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Abstract
AI for software engineering has made remark-
able progress, becoming a notable success within
generative AI. Despite this, there are still many
challenges that need to be addressed before au-
tomated software engineering reaches its full po-
tential. In this paper, our goal is threefold. First,
we provide a taxonomy of measures and tasks to
categorize work towards AI software engineering.
Second, we outline key bottlenecks permeating to-
day’s approaches. Finally, we call for large open-
source community efforts and lay out a collection
of promising research directions to address these
challenges, hoping that we can all come together
to advance and shape the future of AI for code.

1. Introduction
AI for software engineering has made remarkable progress
recently, becoming a notable success within generative AI.
Despite this, there are still many challenges that need to be
addressed before automated software engineering reaches
its full potential. With additional efforts, it should be pos-
sible to reach high levels of automation where humans can
focus on the critical decisions of what to build and how to
balance difficult tradeoffs while most routine development
effort is automated away. Reaching this level of automation,
however, will require substantial research and engineering
efforts across academia and industry. This paper provides
an opinionated view of the tasks, challenges, and promis-
ing directions towards achieving this goal.

Many existing surveys overlap with the topics that are dis-
cussed in this paper, such as AI for programming assis-
tants (Liang et al., 2024; Sergeyuk et al., 2025), LLMs for
software testing (Wang et al., 2024c), using LLMs in low-
resource and domain-specific languages (Joel et al., 2024),
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automated program repair (Zhang et al., 2023c) focus on
automated program repair, and formal mathematical reason-
ing (Yang et al., 2024d). In addition, many papers discuss
the current state, challenges, and future of AI for software
engineering (Fan et al., 2023; Ozkaya, 2023; Wong et al.,
2023; Zheng et al., 2023; Hou et al., 2024; Jin et al., 2024;
Wan et al., 2024b; Roychoudhury et al., 2025a). Our work
draws inspiration from them, and we recommend that the
reader consult with them for alternative perspectives.

In this paper, our goal is threefold. In Sec. 2, we provide
a structured taxonomy of concrete tasks in AI for software
engineering. In particular, we emphasize that there are
many other tasks in SWE beyond code generation and code
completion, encouraging research in these areas. Moving
forward to Sec. 3, we highlight four main challenges that
today’s models face, each cross-cutting and applicable to
several tasks. In Sec. 4, we call for large open-source
community efforts in the field and lay out a collection of
promising research directions to address these challenges.
The main text contains a summary of highlights, with a full
version in the Appendix. We hope that after reading our
paper, the reader can appreciate the progress AI for code
has made, understand the shortcomings of today’s state-of-
the-art models, and come together to advance and shape the
future of the field.

2. Tasks in AI Software Engineering
We first provide a taxonomy of tasks in AI software engi-
neering. To provide a structured way to consider each task,
we define three measures that apply across them: scope,
logical complexity, and level of human intervention. To
achieve an AI software engineer, we strive for AI to be
capable across the board for all three measures.

Scope Measure: We define three levels of scope, the extent
of changes that the AI makes to the codebase. Function-
level scope refers to single, self-contained functions such
as in HumanEval (Chen et al., 2021a) and MBPP (Austin
et al., 2021). Self-contained unit scope goes beyond singular
functions and to larger chunks of code such as entire files
and classes. Project-level scope refers to larger codebases
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such as entire repositories, such as in Commit0 (Zhao et al.,
2024) and SWE-Bench (Jimenez et al., 2024).

Logical Complexity Measure: Tasks require a wide range
of reasoning abilities when it comes to devising algorithms
to solve them. Low logical complexity tasks require little
to no reasoning, such as writing CRUD (create, read, up-
date, delete) applications or using APIs. Medium logical
complexity tasks include most LeetCode problems, finding
inputs to fuzz simple programs, and reasoning about exe-
cution behavior of multithreaded programs. High logical
complexity tasks require meticulous and challenging levels
of algorithmic and logical reasoning, either because the al-
gorithm is complex or because the problem requires clever
thinking and insights. This includes difficult competition
programming problems, writing large thread-safe concur-
rent programs, cracking cryptographic ciphers, and solving
SMT-like problems. Many popular coding benchmarks are
function-level, medium-high logical complexity, such as
APPS (Hendrycks et al., 2021), CodeContests (Li et al.,
2022a), and LiveCodeBench (Jain et al., 2024b).

Level of Human Intervention Measure: AI coding is a
collaborative task. We follow the autonomy taxonomy out-
lined in Morris et al. (2023) to define three levels of human
intervention. Low autonomy is when the human has full con-
trol over the task and uses AI to automate simple sub-tasks.
Medium autonomy is when the human and AI contribute a
similar amount, with interactive coordination of goals and
tasks. Here, the human and AI might both suggest refactor-
ings and optimizations during the development cycle. High
autonomy is when AI drives the interaction and tasks, iden-
tifying required changes and the changing demands of the
user. The AI would defer to the human only when needed
or for a final check, write the code and tests autonomously.
Next, we turn to the set of tasks that are reflective of the
tasks and capabilities of a human software engineer.

2.1. Code Generation

Code generation is the task of generating code from a speci-
fication. In code completion, the specification takes the form
of a preexisting code snippet, and the goal is to complete
the snippet. There are two popular paradigms for code com-
pletion: tab completion, where the user can press the tab
key to complete a block of code (e.g. GitHub Copilot), and
natural language to code, where the specification is a natu-
ral language description with requirements such as the task
description or input-output examples. Recently, AI-driven
IDEs have blurred the lines between the two paradigms.
With the ultimate goal of decreasing the burden of human
programmers, they aim to automatically infer the user’s
intent from the code context and user behavior. However,
when intent is vague, they allow users to specify desired
functionality via chat interfaces.

2.2. Code Transformation

Code Refactoring: In code refactoring, the goal is to take a
working implementation of a piece of software and rewrite
parts of it while maintaining correctness. One challenge
with this task is that success extends beyond functional
correctness or metrics. Because it can often be unclear
what level of abstraction refactorings should be done at,
completing a refactoring at a high autonomy level is also
difficult. These challenges are further compounded by the
need to understand implicit trade-offs customized to specific
codebases, respect conventions, and reason about the long-
term maintenance implications of structural changes.

Code Migration and Translation: An incredibly resource-
intensive task is migrating large amounts of code while
preserving all the original functionality. Such high-value
migrations present opportunities for AI-assisted automation
to reduce cost and manual effort. Code migration often in-
volves changes across many files and systems with complex
transformations. A special case of code migration is code
translation (transpilation): rewriting code from a source
language to a target language. In industry, this task can be
motivated by several reasons such as security and scalability
concerns in legacy languages or avoiding technical debt.
Due to the safety-critical and cross-system nature of many
migrations, this task often requires substantial human over-
sight in practice and cannot be done fully autonomously.

Code Optimization: Transforming programs to improve
performance characteristics while maintaining functional
correctness is a critical software task. Optimizing real-world
systems poses significant challenges, as performance bot-
tlenecks must be identified and new algorithms to mitigate
them must be proposed. Code optimization often has a
large search and solution space with competing objectives
like speed, memory efficiency, and readability, for example
when optimizing kernel code at the PTX level for GPU-
based AI model optimization (Zhao et al., 2025; Ouyang
et al., 2025).

2.3. Software Testing and Program Analysis

Software Testing: Software testing is a practical approach
to prevent bugs, both during development and production.
There are several popular approaches to software testing,
some short-term and others longer-term. For example, Unit
testing refers to using input-output style tests that exercise
the functionality of a piece of code and property-based test-
ing is based on formal specifications and relies on specifying
test cases that ensure that known properties of the code hold.
The goal of software testing is to design tests that can sur-
face bugs reliably. This is evaluated through metrics such
as code coverage–how much of the source code is executed
when the test suite is run. While practical, software testing
faces challenges such as the scalability limits of traditional
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tools and the difficulty of manually designing tests with
good coverage.

Program Analysis: While testing catches bugs, the most
challenging software issues are security vulnerabilities and
zero-day exploits, from memory corruption to privilege
escalation. This requires a deep program understanding,
that testing/fuzzing often misses. For instance, a zero-day
is a vulnerability unknown to the software developers that
is found by an attacker, and there is no patch available
from the vendor. In such cases, the only practical approach
is offensive security research, manual source code audits,
and root cause analysis of prior vulnerabilities to harden
codebases.

2.4. Software Maintenance

Code Documentation and Summarization: To ensure
maintainability, readability, and ease of collaboration, code
must be well documented. Good documentation needs to
be written cleanly and crisply, describing what the function
does and how the function works. It must also anticipate and
address any misunderstandings that a programmer might
have, such as potential side effects or special cases. Humans
often see documentation as a chore and neglect it, leading to
code and documentation frequently being out of sync. This
has led to the concept of “self-documenting code”, code that
clearly conveys its purpose.

Pull Request (PR) Review: Reviewing pull requests is an
integral aspect of the software development cycle. While
the most essential requirement for PRs is that a new feature
is implemented correctly, other important considerations
include checking whether the repository’s style conventions
are satisfied, ensuring that the PR does not introduce any
new bugs, verifying that program invariants and guarantees
still hold, and inspecting whether tests are robust.

Code Understanding, Navigation, and Question Answer-
ing: When encountering a codebase for the first time, devel-
opers often find it challenging to understand and develop a
good mental model of the code. This can be due to many rea-
sons: too many wrapper functions, excessive error-handling
boilerplate, deep call stacks, or poor code cleanliness. One
important challenge in code understanding is code naviga-
tion: finding where relevant functionality is implemented.
Doing this well requires understanding the high-level layout
of where every functionality lies in the codebase and the
low-level understanding of which helper functions are used
to implement each functionality.

Another challenge is code question answering: answering
complex questions about a codebase, which requires sophis-
ticated code understanding and reasoning abilities. Models
should not hallucinate or give incorrect information that
skews a developer’s mental model of the code. Beyond

other tasks mentioned in this section, developers might com-
monly ask questions related to data flow (when and where
data structures get mutated), code functionality (whether
there are any side effects), performance characteristics (de-
termining the runtime and memory complexity of a func-
tion), or error handling (whether certain corner cases are
handled).

2.5. Scaffolding and Meta-Code

For a software system to work, the core logic must be writ-
ten well, but that is not enough. Many infrastructural aspects
must be in place to support the software. We group these
into two main categories: scaffolding and meta-code. We
define scaffolding as a task outside of the code that must
be done to get the software running properly. Examples of
scaffolding include setting up Google authentication, sub-
scribing to APIs, managing file storage, and generating API
tokens. In contrast, we define meta-code to be code that is
important to make the system work but does not actually
participate in the execution of its main logic. Examples of
meta-code include test harnesses, files, CI/CD code, Make-
files, Dockerfiles, sandbox databases, and preprocessors.
Scaffolding and meta-code often are small in scope and
have low logical complexity but can require a lot of domain-
specific knowledge about the application, requiring human
intervention.

2.6. Formal Verification

The task of formal verification involves generating check-
able, mechanized proofs that can guarantee that a piece of
code works as intended. Formal verification of software is
necessary in mission-critical applications such as aircraft
software, where it is crucial that code is correct with absolute
certainty. Over the years, there have been countless program-
ming languages designed specifically for formal verification.
Some of the popular ones include TLA (Lamport, 1994),
Coq (The Coq Development Team, 2024), Lean (De Moura
et al., 2015), Dafny (Leino, 2010), Isabelle (Nipkow et al.,
2002), and Verus (Lattuada et al., 2024). While formal veri-
fication tools have begun to see adoption in industry, they
has not yet become mainstream because of these challenges.
Code LLMs could greatly ease this burden and make it more
feasible to verify code at larger scales, especially verifying
properties requiring lower logical complexity.

3. Challenges
While the field of AI for code has made fruitful progress,
cutting-edge AI still struggles with SWE tasks, especially at
larger scopes and higher levels of logical complexity. Next,
we discuss four high-level challenges in AI for code: data,
scale, interaction, and measurement. These four challenges
permeate across all of the tasks mentioned in the previous
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section.

