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A ARCHITECTURE DETAILS

We provide comprehensive information on the architectures of the networks employed. In Ap-
pendix A.1, we elaborate on the text-based video generation network (ModelScopeT2V Wang
et al. (2023a)), including its transformation into a text-based multi-view image generator. In Ap-
pendix A.2, we discuss the image-based video generation network (I2VGen-XL Zhang et al. (2023))
and its conversion into an image-based multi-view image generator. Finally, in Appendix A.3, we
present our large GaussianSplatting-based reconstruction model (LGM Tang et al. (2024)) and how
it is utilized for noise reconstruction fine-tuning.
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Figure 8: Overview of the architecture of ModelScopeT2V

A.1 MODELSCOPET2V (TEXT-BASED VIDEO GENERATION)

The main paradigm of ModelScopeT2V is shown in Fig. 8. Overall, it comprises two main compo-
nents: VQGAN and Denoise UNet. VQGAN aims to reconstruct the original video as precisely as
possible. Given a training video vgt, the encoder of VQGAN compresses it into the latent space as
zgt0 . Then, a quantizer is applied to zgt0 . Note that the function of the quantizer is to find the closest
quantized discrete vector of zgt0 , and we denote the output from the quantizer as qgt0 . Finally, the
decoder of VQGAN takes qgt0 as input and outputs the reconstruction vrec0 . The overall objective
of VQGAN is the weighted summation of the quantization loss between Lq = fq(z

gt
0 , qgt0 ), the

reconstruction loss Lr = fr(v
gt
0 , vrec0 ), and an optional adversarial loss Ladv = fadv(v

gt
0 , vrec0 ).
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Figure 9: Buiding blocks of the Denoise UNet.

DenoiseUNet aims to recover zgt0 from the noise-corrupted zgtT . The optimization objective is the
denoise reconstruction loss Ldr = fdr(z

gt
0 , zpr0 ). zpr0 is predicted by the network mapping function

ϵθ as zpr0 = ϵθ(z
gt
t , y, t). As depicted in Fig. 9, DenoiseUNet is built with several Spatial-Temporal
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convolutional and attention modules. In the original implementation of ModelScopeT2V Wang
et al. (2023a), timesteps t are injected into the spatial convolution modules as residuals. To convert
ModelScopeT2V Wang et al. (2023a) into a text-based multi-view generator, we pass camera poses
through an activation layer and a linear layer. The output of these layers has the same feature
dimension as the embeddings of timesteps, and we further add them together. Afterward, the added
embeddings of timesteps and camera poses are projected to specific feature dimensions and added
together with the output of the Spatial Convolution module. Another modification is the input data.
The original input of ModelScopeT2V accepts a video with 32 frames, while we modify the frame
number to 24 for multi-view image generation.
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Figure 10: Overview of the architecture of I2VGen-XL.

A.2 I2VGEN-XL (IMAGE-BASED VIDEO GENERATION)

The primary paradigm of I2VGen-XL is illustrated in Fig. 10. It is important to note that the frame-
work follows a one-staged approach, distinguishing it from the two-staged architecture proposed by
Zhang et al. (2023). Upon careful examination, we discovered that the available open-source imple-
mentation actually corresponds to a one-staged model; hence, we decided to adopt this version as
depicted in Fig. 10. This one-staged model allows for the incorporation of both images and text as
conditions, providing additional global (G.Enc.) and detailed (D.Enc) information extracted from
the image.

I2VGen-XL Zhang et al. (2023) shares the same DenoiseUNet architecture and VQGAN architec-
ture with ModelScopeT2V Wang et al. (2023a). However, they differ in terms of dataset utilization
and condition injection methodology. To convert I2VGen-XL Zhang et al. (2023) into a multi-view
image generator, we designated the input prompt as an empty string. For instance, we replaced ’A
woman is eating a hamburger’ with an empty prompt. Furthermore, we adjusted the frame number
to 24 and set the training video resolution to 256×256 when fine-tuning a multi-view image genera-
tor based on I2VGen-XL Zhang et al. (2023). We observed that augmenting the training dataset size
yields improvements in terms of generalizability. Specifically, our implemented image-based multi-
view generation model was trained on a dataset comprising approximately 170K samples, carefully
curated by excluding textureless instances from G-Objaverse. It is important to note that this dataset
differs from the high-quality 28K text-video pairs utilized for fine-tuning our text-to-video model.

A.3 FEED-FORWARD RECONSTRUCTION

We have adopted the identical architecture proposed in LGM Tang et al. (2024). As illustrated
in Fig. 11, this asymmetric UNet architecture offers advantages in terms of memory efficiency
by mitigating the increase in points within the GaussianSplatting representation caused by high-
resolution output. It incorporates dense self-attention, similar to MVDream Shi et al. (2023b). Con-
sidering computing resources, we did not extend it to accommodate 24 views. Yet, we have future
plans for developing a dense view reconstruction model.

