζ

2
t + 3ℓg,1γtδ

2
t

)
P (i∗ /∈ It)

≤
(
1 + c3γt +

3

n
p2

)
ζ2t +

(
1 +

1

p2

)
4γ2

tMℓ4f
3

n
+ 4ℓg,1γtδ

2
t +

(
2ℓg,1 + ℓ2g,1

)
vdγt.

(30)

Based on linearity of expectation and applying equation 30 recursively yields
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E
[
ζ2t+1

]
≤

t∑
t′=0

((
1 +

1

p2

)
4γ2Mℓ4f

3

n
+ 4ℓg,1γE

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

)( t∏
k=t′+1

(
1 + c3γ +

3

n
p2

))

=

t∑
t′=0

((
1 +

1

p2

)
4γ2Mℓ4f

3

n
+ 4ℓg,1γE

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

)(
1 + c3γ +

3

n
p2

)t−t′

(a)

≤
t∑

t′=0

((
1 +

8T

n

)
4γ2Mℓ4f

3

n
+ 4ℓg,1γE

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

)(
1 +

1

2T

)t−t′

(b)

≤
t∑

t′=0

((
1 +

8T

n

)
4γ2Mℓ4f

3

n
+ 4ℓg,1γE

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

)
e

1
2

(c)

≤ 2γ

t∑
t′=0

((
1 +

8T

n

)
4γMℓ4f

3

n
+ 4ℓg,1E

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

)
(31)

where (a) follows from choosing γt ≤ γ ≤ 1/ (8c3T ) , p2 = n/(8T ), (b) follows from t− t′ ≤ T ,
and

(
1 + a

T

)T ≤ ea, and the inequality (c) follows from e
1
2 < 2. Note that δ0 = 0, ζ1 = 0. Applying

equation 27 at t = 0 gives

E
[
δ21
]
≤ 3

n

(
1 +

1

p

)
4α2ℓ2f,d + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2 + αtc2
(
2ℓg,1 + ℓ2g,1

)
vdγt

which together with equation 30 gives

E
[
ζ22
]
≤ 4ℓg,1γ1δ

2
1 +

(
1 +

1

p2

)
4γ2

1Mℓ4f,d
3

n
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

Therefore, for 0 ≤ t ≤ 1, it satisfies that

E
[
δ2t
]
≤
(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

(
t−1∑
t′=0

(
1− 1

2
αµ+

3p

n

)t−t′−1
)

︸ ︷︷ ︸
βt

=

(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)
βt.

(32)

Next, we will prove by induction that equation 32 also holds for t > 1. Assuming that equation 32
holds for all 0 ≤ t ≤ k ≤ T − 1, we apply equation 29 to the case where t = k to obtain
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E
[
δ2k+1

]
≤
(
ηk +

3p

n

)
E
[
δ2k
]
+ αkc2 (1 + c3γk)E

[
ζ2k
]
P (i∗ /∈ It) +

3

n

(
1 +

1

p

)
4α2

kℓ
2
f,d

+
(
2ℓg,1 + ℓ2g,1

)
vdγtP (i∗ /∈ It) + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

(a)

≤
(
ηk +

3p

n

)
E
[
δ2k
]

+ 2αkc2γ

(
k∑

t′=0

((
1 +

8T

n

)
4γMℓ4f

3

n
+ 4ℓg,1E

[
δ2t′
]
+
(
2ℓg,1 + ℓ2g,1

)
vdγt

))
P (i∗ /∈ It)

+
3

n

(
1 +

1

p

)
4α2

kℓ
2
f +

(
2ℓg,1 + ℓ2g,1

)
vdγtP (i∗ /∈ It) + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2

(b)

≤

((
ηk +

3p

n

)
βk + 1 + 8αkc2 (1 + c3γt) ℓg,1γ

(
k∑

t′=1

βt′

)
P (i∗ /∈ It)

)
︸ ︷︷ ︸

J1

×
(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)
.