3.1. Data

Low-Resource Languages and Specialized Libraries: As
we adapt code LLMs to individual codebases, generating
correct code in out of distribution (OOD) scenarios becomes
crucial. Much of software development in business contexts
revolves around proprietary codebases, which is a distribu-
tion shift from the open-source code that dominates LLM
training data (Ahmed et al., 2024a). These OOD scenarios
include domain-specific languages (DSLs), custom internal
libraries, low-resource APIs, and company-specific coding
styles and conventions.

In low-resource languages, models have a weaker semantic
understanding of the language. Due to the lack of training
data in these OOD domains, models may struggle to write
common primitives or piece together functionality coher-
ently. On HumanEval, Qwen-2.5 has an accuracy of 83% in
Python but 27% in D (Hui et al., 2024). In OOD scenarios,
LLMs lack awareness of the libraries and functions avail-
able for use. In new codebases using custom libraries, many
functions appear only a few times, providing limited train-
ing data for AI models to learn their usage. This scarcity
can lead to overfitting, where models fail to recognize an
effective use-case of these functions. Models also frequently
hallucinate non-existent functions based on patterns that it
infers.

Library and API Version Updates: Continual learning,
the idea of training an AI system to take in new information
continually, has been a long-standing challenge in AI and
NLP (Wu et al., 2024; Wang et al., 2024d). In software
engineering, codebases are continuously changing as new
features are supported and awkward design patterns are re-
worked. While backwards compatibility is often prioritized
in software design, it inevitably becomes broken as code-
bases evolve further. Therefore, programming libraries have
version releases, each release supporting and deprecating
features in the last version.

Even identifying which version of a library is being used
can be quite difficult, because versioning information can
be hidden deeply within a codebase. Sometimes, it can be
found in comments or configuration files, but in the worst
case, it must be inferred from the library calls being used.
To make things worse, some code may be compatible across
multiple versions, while other code will cause errors only
in specific versions. On the other hand, writing code for
a specific version can also be challenging, because it can
be difficult for LLMs to implicitly keep track of which
constructs and patterns are associated with each version.
For example, when asking LLMs to write code in Lean 4, it
often uses constructs from Lean 3, an older version that is
much more prevalent across GitHub.

High Logical Complexity and OOD Domains: Some pro-
gramming tasks are challenging for even the best human
programmers, requiring approaches with a very high logical
complexity. Examples of tasks that fall into this category
include superoptimizing programs, discovering attacks for
purportedly secure code, writing performant compilers, op-
timizing GPU kernels (Ouyang et al., 2025), and writing
concurrent programs.

Because they are hard for humans, these tasks are very
rarely in the training data of today’s language models. They
have unique, domain-specific, challenges that making gen-
eralizing from existing data difficult. For these problems,
language models rely heavily on feedback-driven search
algorithms (Mankowitz et al., 2023b), and it can be difficult
to navigate the search space effectively.

3.2. Scale

Large Scope and Long Contexts: At the repository level,
the tasks in Sec. 2 become significantly more difficult and
require many steps. In code generation, user alignment
can be an issue because there are many decision points and
tradeoffs that can compound. In code refactoring, modifica-
tions will touch multiple parts of the codebase, and it can be
tricky to keep the repository consistent. In code debugging,
functions can be large and bugs can be nested deeply within
stacks of function calls. Another issue with large scopes is
large context lengths. Software engineering often requires
dealing with very large codebases–for example, Google has
repositories with over a billion lines of code (Potvin & Lev-
enberg, 2016). As this is far too large for modern-day LLMs,
choosing the correct context to include when using LLMs is
important.

Limits of Retrieval-Augmented Generation (RAG): Retrieval-
based algorithms have been the predominant way to deal
with long-context coding issues. First, the retriever retrieves
relevant functions. Then, the generator leverages the re-
trieval to improve generation. While RAG has proven ef-
fective in many NLP tasks, the code domain provides new
challenges for these methods.

Retrieval: In most NLP tasks, the retrieval step can be done
relatively well because keywords that are in the query are
often keywords that need to be retrieved. Unlike answering
NL questions, writing code often requires drawing inspira-
tion from code snippets that may be completely different
syntactically. This can include programs with similar se-
mantics, algorithms, or API calls, all of which potentially
have very little in common when it comes to syntax. Pre-
vious work such as Ma et al. (2024); Utpala et al. (2023)
have found that code in the same language is, on average,
far closer in embedding space compared to semantically
equivalent code.
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Generation: In NLP tasks, the generation step often is a
straightforward application of the retrieved information. In
code, we are dealing with code reuse: piecing together
relevant snippets of code in a precise and productive way
to fit the current context. Each piece of retrieved content
provides different information. This can include information
about the language’s syntax, documentation about the API,
clues about the algorithm to be written, or examples of
similar functionality being written.

Long-Horizon Code Planning When working on large
projects, engineers often make complex decisions about how
to design and structure the code to best support the various
functionalities that will eventually be needed. To build a
long-lasting software system, an engineer must know the
potential paths that the system’s evolution might take. This
requires domain expertise and experience in how different
code structures require different forms of extension.

Designing Good Abstractions: One instance of long-horizon
code planning is choosing the right abstractions from the
outset. An API designed with good abstractions will allow
new features to be implemented seamlessly with minimal
user overhead, while an API designed with poor abstrac-
tions may lead to excessive code duplication, refactoring,
or even debugging. An example of this is library learing:
finding the right APIs and libraries that can provide useful
abstractions, leading to more reuse and intuitive interfaces.
(Ellis et al., 2021; Stengel-Eskin et al., 2024; Bowers et al.,
2023). While the traditional library learning literature has
focused primarily on code reuse, a truly effective library
must also prioritize ease of use and maintainability, as well
as be robust and adaptable to future extensions.

Modularity and Code Quality: LLMs are trained and opti-
mized primarily for code correctness with insufficient focus
on other aspects of code like quality and maintainability.
This is further exacerbated with large scale reinforcement
learning being performed using test cases which can lead to
unintended consequences regarding code quality, as correct
but poor quality code is still often given a high reward. Em-
pirically, it has been observed that LLM written solutions
are often more complex than human-written counterparts.
For example, Jain et al. (2024c) identified that LLMs prefer
to repeat existing code instead of making use of abstractions
in the existing code. One aspect of code quality is modu-
larity, ensuring that code does not get duplicated too often.
Here, Berlot-Attwell et al. (2024) identified that library or
tool reuse is non-trivial for LLMs in coding and formal math
domains.

Effective Tool Usage: Software engineering has witnessed
the development of various open and proprietary tooling
support for programming, debugging, analysis, and code
management over time. For example, program analysis tools
provide static and dynamic assurances on code correctness.

Print statements and debuggers are used for dynamically
analyzing and debugging programs at a fine-grained level.
Beyond programming, such tools are richly integrated into
the entire software development lifecycle, e.g., code naviga-
tion or search, reviewing code, CI testing.

While many efforts combine LLMs and agents with tools,
they do not achieve fully dynamic and effective software en-
gineering tool usage. This involves an AI system seamlessly
and proactively integrating appropriate tools depending on
the task at hand. There are a few challenges towards achiev-
ing this goal. First, the AI system must identify which tools
could potentially be useful for the task at hand. Second,
the system then needs to decide when to invoke the tool. A
complex debugging task might require the use of pdb or
gdb to track intermediate program states, while looking at
input-output pairs may be sufficient for simple debugging
tasks. Third, the agent then must figure out how to invoke
the tool. If the agent knows that a certain function in a
program has an error, it may wish to walk through only
that function instead of the entire code from start to finish.
Finally, the agent needs to incorporate the output provided
by the tool in order to inform its next steps, e.g. edit the
code if a bug was uncovered or run the tool again otherwise.

3.3. Interaction

While AI coding systems are increasingly more powerful,
the majority of them are still at a low to medium autonomy
level, serving as engineer assistance rather than achieving
high or full automation. We identify a few key challenges
of today’s AI coding systems that prevent these systems
from working with humans effectively at higher levels of
autonomy.

Vague Specifications and User Misalignment: When us-
ing code LLMs or coding agents, we typically prompt them
with a natural language specification. This can include
a natural language description of the desired code, input-
output examples, relevant code snippets, and other func-
tional requirements. However, there is a gap in the level
of abstraction between English and code, leading to incom-
plete or ambiguous specifications. This issue becomes more
pronounced in longer programs, where the number of am-
biguous decision points increases, and choices traditionally
made by humans are instead implicitly embedded in the
LLM’s generated code. Consequently, users often expe-
rience misalignment due to vague specifications. While
many code LLMs support multi-turn interactions, it remains
inherently challenging for users to articulate their thought
processes into follow-up natural language instructions.

Inherent trade-offs in software development: Designing
large software systems always surfaces trade-offs between
various desiderata such as readability, scalability, perfor-
mance, maintainability, reliability, security, etc. These trade-
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offs are often context-dependent. A long-term and rapidly
moving project may be willing to trade off some perfor-
mance to have simplicity and readability. Performance-
critical applications may completely sacrifice readability
to eke out every millisecond of speed (such as using bit-
twiddling hacks). Finding the sweet spot among these trade-
offs can often involve extensive prototyping and bench-
marking to understand the performance characteristics of
different approaches. However, user specifications in the
initial prompt rarely include details about these trade-offs,
nor do models often take them into account.

Lack of Controllability: When using AI coding systems,
programmers often seek specific functionality, yet they lack
reliable ways to steer LLMs toward generating precisely
the desired code. Instead, they typically rely on a trial-and-
error approach, repeatedly sampling outputs or providing
feedback until the AI produces an acceptable solution. Con-
sequently, significant human effort is still required to review
and modify the code to ensure it meets the intended func-
tionality (Weisz et al., 2024).

A way to improve controllability is for AI coding systems
to recognize when human input is needed and communicate
effectively—-yet this remains the top-reported challenge
in human-agent collaboration (Shao et al., 2024a). LLMs
rarely defer to humans for clarification, while developers
often ask questions to clarify the description of a task pro-
vided by their peers. In addition, based on its knowledge
of existing software, AI should incorporate implicit priors
from a specification while keeping the user in the loop.

3.4. Measurement

Task Diversity and Capability Isolation: Current coding
evaluations primarily focus on the code generation task,
with little attention towards the tasks discussed in Section 2.
As more agent-based approaches are introduced for soft-
ware engineering (e.g. pairing a code generation model
with a debugging model), these engineering-related capabil-
ities beyond just code generation will be important towards
designing a maximally performant system. Solely relying
on end-to-end coding evaluations that focus on the overall
correctness of a codebase makes it difficult to precisely mea-
sure progress and learn from the failure modes on individual
tasks.

Contamination: Data contamination is a serious issue that,
if not taken into account, can affect the soundness of vari-
ous conclusions drawn from a set of benchmark results. In
coding, the performance of LLMs on competitive program-
ming (Xu et al., 2024a; Jain et al., 2024b) and SWE-Bench
(Aleithan et al., 2024) tasks has been shown to degrade
over time, indicating the possibility of older problems being
contaminated due to public exposure on the internet. For
simpler function-level HumanEval style problems, Matton

et al. (2024) suggest three potential causes of contamination:
direct data leakage (benchmarks are on GitHub), synthetic
data leakage (there are only a limited number of interview
problems), and overfitting to test sets (benchmark hacking).
In addition, for code, contamination can be hard to detect,
as semantically equivalent code that is syntactically distinct
could be thought of as contamination (Riddell et al., 2024).
A recent benchmark, the Konwinski Prize1, is a promising
way to fairly evaluate SoTA LLM models by only using new
GitHub issues.