Sequentially, we fine-tune the asymmetric UNet using the ”predicted x0”. Inspired by LGM Tang
et al. (2024), we randomly select four views from the output of VideoMV as inputs for FFR, result-
ing in a Gaussian field. One notable distinction is that we incorporate supervision by rendering all 24
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Figure 11: Architecture of the Asymmetric UNet.

views, deviating from the original implementation which utilized only 8 views. Additionally, we use
a background color of [128, 128, 128] instead of [255, 255, 255] for Text-to-Multi-view image gener-
ation. On the other hand, for Image-to-Multi-view image generation, we still model the background
as pure white. During the inference stage, we use fixed 4 orthogonal views for stable reconstruction
performance, similar to LGM Tang et al. (2024). For further details on the configuration of this
sparse view reconstruction pipeline, we suggest referring to the original implementation Tang et al.
(2024).

B APPLICATIONS

B.1 DENSE VIEW RECONSTRUCTION

Our proposal can generate 24 dense views with specified camera poses using DDIM Song et al.
(2020) sampling in 5 seconds. The dense view generated is enough for a reconstruction pipeline
such as NeRF Mildenhall et al. (2020) or Neus Wang et al. (2021). We show reconstruction results
on both image-based multi-view generation and text-based multi-view generation tasks.

For the image-based multiview generation task, we visualize results from NVS-based meth-
ods(Zero123(XL) Liu et al. (2023b), SyncDreamer Liu et al. (2023c)) and reconstruction-focused
methods(Wonder3D Long et al. (2023), OpenLRM Hong et al. (2023); He & Wang (2023), and
Shap-E Jun & Nichol (2023)) accompanied with our approach. As shown in Fig. 6, VideoMV
achieves better reconstruction results among NVS-based methods due to the highly consistent dense
view produced by our pipeline. Wonder3D Long et al. (2023) produces shapes with more details
for the use of predicted normal maps, but sometimes produce floating artifacts. Inference-based
methods such as Shap-E and OpenLRM may produce shapes that are not well aligned with the in-
put images. The multi-view images generated by VideoMV can provide competitive prior for 3D
generation compared with image-based NVS methods. Although the Neus Wang et al. (2021) recon-
struction is smooth and does not provide geometry details, we can adopt the cross-domain attention
mechanism proposed in Wonder3D Long et al. (2023) to produce aligned normal maps and enhance
the performance of our dense view reconstruction.
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A yellow and pink knitted sweater, 3d asset

An antique glass perfume bottle, 3d_asset

A fluffy orange cat, 3d asset

A pair of wornin blue jeans, 3d_asset

An old bronze ships wheel , 3d asset

An elegant featherquill ink pen, 3d asset

A beautiful intricate butterfly, 3d asset

Figure 12: Text-based dense view reconstruction results of VideoMV.

A bird sitting on a tree, 3d asset

A chihuahua lying in a swimming  pool, 3d asset

A bulldog, 3d asset

Figure 13: Visualization of text-based multi-view score distillation.

For the text-based multi-view generation task, we visualize the results of VideoMV only. As de-
picted in Fig. 12, VideoMV can also recover geometry from multi-view images generated from text
prompts by Neus Wang et al. (2021). As a by-product, we can also produce a Gaussian splatting
field Kerbl et al. (2023a) from multi-view images in seconds.

B.2 DISTILLATION-BASED GENERATION

Our proposal can also be applied as the priori of score distillation sampling Poole et al. (2022). As
shown in Fig. 13, we can distillate faithful shapes and texture from a multi-view score distillation
loss and avoid the Janus problem most of the time. Note that we are focusing on consistent multi-
view image generation, so we do not fully optimize the distillation pipeline. Distillation from dense
views is also an interesting task for future work.
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A green cactus in a clay pot, 3d asset

sample1

sample2

sample1

sample2

A lighthouse on a rocky shore, 3d_asset

Figure 14: Visual various results of Text-to-Multi-View image generation on T3Bench (Part I).

C EXPERIMENT DETAILS

In our implementation of VideoMV, we maintain a learning rate of 3e−5 and a batch size of 32. We
utilize the AdamW optimizer and employ FP16 for efficient gradient descent without weight decay.
The training dataset comprises 28K samples for text-conditioned VideoMV and 170K samples for
image-conditioned VideoMV, all sourced from G-Objaverse Qiu et al. (2023). For text-conditioned
VideoMV, the training process converges within half an hour using 8 NVIDIA A100 GPUs. With
further training, the performance slightly improves. Image-based VideoMV requires a total training
time of 24 hours utilizing 8 NVIDIA A100 GPUs.