(33)

where (a) follows from equation 31, and (b) follows from equation 32 for 0 ≤ t ≤ k and that
γk ≤ γT ≤ 1. The coefficient J1 in equation 33 can be further bounded by

J1 =

(
ηk +

3p

n

)
βk + 1 + 8αkc2 (1 + c3γ) ℓg,1γ

(
k∑

t′=1

ct′

)
P (i∗ /∈ It)

(c)

≤
(
ηk +

3p

n

)
βk + 1 + 16αkc2ℓg,1kγβkP (i∗ /∈ It)

(d)

≤
(
1− αk (µ− ℓF,dc1 − ℓf,1vd− 4c2ℓg,1γ − 16c2ℓg,1kγ)P (i∗ /∈ It) +

3p

n

)
βk + 1

(e)

≤
(
1− 1

2
αµ+

3p

n

)
βk + 1

(34)

where (c) follows from βt ≤ βt+1, γt ≤ γ for all t = 0, . . . , T ; (d) follows from the definition of
ηk; (e) is because γ ≤ µ2/

(
120ℓ2F ℓg,1T

)
, α ≤ 1/ (2ℓf,1) ≤ 1/(2µ) and choosing c1 = µ/ (4ℓF,d)

leads to

ℓF,dc1 + ℓf,1vd+ 4c2ℓg,1γ + 16c2ℓg,1kγ ≤ ℓF,dc1 + 21
(
ℓF,dc

−1
1 + 2αℓ2F,d

)
ℓg,1(k + 1)γ

≤ 1

4
µ+ 21

(
4µ−1 + 2α

)
ℓ2F,dℓg,1

k + 1

T

µ2

484ℓ2F,dℓg,1
≤ 1

2
µ.

Combining equation 33 and equation 34 implies

E
[
δ2k+1

]
≤
((

1− 1

2
αµ+

3p

n

)
βk + 1

)
(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

=

(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

ck+1

(35)
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where the equality follows by the definition of βt given in equation 32. The above statements from
equation 33-equation 35 show that if equation 32 holds for all t such that 0 ≤ t ≤ k ≤ T − 1, it also
holds for t = k + 1.

Therefore, we can conclude that for T ≥ 0, it follows

E
[
δ2T
]

≤
(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

βT

=

(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

(
T−1∑
k=0

(
1− 1

2
αµ+

3p

n

)T−k−1
)

=

(
3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ + αtℓf,1vd+ 2α2

t ℓ
2
f,1v

2d2
)

(
1

4
αµ

)−1
(
1−

(
1− 1

4
αµ

)T
)
,

where the last equality follows from taking p = αµn/12, and compute the sum of geometric series.
By plugging in c1 = µ/ (4ℓF,d) , c2 = ℓF,dc

−1
1 + 2αℓ2F,d, c3 = 3ℓ2F,d + 2ℓg,1, we have that

E
[
δ2T
]
≤ (

3

n

(
1 +

1

p

)
4α2ℓ2f,d + 24Mℓ4f,dc2

(
8γT

n
+ γ

)
α

n
+ (2αc2 + 1)

(
2ℓg,1 + ℓ2g,1

)
vdγ

+ αtℓf,1vd+ 2α2
t ℓ

2
f,1v

2d2)

(
1

4
αµ

)−1

≤ 48

µn
ℓ2f,d

(
α+

12

µn
+

2Mℓ2f,dc2c
−1
3

n
+ 2Mℓ2f,dc2γ

)
+

4

µn

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)

≤ 48

µn
ℓ2f,d

(
α+

12 + 4Mℓ2f,d
µn

+
10Mℓ4fγ

µ

)
+

4

µn

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)

where the second inequality follows from v ≤ min

{
1
nd ,

1

nd(2ℓg,1+ℓ2g,1)

}
, and the last inequality

follows from c2 = ℓ2F,d

(
4µ−1 + 2α

)
≤ 5Mℓ2f,dµ

−1, and c2c
−1
3 ≤ 5ℓ2F,dµ

−1/
(
3ℓ2F,d

)
≤ 2µ−1.

D.5 PROOF OF THEOREM 4

Proof of Theorem 2. Combining the argument stability in Theorem 7, and Assumption 2, the MOL
uniform stability can be bounded by

sup
z

EA

[
∥∇Fz(A(S))−∇Fz (A (S′))∥2F

]
≤EA

[
ℓ2F,1 ∥A(S)−A (S′)∥2

]
≤ 48

µn
ℓ2f,dℓ

2
F,1

(
α+

12 + 4Mℓ2f,d
µn

+
10Mℓ4fγ

µ

)
+

4

µn
ℓ2F,1

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)

by Assumption 2
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Finally, based on Propositions 2-3, we have

EA,S [Rgen(A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F]

≤ 4ϵF +
√

n−1ES [Vz∼D (∇Fz(A(S)))]

= O
(
n− 1

2

)
.

The proof is completed.
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