Construct Validity: Construct validity refers to how closely
a measurement reflects the underlying concept. Given the
implications of rapid performance improvement in the AI
for the code domain, it is essential to have high-construct va-
lidity benchmarks evaluating how well programming agents
can perform. While benchmarks like SWE-Bench come
close, user experiences do not currently match rapid per-
formance gains obtained from them. This is partially be-
cause many desiderata in software engineering cannot be
described cleanly via automated unit testing. Things like
multi-turn code generation, designing an UI, and writing
clean and idiomatic code are all difficult to quantitatively
measure with precision. Designing reliable proxy metrics
for these desired goals remains a challenge.

4. Paths Forward
Now, we describe several paths forward to address the afore-
mentioned challenges. We group these into three parts: data
collection, training, and inference time approaches.

4.1. Data Collection

When developing LLMs for code, the open-source commu-
nity relies on datasets like the Stack (Lozhkov et al., 2024),
consisting of trillions of GitHub tokens. However, richer
sources of data exist such as fine-grained data of the de-
velopmental process. As this data needs to be collected on
a large scale, we call for a community-based open source
effort to assemble an open dataset for training code LLMs.

Automatic Data Curation: The advantage of code is it
is possible to achieve strong, verifiable feedback with test
cases, program execution engines, and other symbolic tools.
Modern programming tools allow us to extract rich semantic
and structural information about code.

Augmenting Data with Program Information: One way to
increase semantic richness of coding datasets is to augment
training datasets with detailed annotations describing vari-
ous properties of programs. We hypothesize that this aug-
mentation will significantly improve a model’s understand-
ing of code, leading to better generalization and stronger

1https://www.kprize.ai/
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coding capabilities. This information includes static analysis
(abstract syntax trees), program instrumentation, dynamic
analysis, and formal verification.

High-quality, Verifiable Synthetic Data: The verifiability
of code makes it possible to generate a large batch of data
and filter out low-quality samples, even at the repository
level. With the supervision of experts in various domains,
we believe the community can come up with high-quality
synthetic data pipelines with broad coverage of software
engineering tasks. For example, to generate code with inter-
esting program invariants, we can sample a large batch of
programs, run an invariant detection engine, and retain only
programs with interesting invariants.

Human-Centric Data Curation: While automatic data
curation can provide a lot of additional information, there
are still signals that are best obtained via manual efforts. We
list three such categories of tasks below:

Fine-Grained Data of the Developmental Process: IDE
providers have an advantage when it comes to coding data,
as they have direct access to the full history and evolution of
a codebase. Companies such as Google and Meta (Chandra,
2024; Murali et al., 2024) collect fine-grained signals such
as edit history. With direct access to the full history and evo-
lution of a codebase, they can track which suggestions are
adopted over time. However, companies generally collect
data for their own use cases, making an open-source effort
invaluable for curating a collective and open use dataset.

Data for Diverse SWE Tasks: Most of today’s code LLM
training recipes focus on code generation because large-
scale datasets are mostly in a continuous format. We believe
that involving domain experts and curating data for all sorts
of tasks (including challenging and out-of-distribution ones)
will lead to diversity and more general coding capabilities.

Human-Centric Data: Code LLMs are trained and evaluated
on carefully curated datasets with clear instructions and ver-
ifiable test cases. However, these models are often deployed
in real-world scenarios where users provide vague specifica-
tions or incomplete requirements in their queries. Collecting
human-centric data reflecting real-world model usage is a
promising approach to bridging the gap between model de-
velopment and deployment, but we currently have very little
data of this form. An open-source community effort can
lead to tools and environments such as open-source IDEs to
capture real-world interactions in diverse modalities.

4.2. Training

Environment Design for Code RL: In recent months,
RLVR has seen success in solving algorithmic program-
ming problems through DeepSeek-R1 (DeepSeek-AI et al.,
2025) and OpenAI o1. Recently, on SWE-Bench, SWE-RL
(Wei et al., 2025) use RL on a rule-based reward to im-

prove performance on SWE-Bench. We find it promising to
continue scaling the RL approach and create environments
from tasks collected from real-world software engineering
repositories. These environments can be used to improve
reasoning skills, environment-interaction capabilities and
tool usage. However, scaling this up significantly requires
solving several research and engineering problems. First,
installing arbitrary repositories from Github, even using
CI is challenging and we require smarter solutions poten-
tially involving LLM-based installation agents. Next, setting
up execution infrastructure would require storing installed
repository images in something akin to docker for effi-
cient storage and fast container startup times (Team et al.,
2025). Notably, combined docker images can grow mas-
sively large and often grow at hundreds of gigabytes even
at a modest scale of a few hundred repositories. Because of
the scale and engineering effort required, we advocate for
the community to come together and create a unified gym
environment for coding.

Adapting to Specialized and Quickly Changing Code-
bases: Being able to quickly adapt to code is an important
and crucial skill, as codebases are often out-of-distribution
and frequently change. Here, we describe three potential
research directions leading to such adaptation.

Test-time training (TTT) to custom codebases: TTT is
the recent paradigm of adapting to a specific problem in-
stance by training on a narrow set of in-distribution exam-
ples (Akyürek et al., 2024; Sun et al., 2020). This can be
used when working in a low-resource context, for example
training on a specific codebase, new domain, or unseen API.
One way to get data in these contexts is to collect and learn
from trajectories of a SWE agent’s behavior. We can keep
track of previous model attempts and failures to prevent
repeated mistakes. This will steer the model closer to the
desired distribution, such as generating code in the specified
version of libraries in the current context.

Keeping an information bank of code information: For li-
brary and versioning issues, retrieval can be very effective
for preventing hallucinations of wrong versions of libraries,
which can inherently lead to better synthetic data and agen-
tic trajectories. During the TTT process, we can also keep a
large growing memory bank of code, documentation, syn-
thetic code, and agentic trajectories in the specialized con-
text. Retrieving from the memory bank would improve the
success of generating code, which can then be augmented
to the memory bank, and so on, continuously increasing the
amount of data and knowledge.

Learning on the fly: When humans are faced with a task they
have never seen before, they are often able to draw from past
experiences and quickly adapt and generalize to the new do-
main. This is one of the big unsolved challenges of today’s
LLMs: given an OOD coding task, how can models get up
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to speed and productively work on the task with few sam-
ples? On toy domains, an example of this is DreamCoder
(Ellis et al., 2021), a system that learns to solve problems
by writing programs and automatically discovering domain
concepts and composing concepts together. Designing such
approaches for more practical applications is an exciting
research direction that will have drastic implications for
coding and reasoning.

Training Code LLMs to Collaborate with Humans: As
we collaborate with AI more to write code, it is crucial
that these models have capabilities that allow for effective
collaboration.

Specifications Beyond Natural Language: While natural lan-
guage prompts offer intuitive and flexible ways to express
requirements, they are often ambiguous and incomplete. To
address this, we can train models to use more precise and
verifiable representations such as formal specifications and
test-based specifications. Formal specifications allow an AI
system to precisely verify correctness. Test-based specifi-
cations range from input-output examples and assertions to
property-based tests. However, hand-crafted test suites can
be incomplete, leading to misalignment where AI-generated
code passes tests but does not genuinely meet functional
requirements. Moving forward, we should train models to
generate high-quality test cases based on the user’s initial
query, ensuring more comprehensive specification coverage.

Learning to Quantify Uncertainty and Communicate Proac-
tively: As AI coding systems are increasingly deployed to
complex SWE tasks, they encounter more ambiguous and
uncertain scenarios compared to traditional benchmarks for
coding models. Ideally, in such situations, these systems
should proactively communicate with users to clarify tasks
and acknowledge its own limitations rather than becoming
stuck in endless failure loops or generating buggy code. A
key challenge is enabling models to distinguish between
well-specified and ambiguous instructions while quantify-
ing uncertainty in a robust manner, which will require in-
corporating corresponding reasoning data into post-training.
Another challenge in human-agent collaboration is com-
munication (Shao et al., 2024b), highlighting the need to
improve the proactive communication capability of the mod-
els. Current models often fail to ask meaningful questions
when user input is ambiguous or insufficient and struggle
to provide progress updates or verify plans in interactive
settings. Enhancing the proactive communication skills of
models requires innovative approaches to reward behaviors
that yield benefits over multiple steps. Since communication
with users does not immediately resolve the task at hand,
but may improve long-term results, effective strategies must
account for delayed rewards in training.

4.3. Inference Time Approaches

In this section, we advocate for several inference-time re-
search thrusts that have currently been underexplored. Mak-
ing progress on these fundamental directions can unblock
many of the challenges previously mentioned.

Semantic-Aware Embeddings and Retrieval: We saw that
code that is close in embedding space is more often syntac-
tically similar than semantically similar (Zhao et al., 2023),
making it hard to retrieve semantically similar code. How-
ever, before the LLM era, there were a variety of efforts to
incorporate code properties when training embeddings. For
example, Nye et al. (2020) train neural modules to repre-
sent program operations, leading to compositional program
representations that encode the semantics of the underlying
programming language. Many other works (Zohar & Wolf,
2018; Ellis et al., 2019; Chen et al., 2021b) attempt to learn
execution-aware latent representations for partial and full
programs, taking semantics into account.

Incorporating these techniques to train models to have better
and more semantically aware representations can lead to
models with a more general understanding of code (Sec.
C.6). For example, if correct and buggy programs could
hypothetically be separated in embedding space, then mod-
els could be steered away from the incorrect program space.
While a complete separation might not be possible, hav-
ing semantics-aware embeddings could lead to downstream
improvements on SWE tasks.

Retrieving via on-the-fly navigation: Instead of keeping
track of embeddings, another approach is to find retrievals
on-the-fly by navigating the codebase. This prevents the
high cost of continuously maintaining and updating the re-
trieval bank. An agent can learn to use command line func-
tions such as cd, ls, and grep, and IDE functions such
as jumping to function definitions or finding all references
of a function. Static analysis tools can also be paired with
the agent to improve code navigation, such as providing the
abstract syntax tree (AST) or file structure of a codebase.

Integration with SWE Development Frameworks: As
AI improves at SWE, there are increasingly more opportu-
nities to incorporate it into the continuous integration and
continuous deployment (CI/CD) process. In CI/CD, auto-
mated pipelines are the backbone for building, testing, and
deploying code changes. CI/CD accelerates feedback cy-
cles and minimizes integration issues. AI could contribute
in many ways. First, AI-powered code review tools can
be incorporated into CI pipelines to automatically identify
and flag style violations, potential security vulnerabilities,
and code smells before human reviewers are involved. Sec-
ond, AI can provide intelligent deployment risk assessments.
By analyzing code changes, test outcomes, and historical
deployment data, AI can predict the likelihood of deploy-
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ment issues, informing decisions about whether to proceed
with automated deployment or mandate manual verification
steps. Finally, AI can automate the generation of release
notes by summarizing commit messages, issue tracker data,
and relevant code modifications within the CI/CD process.

Steering away from software anti-patterns: In SWE, certain
anti-patterns frequently lead to bugs. Common weakness
enumeration (CWE) is a categorization of software and hard-
ware weaknesses often leading to vulnerabilities. Because
publicly available GitHub code often contains code with
anti-patterns, bugs, and CWEs, LLMs often write code sus-
ceptible to these issues (Asare et al., 2023; Fu et al., 2023).
Explicitly steering models against these vulnerabilities can
lead to more secure and correct code, e.g. by collecting
programs violating each CWE (synthetically or via GitHub)
and using them as negative signal during SFT or RL.

Neurosymbolic Approaches: Code is a unique domain be-
cause there is a vast body of techniques from programming
languages (PL) research to build off of, but the majority of
AI for code research today does not leverage the symbolic
properties of code. Traditional PL approaches have a few
common shortcomings. First, they often require very com-
plete and precise specifications. Many tools need to have
specifications for all library functions, need to specialize to
a precise version of the language, and need to specialize to
the build system. Second, there is often a high computa-
tional cost due to the large search space. Third, there can
be many false positives due to the limitations of the tool.
We believe that deeply integrating these symbolic tools with
LLMs can partially mitigate these challenges.