D TEXT-TO-MULTI-VIEW IMAGE GENERATION

The VideoMV demonstrates the ability to generate diverse outcomes by employing different ran-
dom noises while maintaining the same prompt. As depicted from Fig. 14 to Fig. 18, VideoMV
produces a range of astonishing results across various prompts selected from the multi-object list in
T3Bench He et al. (2023).

D.1 MORE QUALITATIVE RESULTS

Despite the limited data used for fine-tuning large-scale video generative models, the alignment
between prompts and visual information in both video datasets and image datasets (consisting
of 1-frame videos) remarkably enhances generalizability to open-vocabulary scenarios, enabling
VideoMV to generate multi-view images beyond the limitations of training datasets. To further
enhance qualitative visualization, we adopt highly abstract prompts previously employed in Dream-
FusionPoole et al. (2022). As illustrated in Fig. 19 to Fig. 27, VideoMV consistently generates dense
multi-view images based on abstract prompts, showing its ability to understand out-of-distribution
data.
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sample1

sample2

sample1

sample2

A bluebird perched on a tree branch, 3d asset

A snowman wearing a scarf in a winter landscape, 3d asset

sample1

sample2

sample1

sample2

A chocolate cake on a white plate, 3d asset

A ripe watermelon on a picnic table, 3d asset

Figure 15: Visual various results of Text-to-Multi-View image generation on T3Bench (Part II).
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sample1

sample2

sample1

sample2

A pair of blue jeans hanging on a clothesline, 3d asset

A stack of pancakes on a breakfast table, 3d asset

sample1

sample2

sample1

sample2

A green frog on a lily pad, 3d asset

A white seashell on a sandy beach, 3d asset

Figure 16: Visual various results of Text-to-Multi-View image generation on T3Bench (Part III).
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sample1

sample2

sample1

sample2

A white wedding dress on a hanger, 3d asset

A brown leather suitcase on a train platform, 3d asset

sample1

sample2

sample1

sample2

A blue and white china cup on a saucer, 3d asset

A pink ceramic vase filled with fresh white lilies, 3d asset

Figure 17: Visual various results of Text-to-Multi-View image generation on T3Bench (Part IV).
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sample1

sample2

sample1

sample2

A red ceramic coffee mug sitting on a wooden table, 3d asset

A_vibrant_orange_pumpkin_sitting_on_a_hay_bale_3d_asset

sample1

sample2

sample1

sample2

A striped beach umbrella standing tall on a sandy beach, 3d asset

A stainless steel toaster sitting on a marble countertop, 3d asset

Figure 18: Visual various results of Text-to-Multi-View image generation on T3Bench. (Part V)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A large axe with a wooden handle, 3d asset

A collection of seashells is scattered around a sandcastle on the beach, 3d asset

A DSLR photo of a bald eagle, 3d asset

Dragon armor, 3d asset

A horse walking, 3d asset

A brightly colored mushroom growing on a log, 3d asset

A beautiful dress made out of garbage bags on a mannequin Studio lighting high quality high resolution, 3d asset

A pig wearing a backpack, 3d asset

Figure 19: Visual results of Text-to-Multi-View image generation (Part I), prompts from DreamFusion.
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Mecha vampire girl chibi, 3d asset

Military mech future, 3d asset

A small robot with a glass container on its head metal legs and a glass top, 3d asset

A woodenframed couch with purple upholstery, 3d asset

A black sports car, 3d asset

A squirrel playing guitar, 3d asset

A beagle in a detectives outfit, 3d asset

A low-poly crab, 3d asset

Figure 20: Visual results of Text-to-Multi-View image generation (Part II), prompts from DreamFusion.
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The US Capitol building with a white exterior and goldenyellow dome, 3d asset

A blue poisondart frog sitting on a water lily, 3d asset

A frog wearing a sweater, 3d asset

A dachshund dressed up in a hotdog costume, 3d asset

The US Capitol building with a white exterior and goldenyellow dome, 3d asset

A beautiful rainbow fish, 3d asset

A blue motorcycle, 3d asset

A bear dressed as a lumberjack, 3d asset

Figure 21: Visual results of Text-to-Multi-View image generation (Part III), prompts from DreamFusion.
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A baby dragon hatching out of a stone egg, 3d asset

A bear dressed in medieval armor, 3d asset

A goose made out of gold, 3d asset

A knight chopping wood, 3d asset

A lemur taking notes in a journal, 3d asset

An ice cream sundae, 3d asset

An extravagant mansion aerial view, 3d asset

A pug made out of metal, 3d asset

Figure 22: Visual results of Text-to-Multi-View image generation (Part IV), prompts from DreamFusion.
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A terracotta bunny, 3d asset