We provide a few examples of this potential integration.
When generating code, program analysis techniques could
be applied on shorter snippets of AI-generated code to sur-
face potential bugs or prove properties. To improve general
code understanding, LLMs can be trained with informa-
tion about program structure such as ASTs (Gong et al.,
2024). When debugging a large codebase, AI could be first
used to narrow down potentially problematic sections of the
code which are then handed off to PL tools for debugging.
During code generation in DSLs, LLMs can leverage the
grammar of the programming language to do constrained
decoding (Poesia et al., 2022; Geng et al., 2023; Wei et al.,
2023b) to mitigate syntactic errors.

Scaffolding Human Supervision: Once code LLMs are
deployed for inference, it is crucial to scaffold human su-
pervision of AI-generated code. This goes beyond merely
enhancing the accuracy of AI-generated code, as humans
often still need to make the final decision on whether to
accept the code or understand it for future integration and
maintenance. A study on Github Copilot usage (Al Madi,
2023) revealed that programmers tend to allocate less visual
attention to AI-generated code. While we could train hu-

mans to better identify issues in AI-generated code (Singhal
& Kumar, 2023), a more desirable approach is to design AI
systems that scaffold human supervision, reducing human
cognitive load when reviewing generated code.

One way to achieve this is by enriching AI-generated con-
tent with additional contextual information. In software
engineering specifically, Sun et al. (2024b) highlighted the
benefits of high-quality source code summarization in aid-
ing software developers in understanding and maintaining
machine-generated code. Second, interactive approaches
can also enhance supervision such as Live Programming
(Ferdowsi et al., 2024), a continuous display of the run-
time values of a program. Finally, improving the readability
and interpretability of AI-generated code itself presents a
promising direction. Expanding on these ideas, future re-
search should prioritize human interpretability in the design
and optimization of AI coding systems, fostering greater
trust and control in AI-assisted software development.

5. Alternative Views
An alternative view, particularly within the industry, sug-
gests that limited further innovation is needed to achieve
AI software engineers. They believe that scaling up larger
models and more data is sufficient for creating AI engi-
neers capable of contributing effectively. This is supported
by the significant progress in recent years, for example the
SWE-bench score increasing from an initial 2% to now 73%.
However, we believe this view is too optimistic. As we have
outlined in the paper, there are many fundamental capabili-
ties in AI for SWE that today’s models lack. As we argued
in Sec. 4, improving these aspects requires fundamentally
new forms of data, training environments, and inference-
time approaches. The alternative perspective, while not
unreasonable given recent progress, should not overshadow
the need for more efforts in what we outline. As a research
field, AI for code still has plenty to offer and overcome.

6. Conclusion
In this position paper, we identify key tasks at the heart
of AI for software engineering and highlight critical cross-
cutting challenges that permeate throughout many tasks. To
drive progress in the field, we also pinpoint a set of excit-
ing and promising research directions for alleviating these
challenges and advancing AI towards being a more capable
software engineer. We hope this work provides valuable
insights about the current landscape of AI for SWE and en-
courages future research in these directions. By building on
these insights, we are optimistic that we as a community can
work together toward developing AI-driven solutions that
better support software engineers in real-world settings.
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Monniaux, D., and Rival, X. The astrée analyzer. In
Programming Languages and Systems: 14th European
Symposium on Programming, ESOP 2005, Held as Part of
the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005. Proceedings 14, pp. 21–30. Springer, 2005. 61

De Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pp. 378–388. Springer,
2015. 3, 45, 60

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,
Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948. 7, 48

Denison, C., MacDiarmid, M., Barez, F., Duvenaud, D.,
Kravec, S., Marks, S., Schiefer, N., Soklaski, R., Tamkin,
A., Kaplan, J., et al. Sycophancy to subterfuge: Investi-
gating reward-tampering in large language models. arXiv
preprint arXiv:2406.10162, 2024. 49

Diggs, C., Doyle, M., Madan, A., Scott, S., Escamilla, E.,
Zimmer, J., Nekoo, N., Ursino, P., Bartholf, M., Robin,
Z., et al. Leveraging llms for legacy code modernization:
Challenges and opportunities for llm-generated documen-
tation. arXiv preprint arXiv:2411.14971, 2024. 59

12

https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2502.09328
https://blog.chromium.org/2018/09/10-years-of-speed-in-chrome_11.html
https://blog.chromium.org/2018/09/10-years-of-speed-in-chrome_11.html
https://blog.chromium.org/2018/09/10-years-of-speed-in-chrome_11.html
https://arxiv.org/abs/2501.12948


Position: Future Research and Challenges Remain Towards AI for Software Engineering

Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang,
K. Hoppity: Learning graph transformations to detect
and fix bugs in programs. In International Conference on
Learning Representations, 2020. 58

Dinella, E., Lahiri, S., and Naik, M. Program structure
aware precondition generation, 2024a. URL https:
//arxiv.org/abs/2310.02154. 59

Dinella, E., Lahiri, S. K., and Naik, M. Inferring natural
preconditions via program transformation. In Companion
Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, FSE 2024,
pp. 657–658, New York, NY, USA, 2024b. Association
for Computing Machinery. ISBN 9798400706585. 59

Ding, Y., Wang, Z., Ahmad, W., Ding, H., Tan, M., Jain,
N., Ramanathan, M. K., Nallapati, R., Bhatia, P., Roth,
D., et al. Crosscodeeval: A diverse and multilingual
benchmark for cross-file code completion. Advances
in Neural Information Processing Systems, 36:46701–
46723, 2023. 41

Ding, Y., Fu, Y., Ibrahim, O., Sitawarin, C., Chen, X., Alo-
mair, B., Wagner, D., Ray, B., and Chen, Y. Vulnerability
detection with code language models: How far are we?
arXiv preprint arXiv:2403.18624, 2024a. 59

Ding, Y., Peng, J., Min, M. J., Kaiser, G., Yang, J., and Ray,
B. Semcoder: Training code language models with com-
prehensive semantics. arXiv preprint arXiv:2406.01006,
2024b. 47

Ding, Y., Steenhoek, B., Pei, K., Kaiser, G., Le, W., and
Ray, B. Traced: Execution-aware pre-training for source
code. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pp. 1–12, 2024c.
42, 47

Disselkoen, C., Kastner, J., shaobo-he aws, Hietala, K.,
Wells, A., Eline, A., Moreno, V., Palacios, A., Markling,
M., Szegheo, N., yuan, Larsen, M. J., Sharma, S.,
B-Lorentz, Smith, N., Vanderbleek, S., Mamat, A.,
Banchich, A., Hakanson, K., vasumv, Cecchetti, S.,
Arakaki, R., Flatt, O., Meissl, C., Bhakti, Rozek,
B., Garcı́a, J. V., Tamás, J., and Jones, L. cedar-
policy/cedar, 2025. URL https://github.com/
cedar-policy/cedar. 61

Du, X., Liu, M., Wang, K., Wang, H., Liu, J., Chen, Y., Feng,
J., Sha, C., Peng, X., and Lou, Y. Classeval: A manually-
crafted benchmark for evaluating llms on class-level code
generation, 2023. 57

El-Kishky, A., Wei, A., Saraiva, A., Minaev, B., Selsam, D.,
Dohan, D., Song, F., Lightman, H., Clavera, I., Pachocki,
J., et al. Competitive programming with large reasoning
models. arXiv preprint arXiv:2502.06807, 2025. 54

Ellis, K., Nye, M., Pu, Y., Sosa, F., Tenenbaum, J., and Solar-
Lezama, A. Write, execute, assess: Program synthesis
with a repl. Advances in Neural Information Processing
Systems, 32, 2019. 8, 51

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
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A. Introduction
AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI.
Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full
potential. With additional efforts, it should be possible to reach high levels of automation where humans can focus on the
critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated
away. Reaching this level of automation, however, will require substantial research and engineering efforts across academia
and industry. This paper provides an opinionated view of the tasks, challenges, and promising directions towards achieving
this goal.

Many existing surveys overlap with the topics that are discussed in this paper. Liang et al. (2024) and Sergeyuk et al. (2025)
survey the successes and challenges of AI programming assistants, (Wang et al., 2024c) survey using LLMs for software
testing, and Joel et al. (2024) survey using LLMs in low-resource and domain-specific languages, and Zhang et al. (2023c)
focus on automated program repair, both with and without LLMs. Finally, Yang et al. (2024d) is a roadmap for formal
mathematical reasoning and has some overlap with our discussion on software verification.

In addition, many papers discuss the current state, challenges, and future of AI for software engineering (Fan et al., 2023;
Ozkaya, 2023; Wong et al., 2023; Zheng et al., 2023; Hou et al., 2024; Jin et al., 2024; Wan et al., 2024b; Roychoudhury
et al., 2025a). Our work draws inspiration from them, and we recommend that the reader consult with them for alternative
perspectives.

In this paper, our goal is threefold. In Sec. B, we provide a structured taxonomy of concrete tasks in AI for software
engineering. In particular, we emphasize that there are many other tasks in software engineering beyond code generation
and code completion, encouraging research in these areas. We provide three measures for categorizing concrete realizations
of each task: the scale of the problem, the logical complexity, and the level of human intervention.

Moving forward to Sec. C, we highlight nine challenges in the field that today’s models face, each cross-cutting and
applicable to several tasks. In Sec. D, we posit a set of promising research directions to tackle the challenges above, with Fig.
2 summarizing which directions correspond to each challenge. We hope that through our paper, the reader can appreciate
the progress the field has made, understand the shortcomings of today’s state-of-the-art models, and take inspiration from
our suggested future ideas for tackling these challenges.

B. Tasks in AI Software Engineering
We first provide a taxonomy of tasks in AI software engineering. To provide a structured way to consider concrete realizations
of each task, we define three measures that apply across them: scope, logical complexity, and level of human intervention.
To achieve an AI software engineer, we strive for AI to be capable across the board for all three measures.

Scope Measure: We define three levels of scope, the extent of changes that the AI makes to the codebase. Function-level
scope refers to single, self-contained functions such as in HumanEval (Chen et al., 2021a) and MBPP (Austin et al., 2021).
Self-contained unit scope goes beyond singular functions and to larger chunks of code such as entire files and classes, such
as FullStackBench (Liu et al., 2024d) and BigCodeBench (Zhuo et al., 2024). Finally, project-level scope refers to larger
codebases such as entire repositories, such as in Commit0 (Zhao et al., 2024) and SWE-Bench (Jimenez et al., 2024).

Logical Complexity Measure: Tasks require a wide range of reasoning abilities when it comes to devising algorithms
to solve them. Low logical complexity tasks require little to no reasoning, such as writing CRUD (create, read, update,
delete) applications or using APIs. Medium logical complexity tasks include most LeetCode problems, finding inputs to fuzz
simple programs, and reasoning about execution behavior of multithreaded programs. High logical complexity tasks require
meticulous and challenging levels of algorithmic and logical reasoning, either because the algorithm is complex or because
the problem requires clever thinking and insights. This includes difficult competition programming problems, writing large
thread-safe concurrent programs, cracking cryptographic ciphers, and solving SMT-like problems. Many popular coding
benchmarks are function-level, medium-high logical complexity, such as APPS (Hendrycks et al., 2021), CodeContests (Li
et al., 2022a), and LiveCodeBench (Jain et al., 2024b).

Level of Human Intervention Measure: AI coding is a collaborative task. Treude & Gerosa (2025) categorize interactions
between developers and AI. Each interaction progresses through four phases: the trigger for the interaction, the AI response
describing the system’s output, the developer response capturing how developers react to the AI response, and the output of
the interaction, the exact result. They characterize these developer-AI interactions into eleven types, including autocomplete
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Semantic Understanding
of Codebases (Sec. C.6)

Evaluation and Benchmarks (Sec. C.1)

Human-AI Collaboration (Sec. C.3)

Low-Resource Languages and
Specialized Libraries (Sec. C.7)

Library and API Ver-
sion Updates (Sec. C.8)

Effective Tool Usage (Sec. C.2)

High Logical Complexity and
OOD Domains (Sec. C.9)

Long-Horizon Code Planning (Sec. C.4)

Large Scope and Long Contexts (Sec. C.5)

Automatic Data Curation (Sec. D.1.1)

Human-Centric Data Curation (Sec. D.1.2)

Training to Collaborate
with Humans (Sec. D.2.3)

Scaffolding Human Su-
pervision (Sec. D.3.4)

Fast Specialized Codebase
Adaptation (Sec. D.2.2)

Incorporating SWE Tools (Sec. D.3.3)

Reinforcement Learn-
ing for Code (Sec. D.2.1)

Integration with SWE Develop-
ment Frameworks (Sec. D.3.2)

Semantic-Aware Embeddings
and Retrieval (Sec. D.3.1)

Figure 1. Overview of Challenges (Sec. C) and Paths Forward (Sec. D) in AI for Software Engineering
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Figure 2. Overview of Challenges (Sec. C) and Paths Forward (Sec. D) in AI for Software Engineering
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code suggestions, conversational assistance (e.g., asking a question about a codebase), selection-based enhancements (e.g.,
refactoring a selected chunk of code), comment-guided prompts (e.g., natural language to code), check correctness, and
more.

We map these interactions to the autonomy taxonomy outlined in Morris et al. (2023)2 to define three levels of human
intervention. We distill their six levels of autonomy into three levels: low (No AI and AI as a Tool), medium (AI as a
Consultant and AI as a Collaborator), and high (AI as an Expert and AI as an Agent). Low autonomy is when the human
has full control over the task and uses AI to automate simple sub-tasks. This might look like writing a codebase with tests
while leaving small function-level snippets for the AI to fill in. Medium autonomy is when the human and AI contribute a
similar amount, with interactive coordination of goals and tasks. Here, the human and AI might both suggest refactorings
and optimizations during the development cycle. High autonomy is when AI drives the interaction and tasks, identifying
required changes and the changing demands of the user. The AI would defer to the human only when needed or for a final
check, write the code and tests autonomously.

Next, with our taxonomy of measures in place, we turn to the set of tasks that are reflective of the tasks and capabilities of
a human software engineer. We give a brief description of each task in this section, deferring a more extensive survey to
Appendix H.

B.1. Code Generation

Code generation is the task of generating code from a specification. In code completion, the specification takes the form
of a preexisting code snippet, and the goal is to complete the snippet. The most popular form of code completion is tab
completion, where the user can press the tab key to complete a block of code (e.g. GitHub Copilot). Tab completion is
often done at line-level or function-level scopes but needs to be fast to provide users with a seamless experience. Another
paradigm is natural language to code, where the specification is a natural language description with requirements such as
the task description, input-output examples, or libraries to use.

Recently, AI-driven IDEs, such as Cursor Composer and Codeium’s Windsurf Editor, have blurred the lines between the
two paradigms. With the ultimate goal of decreasing the burden of human programmers, they aim to automatically infer
the user’s intent from the code context and user behavior (e.g. keystrokes, user edits, file navigation patterns). However,
when intent is vague, they allow users to specify desired functionality via chat interfaces. Depending on scope and logical
complexity, code generation can vary highly in difficulty. Reliable code generation in large codebases is still a challenge for
state-of-the-art AI systems today.

B.2. Code Transformation

B.2.1. CODE REFACTORING

In code refactoring, the goal is to take a working implementation of a piece of software and rewrite parts of it while
maintaining correctness. One challenge with this task is that success extends beyond functional correctness or metrics.
The goal is often to improve code maintainability, readability, or extensibility—qualities that can be inherently difficult to
quantify and highly context-dependent.

For instance, extracting shared functionality into helper methods presents trade-offs between modularity and cognitive
complexity (Parnas, 1972). While there are no hard rules for when to extract functionality, one heuristic adopted by software
engineers is the rule of three (“three strikes and you refactor”)–abstractions should only be used when a piece of code has
been duplicated thrice. Because it can often be unclear what level of abstraction refactorings should be done at, completing
a refactoring at a high autonomy level is also difficult. These challenges are further compounded by the need to understand
implicit trade-offs customized to specific codebases, respect conventions, and reason about the long-term maintenance
implications of structural changes. While code refactoring often has a low logical complexity, it can be laborious in practice
due to scope, as seemingly small refactors can propagate across the entire codebase.

2We follow page 9, Table 2 from their paper
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Example: React Fiber architecture refactor: React’s major refactoring was motivated by performance limitations
in the original engine, particularly for complex UIs with animations and dynamic updates. Beyond challenges
related to optimized implementation, a major challenge was providing backward compatibility while completely
rewriting React’s core algorithm. Being an open source tool, this refactor also required educating developers about
new concepts without disrupting existing mental models highlighting nuances in real-world software system design.

B.2.2. CODE MIGRATION AND TRANSLATION

An incredibly resource-intensive (time and manual effort) task frequently affecting companies is migrating large amounts
of code while preserving all the original functionality and semantics. Such high-value migrations present opportunities
for AI-assisted automation to reduce cost and manual effort. Code migration often has a very high scope (many files and
systems affected alongside their interdependencies) and high logical complexity (semantic depth of required transformations,
constructs in different languages may be different). Current solutions may excel at migrations with high scope but modest
logical demands (API migrations, type conversions) but struggle with changes across component boundaries (Nikolov et al.,
2025).

A special case of code migration is code translation (transpilation): rewriting code from a source language to a target
language. In industry, this task can be motivated by several reasons, such as security and scalability concerns in legacy
languages, avoiding the technical debt a project has accumulated over the years, and improving the performance of a
codebase. Due to the safety-critical and cross-system nature of many migrations, this task often requires substantial human
oversight in practice and cannot be done fully autonomously.

Example: Scala version migration: A recent Scala 2.13 to 3 migration (Ricadat, 2025) illustrates these challenges,
documenting a year-long effort. Critical issues included the loss of macro annotations, broken type projections, in-
compatible libraries, and compiler performance degradation—all requiring innovative workarounds and architectural
changes. There have been many similar language migrations with analogous problems, famously Python 2 to 3 and
Swift 4 to 5.

Example: COBOL: COBOL powers 80% of in-person financial services transactions and 95% of ATM swipes while
processing $3 trillion in commerce a day, with over 220 billion lines of COBOL code in production (Taulli, 2020).
However, there are less and less COBOL programmers, leading to the desire to migrate out of COBOL and into a
modern language like Java (Sneed, 2001; Sellink et al., 2002; Sneed, 2010). However, because of the large scope
and high logical complexity of existing COBOL code, migrating from COBOL to Java would be a monumental
undertaking and many companies opt to continue using COBOL. These companies are still forced to migrate to
newer versions like COBOL V6, because eearly versions of COBOL were gradually withdrawn from service. This
task still requires skilled COBOL engineers and high precision, as it can often be difficult to understand the business
logic of legacy code and introducing bugs can have dangerous implications.

Example: Twitter migration to improve latency: Twittera built its initial platform using Ruby on Rails, facilitating
rapid development. However, as the user base expanded, performance and scalability issues arose. They migrated
key components to Java and Scala, achieving a 3X latency drop. This transition required re-architecting the system to
adapt Ruby’s dynamic features to the statically typed environments of Java and Scala, exemplifying the complexities
of large-scale code translation.

ahttps://www.infoq.com/news/2012/11/twitter-ruby-to-java/
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Example: C to Rust: There has been a push to use translation as a proactive approach to eliminate memory
safety vulnerabilities in C-based systems. This has even garnered attention from the US Department of Defensea,
which has long-lived systems that disproportionately depend on C, supporting programs to translate C codebases
to Rust (TRACTOR). Recent efforts like Syzygy (Shetty et al., 2024), C2SaferRust (Nitin et al., 2025), and
AlphaTrans (Ibrahimzada et al., 2024) have shown the potential for hybrid approaches combining LLMs with
traditional program analysis techniques. However, some significant challenges remain, including ensuring correctness
in large codebases while maintaining desirable attributes such as speed, reduced vulnerabilities, and idiomaticity.

ahttps://www.darpa.mil/news/2024/memory-safety-vulnerabilities

B.2.3. CODE OPTIMIZATION

Transforming programs to improve performance characteristics while maintaining functional correctness is a critical software
task. Optimizing real-world systems poses significant challenges due to the large scope and high logical complexity of
the task, as performance bottlenecks must be identified and new algorithms to mitigate them must be proposed. Code
optimization often has a large search and solution space with competing objectives like speed, memory efficiency, and
readability, for example when optimizing kernel code at the PTX level for GPU-based AI model optimization (Zhao et al.,
2025; Ouyang et al., 2025). In many scenarios, high levels of autonomy may not be desirable, as tradeoffs can depend
heavily on external factors such as hardware, and the best optimizations may ultimately affect readability.

Example: Google Chrome performance improvements: For over two decades, changes to the Chrome web browser
have been an exemplar of optimization affecting real-world code (Chromium, 2018). Their V8 engine achieved a 20x
performance improvement through coordinated optimizations across multiple layers - from implementing concurrent
garbage collection that reduced bloat by 100x to developing specialized compilers like TurboFan that improved
performance by 5-10%, to enabling background parsing and compilation that reduced compile time by 20%. The
demand for cross-layer and low-level code changes (e.g., writing a new JavaScript interpreter) and building tools to
measure and test representative performance metrics are key challenges for achieving this sort of real-world impact
with LLMs.

B.3. Software Testing and Program Analysis

In the process of software development, there will inevitably be bugs. The difficulty of detecting these bugs can vary
depending on their scope and logical complexity. For LLMs, minor typos or correctness bugs (small scope, low logical
complexity) are easier to spot (Mosolygó et al., 2021) while complex concurrency bugs and security vulnerabilities (large
scope, high logical complexity) can be tricky because they can be hidden deep in the call stack, contain subtle logic errors,
or be hard to isolate due to the large scope (Trent & Li, 2025).

B.3.1. SOFTWARE TESTING

Software testing is a practical approach to prevent bugs, both during development and production. There are several popular
approaches to software testing, some short-term and others longer-term. Unit testing refers to using input-output style tests
that exercise the functionality of a piece of code. Property-based testing is based on formal specifications and relies on
specifying test cases that ensure that known properties of the code hold. Mutation testing modifies a program subtly and
ensures that the test suite can detect errors in these mutations. Fuzzing refers to executing programs with unexpected inputs
and monitoring for exceptions, usually over a more extended time period.
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Example: OSS-Fuzz on FreeType: OSS-Fuzz (Chang et al., 2024), Google’s automated fuzzing infrastructure,
has proven its value by swiftly uncovering security flaws in critical software. For instance, when a recent source
change was made to FreeType—a font rendering library deployed on over a billion devices—OSS-Fuzz detected a
heap-buffer-overflow within hours:

ERROR: AddressSanitizer: heap-buffer-overflow on address 0x615000000ffa
READ of size 2 at 0x615000000ffa thread T0
SCARINESS: 24 (2-byte-read-heap-buffer-overflow-far-from-bounds)

#0 0x885e06 in tt_face_vary_cvtsrc/truetype/ttgxvar.c:1556:31

The goal of software testing is to design tests that can surface bugs reliably. This is evaluated through metrics such as code
coverage–how much of the source code is executed when the test suite is run. An alternate to code coverage is mutation score,
where mutants are generated, and the score is defined as the percentage of mutants causing the suite to fail. While practical,
software testing faces challenges such as the scalability limits of traditional tools and the difficulty of manually designing
tests with good coverage. As LLMs continue to improve at coding, they present a promising avenue for automatically
generating high-quality tests.

Example. Fault-based test generation at Meta: Meta’s Automated Compliance Hardening (ACH) system (Foster
et al., 2025) is a system that generates tests aiming to catch real-world bugs. ACH works in three steps: first, the
engineer describes the bugs they are worried about. Second, ACH combines LLMs with mutation testing to generate
code with those bugs. Finally, these mutants were used to develop unit tests capturing them. ACH was used to
generate tests for Messenger and WhatsApp, where engineers accepted 73% of its tests.