The leaning tower of Pisa aerial view, 3d asset

A metal sculpture of a lions head highly detailed, 3d asset

A shiny red stand mixer, 3d asset

A baby bunny sitting on top of a stack of pancakes, 3d asset

A 3d model of an adorable cottage with a thatched roof, 3d asset

A wide angle DSLR photo of a humanoid banana sitting at a desk doing homework, 3d asset

A bulldozer made out of toy bricks, 3d asset

Figure 23: Visual results of Text-to-Multi-View image generation (Part V), prompts from DreamFusion.
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A cake in the shape of a train, 3d asset

A colorful camping tent in a patch of grass, 3d asset

A monkeyrabbit hybrid, 3d asset

A pigeon standing on a manhole cover, 3d asset

Two raccoons playing poker, 3d asset

A confused beagle sitting at a desk working on homework, 3d asset

A cute steampunk elephant, 3d asset

A koala wearing a party hat and blowing out birthday candles on a cake, 3d asset

Figure 24: Visual results of Text-to-Multi-View image generation (Part VI), prompts from DreamFusion.
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A raccoon stealing a pie, 3d asset

A tarantula highly detailed, 3d asset

A steampunk space ship designed in the 18th century, 3d asset

A teapot shaped like an elephant head where its snout acts as the spout, 3d asset

A spanish galleon sailing on the open sea, 3d asset

A wide angle DSLR photo of a colorful rooster, 3d asset

A chihuahua lying in a pool ring, 3d asset

A mountain goat standing on a boulder, 3d asset

Figure 25: Visual results of Text-to-Multi-View image generation (Part VII), prompts from DreamFusion.
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A squirrel Djing, 3d asset

Sydney opera house aerial view, 3d asset

A chimpanzee with a big grin, 3d asset

A cauldron full of gold coins, 3d asset

A hippo wearing a sweater, 3d asset

A pug wearing a bee costume, 3d asset

A robot tiger, 3d asset

Baby elephant jumping on a trampoline, 3d asset

Figure 26: Visual results of Text-to-Multi-View image generation (Part VIII), prompts from DreamFusion.
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A lemur drinking boba, 3d asset

A marble bust of a fox head, 3d asset

An old car overgrown by vines and weeds, 3d asset

A squirreloctopus hybrid, 3d asset

A chimpanzee dressed as a football player, 3d asset

A ladybug, 3d asset

A shining beetle, 3d asset

A capybara wearing a top hat low poly, 3d asset

Figure 27: Visual results of Text-to-Multi-View image generation (Part IX), prompts from DreamFusion.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 4: Quantitative results of image-to-3D on GSO Downs et al. (2022) dataset

Method Chamfer Dist. Volume IOU
Zero123-XL 0.0354 0.4846
SyncDreamer 0.0278 0.5156
VideoMV 0.0257 0.5228

E IMAGE-TO-MULTI-VIEW IMAGE GENERATION

Although the input image provides some guidance for dense pixel generation in multi-view sce-
narios, VideoMV is capable of generating various plausible results even from invisible angles. We
present two typical examples in Fig. 28 to illustrate that VideoMV can produce diverse yet faithful
outputs based on the given image input.

Input View Generated Instance A Generated Instance B

Figure 28: Visual various results of Image-to-Multi-View image generation.

E.1 MORE QUALITATIVE RESULTS ON GOOGLE SCANNED OBJECT

Due to the page limitations in the main paper, we have included additional qualitative results of
Google Scanned Objects in Fig. 29 for a comprehensive analysis. Note that the first image serves as
the input for VideoMV.

E.2 MORE QUALITATIVE RESULTS ON WEB IMAGES

The VideoMV technique can also be applied to web images that lack underlying 3D models. In this
study, we present a visualization of limited cases and encourage readers to experiment with our code
on a wider range of web images. As illustrated in both Fig. 30 and Fig. 31, VideoMV demonstrates
its capability to generate feasible results using either generated or in-the-wild images.

E.3 NUMERICAL RESULTS ON IMAGE-TO-3D

As a dense multi-view generative model, VideoMV aims to tackle the challenging task of synthe-
sizing novel views with higher density and consistency based on a given prompt or single image.
Unlike previous approachesLiu et al. (2023b;c), we do not employ any reconstruction optimization
in VideoMV. Instead, inspired by prior workWang et al. (2021), we present relevant Volume IOU
and Chamfer Distance metrics on the GSO dataset using the off-the-shelf MVS method, such as
NeuS Wang et al. (2021). As depicted in Tab. 4, VideoMV outperforms state-of-the-art methods in
terms of Chamfer Distance and Volume IOU metrics, indicating that leveraging increased consis-
tency in multi-view images for reconstruction can result in improved accuracy in 3D geometry.
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Figure 29: Visual results of Image-to-Multi-View image generation.
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Figure 30: Visual results of Image-to-Multi-View image generation from web images. (Part I)
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Figure 31: Visual results of Image-to-Multi-View image generation from web images. (Part II)
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