B.3.2. PROGRAM ANALYSIS

While testing catches bugs, the most challenging software issues are security vulnerabilities and zero-day exploits, from
memory corruption to privilege escalation. This requires a deep program understanding, that testing/fuzzing often misses.
For instance, a zero-day is a vulnerability unknown to the software developers that is found by an attacker, and there is no
patch available from the vendor. In such cases, the only practical approach is offensive security research, manual source
code audits, and root cause analysis of prior vulnerabilities to harden codebases.

Example: Variant Analysis: Project Zero’s (Hawkes, 2019) investigations at Google reveal that many in-the-wild
0-day exploits aren’t entirely new—they’re often variants of vulnerabilities that had been patched before. In their
analysis of recent 0-day reports, nearly half of the issues were closely related to earlier bugs (such as those affecting
Windows win32k and iOS IOMobileFrameBuffer). This finding underscores the importance of performing rigorous
root cause and variant analyses. Instead of just fixing a single exploit path, security teams must comprehensively
address the underlying bug class, ensuring that alternate exploitation routes are closed off for good–making this task
more challenging.

Another example of a valuable but challenging analysis is invariant detection. A program invariant is a property of a piece
of code that is guaranteed to be true at a specified program point, no matter what the input is. A simple example is that after
the line int x = c * c; is executed, x must be nonnegative. Identifying invariants in a program can be useful when
testing, debugging, and modifying code. This task can be challenging because it requires reasoning abstractly about code
execution across many different potential inputs and execution paths to determine what properties must hold for all possible
inputs.

B.3.3. PROGRAM REPAIR

Bug localization is a significant challenge in program repair, as pinpointing the exact site of a bug can be challenging,
especially in large codebases. Issues like out-of-memory accesses often manifest themselves further downstream, making it
difficult to identify the root cause. Once the bug is localized, the next step is to repair the bug. LLMs can be an ideal tool
for this because they have seen a wide variety of bugs during training. Function-level, low-logical complexity bugs can
often be easily fixed by feeding back error information to the model. It can be tricker to perform repair in larger scopes (e.g.
repositories) where the code has higher logical complexity. This can often require several steps, including designing and
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implementing new algorithms or making complex refactorings across multiple files.

B.4. Software Maintenance

B.4.1. CODE DOCUMENTATION AND SUMMARIZATION

To ensure maintainability, readability, and ease of collaboration, code must be well documented. Good documentation needs
to be written cleanly and crisply, describing what the function does and how the function works. It must also anticipate and
address any misunderstandings that a programmer might have, such as potential side effects or special cases. Humans often
see documentation as a chore and neglect it, leading to code and documentation frequently being out of sync. This has led to
the concept of “self-documenting code”, code that clearly conveys its purpose. As documentation is generally a task that has
a low logical complexity and does not require too much human intervention, LLMs can help ensure that documentation is a
continuously updated artifact in sync with the code.

B.4.2. PULL REQUEST (PR) REVIEW

Reviewing pull requests is an integral aspect of the software development cycle. While the most essential requirement for
PRs is that a new feature is implemented correctly, other important considerations include checking whether the repository’s
style conventions are satisfied, ensuring that the PR does not introduce any new bugs, verifying that program invariants
and guarantees still hold, and inspecting whether tests are robust. Generally, reviewing PRs is a task requiring low logical
complexity and can be automated relatively easily.

B.4.3. CODE UNDERSTANDING, NAVIGATION, AND QUESTION ANSWERING

When encountering a codebase for the first time, developers often find it challenging to understand and develop a good mental
model of the code. This can be due to many reasons: too many wrapper functions, excessive error-handling boilerplate,
deep call stacks, or poor code cleanliness. One important challenge in code understanding is code navigation: finding
where relevant functionality is implemented. Doing this well requires understanding the high-level layout of where every
functionality lies in the codebase and the low-level understanding of which helper functions are used to implement each
functionality.

Another challenge is code question answering: answering complex questions about a codebase, which requires sophisticated
code understanding and reasoning abilities. Models should not hallucinate or give incorrect information that skews a
developer’s mental model of the code. Beyond other tasks mentioned in this section, developers might commonly ask
questions related to data flow (when and where data structures get mutated), code functionality (whether there are any side
effects), performance characteristics (determining the runtime and memory complexity of a function), or error handling
(whether certain corner cases are handled).

B.5. Scaffolding and Meta-Code

For a software system to work, the core logic must be written well, but that is not enough. Many infrastructural aspects
must be in place to support the software. We group these into two main categories: scaffolding and meta-code. We define
scaffolding as a task outside of the code that must be done to get the software running properly. Examples of scaffolding
include setting up Google authentication, subscribing to APIs, managing file storage, and generating API tokens. In contrast,
we define meta-code to be code that is important to make the system work but does not actually participate in the execution
of its main logic. Examples of meta-code include test harnesses, CI/CD code, Makefiles, Dockerfiles, sandbox databases,
and preprocessors. Scaffolding and meta-code often are small in scope and have low logical complexity but can require a lot
of domain-specific knowledge about the application, requiring human intervention.

Example. Configuration validation: Ciri (Lian et al., 2024) is a tool that uses LLMs for configuration validation
on open-source projects including Django, PostgreSQL, and Redis. They find that while Ciri excels at detecting
misconfigurations of syntax and range violations, it struggles to detect dependency and version violations and
is limited to a narrow range of misconfigurations. They also find that LLMs are biased towards more popular
configuration parameters, which may lead to hallucinations in out-of-domain scenarios.

Infrastructure-as-code and Security. A particularly challenging case is generating Infrastructure-as-code such as
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Terraform, where you specify the type of infrastructure specifications (such as AWS EC2 instances, Kubernetes clusters,
S3 buckets, VPC buckets) as code and execute it to create the infrastructure. When generating such code, LLMs struggle
with security configurations due to the complex interplay between service-level permissions (e.g., AWS resource access),
resource-level permissions (e.g., specific allowed actions), and provider-specific security primitives like IAM roles, security
groups, and network access controls.

Example. Distinguishing permission levels in cluster setup: (Terrateam, 2024) show that on a task of bringing up
a cluster, models fail to distinguish between ECS (Amazon Elastic Container Service) Task Execution Roles (for
container operations) and Task Roles (for application-level permissions). This resulted in overly permissive policies
where a single role was granted both image pull permissions and DynamoDB table access, violating principles of
least privilege.

B.6. Formal Verification

The task of formal verification involves generating checkable, mechanized proofs that can guarantee that a piece of code
works as intended. There are two major classes of formal verification: full functional verification (FFV) and property
verification (PV). In FFV, the goal is to design a complete and precise formal specification that captures the desired behavior
of the implementation, such as fully verified data structures (mutable lists, trees, graphs, hash tables) (Zee et al., 2008). The
main challenge in full functional verification is in correctly writing the specification so that all desired properties are specified.
FFV generally has a high scope and medium logical complexity, as the properties to verify are often straightforward to write
once the correct abstractions are found.

While FFV provides a complete set of guarantees, it is usually sufficient to opt for PV, where a few key properties of a system
are proven correct. Examples include: ensuring that two threads do not simultaneously enter a critical section of a program,
verifying that a complex program will always terminate, proving the absence of security vulnerabilities like buffer overflows,
and guaranteeing memory safety. One challenge that makes PV difficult to use in practice is the issue of false positives,
where functionally correct code often does not pass property checks. A prime example is Rust: while the powerful type
system enforces many desired guarantees, code with correct semantics often does not pass type checks. Another challenge
is that many standalone tools for PV are often semantics-dependent, which can make them hard to maintain as language
semantics change.

Example. Costly disasters: Formal verification of software is important in mission-critical applications such as aircraft
software, as software bugs may lead to costly disasters. In the maiden flight of the Ariane 5 rocket, a floating-point
conversion error caused it to explode forty seconds after liftoff. Another case is with the computer-controlled
radiation therapy machine Therac-25, where concurrency bugs led to six people being massively overdosed, leading
to serious injury and deaths.

Example. Verified Compiler: CompCert (Leroy et al., 2016) is a formally verified optimizing C compiler that supports
a restricted subset of C including most of the ISO C 99 language. CompCert has been formally verified using the
Coq proof assistant (The Coq Development Team, 2024), eliminating the potential for compiler bugs.

While formal verification tools have begun to see adoption in industry, they has not yet become mainstream because of these
challenges. Code LLMs could greatly ease this burden and make it more feasible to verify code at larger scales, especially
verifying properties requiring lower logical complexity.

Example. Property Verification: Coverity: Coverity is a static analysis tool meant to find generic errors (memory
corruption, data races) and system-specific violations (e.g. function-ordering constraints). In their report (Bessey
et al., 2010), they highlight two issues mentioned earlier: churn and false positives. The first issue, churn, deals with
ensuring that the tool produces the same result both when the code base is modified and across different versions of
the tool, making upgrades “a constant headache”. The second issue is that when the false positive rate is more than
30%, users ignore the tool and real bugs get lost among these false positives.
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C. Challenges
While the field of AI for code has made fruitful progress, cutting-edge AI still struggles with SWE tasks, especially at larger
scopes and higher levels of logical complexity. Next, we discuss ten key challenges in AI for code. Each challenge spans
multiple tasks, and progress on any can lead to improvements on many tasks at once.

C.1. Evaluation and Benchmarks

Today’s code LLM evaluations focus on a narrow set of tasks, suffer from potential contamination, and do not
reliably measure real-world software engineering abilities.

Potential solutions: D.1

Our taxonomy of tasks and measures highlights some of the shortcomings of today’s evaluations and benchmarks. For
example, the majority of today’s coding evaluations have no level of human intervention, with a few, such as Copilot-Arena
(Chi et al., 2025), having low to medium autonomy. HumanEval, MBPP, APPS, CodeContests, and LiveCodeBench are all
at function-level scope, with low to medium-high logical complexity. Commit0 (Zhao et al., 2024), SWE-Bench (Jimenez
et al., 2024), TestGenEval (Jain et al., 2024a), RefactorBench (Gautam et al., 2024), SWE-Lancer (Miserendino et al., 2025)
are at project-level scope with low to medium logical complexity.

Task Diversity and Capability Isolation: Current coding evaluations primarily focus on the code generation task, while
most of the tasks discussed in Section B are either not studied such as Code QA or only studied in limited scopes like
EvalPerf (Liu et al., 2024c), vulnerability detection (Mei et al., 2024), formal verification (Sun et al., 2024a). As more
agent-based approaches are introduced for software engineering (e.g. pairing a code generation model with a debugging
model), these engineering-related capabilities beyond just code generation will be important towards designing a maximally
performant system. Solely relying on end-to-end coding evaluations that focus on the overall correctness of a codebase
makes it difficult to precisely measure progress and learn from the failure modes on individual tasks.

Contamination: Data contamination is a serious issue that, if not taken into account, can affect the soundness of various
conclusions drawn from a set of benchmark results. In coding, the performance of LLMs on competitive programming (Xu
et al., 2024a; Jain et al., 2024b) and SWE-Bench (Aleithan et al., 2024) tasks has been shown to degrade over time, indicating
the possibility of older problems being contaminated due to public exposure on the internet. For simpler function-level
HumanEval style problems, Matton et al. (2024) suggest three potential causes of contamination: direct data leakage
(benchmarks are on GitHub), synthetic data leakage (there are only a limited number of interview problems), and overfitting
to test sets (benchmark hacking). In addition, for code, contamination can be hard to detect, as semantically equivalent code
that is syntactically distinct could be thought of as contamination (Riddell et al., 2024). A recent benchmark, the Konwinski
Prize3, is a promising way to fairly evaluate SoTA LLM models by only using new GitHub issues.

Construct Validity: Construct validity refers to how closely a measurement reflects the underlying concept. Given the
implications of rapid performance improvement in the AI for the code domain, it is essential to have high-construct validity
benchmarks evaluating how well programming agents can perform. While benchmarks like SWE-Bench come close, user
experiences do not currently match rapid performance gains obtained from them. This is partially because many desiderata
in software engineering cannot be described cleanly via automated unit testing. Things like multi-turn code generation,
designing an UI, and writing clean and idiomatic code are all difficult to quantitatively measure with precision. Designing
reliable proxy metrics for these desired goals remains a challenge.

C.2. Effective Tool Usage

While software engineers use a wide suite of programming tools when programming, most of today’s AI coding
systems do not invoke tools. AI needs to be able to select which tool to use, decide how to use it, and interpret the
outputs in order to continue making progress on the task.

Potential solutions: D.3.3

3https://www.kprize.ai/
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Software engineering has witnessed the development of various open and proprietary tooling support for programming,
debugging, analysis, and code management over time. For example, program analysis tools provide static and dynamic
assurances on code correctness. Print statements and debuggers are used for dynamically analyzing and debugging programs
at a fine-grained level. Beyond programming, such tools are richly integrated into the entire software development lifecycle,
e.g., code navigation or search, reviewing code, CI testing.

There have been efforts combining LLMs with tools such as calculators and search engines (Schick et al., 2023; Patil et al.,
2023). However, effective integration of LLMs with software engineering tools is a more challenging problem. Several early
works have incorporated such tool feedback in code generation in an automated fashion, for example, linter or execution
feedback in (Olausson et al., 2023; Zhong et al., 2024b; Gehring et al., 2024). However, these works do not actively
interact with tools. More recently, programming agents have started incorporating tool use within their workflows termed as
Agent-Computer-Interface (Yang et al., 2024b). These tools range from aiding in general search (grep), providing code
editor for making changes (Wang et al., 2024g; Anthropic, 2024), language server for static analysis (Liu et al., 2024e),
dependency analyzer (Bairi et al., 2024), terminal access for bash commands including code execution (Yang et al., 2024b),
debugger (BigSleep, 2024).

Dynamic and Effective Tool Usage: While many efforts combine LLMs and agents with tools, they do not achieve fully
dynamic and effective software engineering tool usage. This involves an AI system seamlessly and proactively integrating
appropriate tools depending on the task at hand. There are a few challenges towards achieving this goal. First, the AI system
must identify which tools could potentially be useful for the task at hand. Second, the system then needs to decide when to
invoke the tool. A complex debugging task might require the use of pdb or gdb to track intermediate program states, while
looking at input-output pairs may be sufficient for simple debugging tasks. Third, the agent then must figure out how to
invoke the tool. If the agent knows that a certain function in a program has an error, it may wish to walk through only that
function instead of the entire code from start to finish. Finally, the agent needs to incorporate the output provided by the tool
in order to inform its next steps, e.g. edit the code if a bug was uncovered or run the tool again otherwise.

Example: Performance Instrumentation: A common way to instrument software systems is known as compiler-
inserted program instrumentation. CSI (Schardl et al., 2017) is a tool that inserts instrumentation hooks to track
objects such as memory loads/stores, function entry/exits, and basic blocks. CSI contains tools like code coverage
tools, a memory-operations counter, a performance profiler, and a call-graph generator. To use the tool, the user must
follow the API in order to write hooks so the correct aspects can be profiled. Tools like CSI are very valuable when
trying to improve the performance of a piece of code, but are not trivial to use. In order for an LLM agent to use CSI
effectively, it must first familiarize itself with the CSI API. Then, it needs to know exactly which aspects of the code
to instrument, such as placing hooks before and after a function suspected to be a bottleneck. Finally, the agent needs
to learn how to use the output of the tool to inform its approach to the task, such as deciding whether a block of code
can be further optimized after seeing its performance profile.

C.3. Human-AI Collaboration

Human-AI collaboration is still far from seamless. First, specifications written by humans are often vague and leave
out many details, leading LLMs to produce code misaligned with humans. There is also very little controllability
with coding LLMs, and today’s human-AI collaboration interfaces are still limited.

Potential solutions: D.1.2, D.2.3, D.3.4

While AI coding systems are increasingly more powerful, the majority of them are still at a low to medium autonomy level,
serving as engineer assistance rather than achieving high or full automation. We identify a few key challenges of today’s AI
coding systems that prevent these systems from working with humans effectively at higher levels of autonomy.

Vague Specifications and User Misalignment: When using code LLMs or coding agents, we typically prompt them with a
natural language specification. This can include a natural language description of the desired code, input-output examples,
relevant code snippets, and other functional requirements. However, there is a gap in the level of abstraction between English
and code, leading to incomplete or ambiguous specifications. This issue becomes more pronounced in longer programs,
where the number of ambiguous decision points increases, and choices traditionally made by humans are instead implicitly
embedded in the LLM’s generated code. Consequently, users often experience misalignment due to vague specifications.
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While many code LLMs support multi-turn interactions, it remains inherently challenging for users to articulate their thought
processes into follow-up natural language instructions.

Specifications beyond text: While today’s specifications predominantly rely on text, there are many domains for which
pure text is insufficient as a specification. In domains like robotics, virtual reality, embedded devices, and user interfaces,
specifications often need to be multi-modal (e.g. showing the model a picture of an UI to create) and world-interfacing (e.g.
providing simulation code describing a robot will interact with its environment).

Inherent trade-offs in software development: Designing large software systems always surfaces trade-offs between various
desiderata such as readability, scalability, performance, maintainability, reliability, security, etc. These trade-offs are often
context-dependent. A long-term and rapidly moving project may be willing to trade off some performance to have simplicity
and readability. Performance-critical applications may completely sacrifice readability to eke out every millisecond of speed
(such as using bit-twiddling hacks). Finding the sweet spot among these trade-offs can often involve extensive prototyping
and benchmarking to understand the performance characteristics of different approaches. However, user specifications in the
initial prompt rarely include details about these trade-offs, nor do models often take them into account.

Implicit constraints: Aside from functional/semantic correctness, there are also often implicit constraints in writing code. For
example, many companies such as Jane Street and Google have style guides, and many GitHub repositories explicitly outline
style elements that new code ought to follow. (Zou et al., 2019) find that GitHub pull requests that are more consistent with
the style of the existing code get merged faster. Additionally, corporations may enforces codes of conduct or compliance
requirements at the code level. Furthermore, codebases follow common programming patterns or system design patterns
that are implicitly specified by the way the current code is written. However, when using code LLMs, these constraints are
often inferred incorrectly (Wang et al., 2024h).

Example: Serializer-Deserializer pattern for objects: Consider the issue astropy-#14181 from the astropy Python
library. The issue requests support for a new input file format (reStructuredText) to load astronomical data into
the codebase more flexibly. While the issue does not mention it explicitly, as per common practices, developers
implement read (deserializer) and write (serializer) operations when implementing support for a new file format. This
ensures data can flow bidirectionally between the file format and the application’s internal data structures. However,
models evaluated on this issue, as part of the SWEBench benchmark, only implemented the read method.

Lack of Controllability: When using AI coding systems, programmers often seek specific functionality, yet they lack
reliable ways to steer LLMs toward generating precisely the desired code. Instead, they typically rely on a trial-and-error
approach, repeatedly sampling outputs or providing feedback until the AI produces an acceptable solution. Consequently,
significant human effort is still required to review and modify the code to ensure it meets the intended functionality (Weisz
et al., 2024).

A way to improve controllability is for AI coding systems to recognize when human input is needed and communicate
effectively—yet this remains the top-reported challenge in human-agent collaboration (Shao et al., 2024a). LLMs rarely
defer to humans for clarification, while developers often ask questions to clarify the description of a task provided by
their peers. For example, when a product manager refines a requirements document, developers who are unclear about
the scope or specifications ask questions and leave comments, which the manager resolves iteratively to disambiguate
requirements (Nahar et al., 2022). Based on its knowledge of existing software, AI should be able to incorporate implicit
priors from a specification while keeping the user in the loop. For instance, when designing an academic website, certain
expectations—such as including a list of publications and contact information—are implicit. However, whether to include a
person’s GPA would require explicit clarification.

Restricted Human-AI Interface: Existing interfaces for code LLMs primarily manifest as intelligence features embedded
within integrated development environments (IDEs). Treude & Gerosa (2025) establishes a taxonomy of developer-AI tool
interactions, emphasizing low-level support mechanisms such as auto-complete suggestions, selection-based enhancements,
and conversational assistance within the codebase context. While this taxonomy comprehensively covers existing AI coding
systems that function primarily as engineering assistants, its applicability becomes questionable as these systems advance
toward higher levels of automation. For instance, the ubiquitous “Tab” interaction paradigm prevalent in intelligent IDEs
may prove inadequate when AI systems transition from completing developer-scaffolded functions to authoring the majority
of the codebase autonomously.
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Current interfaces for coding agents, such as Devin, typically stream raw actions without adequate context or explanation.
Given that these agents can execute numerous actions rapidly, developers face significant challenges in effectively monitoring
the process, implementing timely interventions, or reasserting control when necessary. This lack of transparency can also
undermine trust in AI-generated code (Wang et al., 2024e). While human-AI interface design has received extensive attention
in autonomous vehicle research (Benderius et al., 2017; Tinga et al., 2022), similar consideration for AI coding systems
remains notably absent.

C.4. Long-Horizon Code Planning

Large software engineering projects often require long-term planning about the design and structure of the code.
LLMs struggle at two key aspects of this: designing good, lasting abstractions and respecting modularity and code
quality principles.

Potential solutions: D.2.1, D.3.2

When working on large projects, engineers and tech leads often make complex decisions about how to design and structure
the code to best support the various functionalities that will eventually be needed. To build a long-lasting software system,
an engineer must know the potential paths that the system’s evolution might take. This requires domain expertise and
experience in how different code structures require different forms of extension. We believe that today’s language models
are unable to perform this level of sophisticated planning.

Designing Good Abstractions: One instance of long-horizon code planning is choosing the right abstractions from the
outset. An API designed with good abstractions will allow new features to be implemented seamlessly with minimal
user overhead, while an API designed with poor abstractions may lead to excessive code duplication, refactoring, or even
debugging. We discuss two examples of this, library learning and data representation.

Library learning: Designing APIs and libraries are designed with useful abstractions often leads to more code reuse and
more intuitive interfaces. The challenge of library learning is to derive a library of useful abstractions from a corpus of
programs by abstracting out common reusable features (Ellis et al., 2021; Stengel-Eskin et al., 2024; Bowers et al., 2023).
While the traditional library learning literature has focused primarily on code reuse, a truly effective library must also
prioritize ease of use and maintainability, as well as be robust and adaptable to future extensions.

Data representation: The choice between data structures leads to a variety of trade-offs when it comes to performance
aspects such as memory usage and processing speed. For example, database engineers need to decide between various data
models, storage formats, and indexing methods to balance performance.

Example: Database Design for Web Applications: Database engineers strive to design their databases in a way that
minimizes memory usage and maximizes query performance (speed). To achieve this goal, the databases community
has spent considerable efforts optimizing both the high-level data representation and the underlying data structures
(Kraska et al., 2018; Hawkins et al., 2011). Consider the task of designing a database schema for a restaurant owner
to manage their business: keeping track of customers, managing a rewards program, maintaining the restaurant’s
inventory of ingredients, etc. One important design decision to make is deciding on a schema: while having a
reservation and customer table is fairly straightforward, should we include a table for customer reviews or
simply add rating and review fields in the customer table? Another important design decision is choosing which
database indexes to include. While choosing the correct indexes can speed up queries significantly, indexes cost
additional memory and must be kept updated. Making decisions like these requires knowledge of the application,
context, and the effects of each option.

Modularity and Code Quality: LLMs are trained and optimized primarily for code correctness with insufficient focus on
other aspects of code like quality and maintainability. This is further exacerbated with large scale reinforcement learning
being performed using test cases which can lead to unintended consequences regarding code quality, as correct but poor
quality code is still often given a high reward. Empirically, it has been observed that LLM written solutions are often more
complex than human-written counterparts. For example, Jain et al. (2024c) identified that LLMs prefer to repeat existing
code instead of making use of abstractions in the existing code. One aspect of code quality is modularity, ensuring that code
does not get duplicated too often. Here, Berlot-Attwell et al. (2024) identified that library or tool reuse is non-trivial for
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LLMs in coding and formal math domains.

C.5. Large Scope and Long Contexts

Coding is a domain where required context lengths can be very long, as codebases can consist of millions of lines of
code, posing challenges to today’s models. In addition, today’s retrieval-based methods are still limited: models
often retrieve incorrect information and can still struggle with leveraging retrievals effectively due to the difficulty of
code reuse.

Potential solutions: D.3.1, D.3.2

Large Scopes: At the repository level, the tasks in Sec. B become significantly more difficult and require many steps. In
code generation, user alignment can be an issue because there are many decision points and tradeoffs that can compound.
In code refactoring, modifications will touch multiple parts of the codebase, and it can be tricky to keep the repository
consistent. In code debugging, functions can be large and bugs can be nested deeply within stacks of function calls. In code
navigation, because there are so many functions interacting in various ways, it can be difficult to know where each piece of
functionality is implemented and how the code is pieced together.

Another issue with large scopes is large context lengths. Software engineering often requires dealing with very large
codebases–for example, Google has repositories with over a billion lines of code (Potvin & Levenberg, 2016). As this is far
too large for modern-day LLMs, choosing the correct context to include when using LLMs is important.

Example: Debugging Cloud Applications: Organizations often rely on monitoring and observability tools to track the
performance of their applications. One such tool is Datadog, an observability service for cloud applications that can
monitor infrastructure, detect security anomalies, and track database performance. For larger applications with more
moving parts, these logs can consist of thousands of lines of JSON payloads. For humans, sifting through these logs
is usually a matter of searching for certain keywords that they know will appear in the logs. However, LLMs often
have a hard time interpreting large amounts of logs like these.

Limits of Retrieval-Augmented Generation (RAG): Retrieval-based algorithms have been the predominant way to deal
with long-context coding issues. First, the retriever retrieves relevant functions. Then, the generator leverages the retrieval to
improve generation. While RAG has proven effective in many NLP tasks such as question answering (Gao et al., 2023;
Lewis et al., 2020), the code domain provides new challenges for these methods.

Retrieval: In most NLP tasks, the retrieval step can be done relatively well because keywords that are in the query are often
keywords that need to be retrieved. Unlike answering NL questions, writing code often requires drawing inspiration from
code snippets that may be completely different syntactically. This can include programs with similar semantics, algorithms,
or API calls, all of which potentially have very little in common when it comes to syntax. For example, the implementation
of Dijkstra’s algorithm in a GPS navigation application can guide the implementation of a shortest-path algorithm in a social
media application. Because retrievers often rely on syntactic matching, these relevant programs can be hard to retrieve (Ma
et al., 2024; Utpala et al., 2023).

When deciding what to retrieve, it is also necessary to have a sufficient awareness of other parts of the codebase so that you
know which building blocks are necessary to construct the new function. This can make the retrieval task relatively tricky,
as shown by failure modes on two benchmarks, CodeRAGBench (Wang et al., 2024i) and BRIGHT (Su et al., 2024).
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Example: Failure Case of Finding Relevant Files When Resolving Issues: BM25, despite its widespread use in
code retrieval, demonstrates limitations in scenarios that involve large and complex codebases. For instance, in
chartjs Chart.js-7951 from SWE-bench Multimodal (Yang et al., 2024c), BM25 retrieval using the issue description
returns suboptimal results. The top-3 retrieved files from src/ are src/scales/scale.radialLinear.js,
src/scales/scale.linearbase.js, and src/helpers/helpers.canvas.js. However, the crit-
ical modifications required to resolve the issue should occur in src/elements/element.bar.js and
src/controllers/controller.bar.js. This retrieval failure impedes the effectiveness of coding agents,
many of which are augmented with code retrieval systems. When agents focus their attention on irrelevant files, their
ability to resolve the issue successfully becomes substantially compromised.

Generation: In NLP tasks, the generation step often is a straightforward application of the retrieved information. However,
in code, writing a new function requires more than copy and paste. This is closely tied to the problem of code reuse: piecing
together relevant snippets of code in a precise and productive way to fit the current context. Depending on what is retrieved,
each piece of retrieved content provides different information. This can include information about the language’s syntax,
documentation about the API, clues about the algorithm to be written, or examples of similar functionality being written.
Ding et al. (2023) find that even when the oracle context is retrieved, LLMs tend to misuse it, highlighting a lack of semantic
understanding, which we discuss in the next section.

Example: Bad Generation Despite Identifying the Correct Context: Ding et al. (2023) highlights a failure case where
a code LLM fails to complete a Python test case correctly, even though it has the correct context. The function
name from the context, test case convert camel to snake, suggests that the function being completed
is a test case for convert camel to snake. With the given context, the model generates the function as
convert camel to snake, which however does not match the larger codebase as other pieces of code expect this
function name to be camel to snake. While this issue can partly be attributed to incomplete retrieval of relevant
information, it also presents a challenge for code LLMs, as they must recognize such inconsistencies—especially
when the immediate context is correctly provided—thereby avoiding high-confidence errors.

C.6. Semantic Understanding of Codebases

Being able to effectively write code relies on having a strong semantic understanding (somewhat like a world model)
of the entire codebase: structurally seeing how various parts of the code go together, knowing what is implemented
where, understanding how the algorithms work, and keeping track of program invariants at certain program points.
LLMs struggle with this global semantic understanding

Potential solutions: D.1

A global and holistic semantic understanding of a codebase is important for performing almost all code-related tasks. For
example, let’s say an engineer is asked to improve the runtime performance of a query. To do so, they must first understand
the codebase’s structure well enough to know where all the pieces of the algorithm are implemented. Then, they need to
understand the algorithm and implementation in detail. This includes both the high-level algorithm (including its time
complexity) and the low-level implementation details to identify both algorithmic and implementation bottlenecks. Finally,
after coming up with a solution, they must then return to their understanding of the global code structure so that they can
integrate their new algorithm without introducing new bugs.

LLMs struggle at semantic understanding of codebases for several reasons. First, the way that code is pieced together can be
relatively intricate, and understanding all these complex relationships can be difficult. Second, code can often have units
with high logical complexity that contain custom algorithms that may never have appeared anywhere in the training data.
Finally, because a disproportionately large number of LLM training tokens are spent on code generation rather than other
coding tasks, models may lack a holistic awareness and world model of code.

One desiderata is that models can generalize knowledge across various coding tasks (Roychoudhury & Zeller, 2025).
However, this may not be straightforward as just training on more tasks: Gu et al. (2024) found that coding models fine-tuned
on additional natural language/code pairs saw significant improvements on code generation but did not transfer to improving
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code understanding and execution reasoning. While there have been successful efforts to augment code LLM training with
execution information to improve general coding capabilities (Ni et al., 2024; Ding et al., 2024c), imbuing code LLMs with
a general and holistic understanding of code remains an important challenge today.

C.7. Low-Resource Languages and Specialized Libraries

Models struggle with low-resource languages and codebases with specialized libraries. Because of the limited
exposure they have in these contexts, models fail in a variety of ways including generating syntactically incorrect
code, misunderstanding the semantics of certain constructs, and using libraries improperly.

Potential solutions: D.2.2

As we adapt code LLMs to individual codebases, generating correct code in out of distribution (OOD) scenarios becomes
crucial. Much of software development in business contexts revolves around proprietary codebases, which is a distribution
shift from the open-source code that dominates LLM training data (Ahmed et al., 2024a). These OOD scenarios include
domain-specific languages (DSLs), custom internal libraries, low-resource APIs, and company-specific coding styles and
conventions.

Syntactic Failures: Models have been shown to hallucinate constructs from higher resource languages when working in
low-resource languages. Blinn et al. (2024) remark that ”contemporary LLMs fail to follow Hazel’s syntax and semantics,
often borrowing syntactic forms and library functions from [higher-resource languages like] OCaml and Elm“.

Example. Syntax error in Triton: In Listing C.7, we show an attempt from Gemma-3 27B to write a dot-product
kernel in a low-resource GPU programming language called Triton (part of docstring omitted for brevity). Gemma
uses indexing notation such as a[index], which is not a valid Triton construct. Models like o1 and o3, however,
do not make this mistake.

@triton.jit
def dot_product_indexed_kernel(a, b, indexes, out, N):

"""
Computes the dot product of two vectors a and b using an index vector.
...
"""
block_size = 64 # Adjust block size for optimal performance
grid_size = (N + block_size - 1) // block_size

block_id = tl.program_id(0)
start = block_id * block_size
end = min(start + block_size, N)

accumulator = tl.zeros(1, dtype=tl.float32)

for i in range(start, end):
index = indexes[i]
accumulator += a[index] * b[index]

tl.store(out, 0, accumulator)

Poor Semantic Understanding: In low-resource languages, models have less exposure to the various language constructs.
Therefore, they have a weaker semantic understanding of the language. Many studies reveal that code LLMs perform poorly
when asked to write code in low-resource languages. Due to the lack of training data in these OOD domains, models may
struggle to write common primitives or piece together functionality coherently. On HumanEval, Qwen 2.5 Coder Instruct
(32B) (Hui et al., 2024) has an accuracy of 83% in Python but only 27% in D.4

Library Usage Failures: In OOD scenarios, LLMs lack awareness of the libraries and functions available for use. In new

4As reported by the BigCode Models Leaderboard on the MultiPL-E benchmark (Cassano et al., 2023)

42

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard


Position: Future Research and Challenges Remain Towards AI for Software Engineering

codebases using custom libraries, many functions appear only a few times, providing limited training data for AI models
to learn their usage. This scarcity can lead to overfitting, where models fail to recognize an effective use-case of these
functions. Models also frequently hallucinate non-existent functions based on patterns that it infers.

Example. Hallucinating theorems in Lean: In Listing 1, the LLM makes up a theorem named
infinitelyManyPrimes arithmeticSequence. While the model understands that it should use Dirich-
let’s theorem, the actual theorem is named forall exists prime gt and eq mod. This theorem occurs very
few times in all of the currently available Lean code on GitHub, so it is likely that LLMs did not train on it many
times.

theorem infinitely_many_primes_of_form_6k_plus_1 :
∀ n : N, ∃ p : N, p > n ∧ Prime p ∧ ∃ k : N, p = 6 * k + 1 := by
intro n
-- Use Dirichlet’s theorem for arithmetic progressions
have h := Nat.infinitelyManyPrimes_arithmeticSequence 6 1

Listing 1. LLM-generated Lean code snippet that hallucinates a nonexistent function

C.8. Library and API Version Updates

Software engineering has a unique property that repositories and libraries are constantly changing. Code LLMs have
trouble adapting to these rapid changes, often struggling to use the correct version of libraries and ignoring new
paradigms and features.

Potential solutions: D.2.2

Continual learning, the idea of training an AI system to take in new information continually, has been a long-standing
challenge in AI and NLP (Wu et al., 2024; Wang et al., 2024d). In software engineering, codebases are continuously
changing as new features are supported and awkward design patterns are reworked. While backwards compatibility is often
prioritized in software design, it inevitably becomes broken as codebases evolve further. Therefore, programming libraries
have version releases, each release supporting and deprecating features in the last version.

There have been a few works exposing this issue. For example, CodeUpdateArena (Liu et al., 2024g) and GitChameleon
(Islah et al., 2024) are two benchmarks exploring the ability of LLMs to write version-specific code, examining this issue at
the function and file level. They find that language models struggle to adapt to these changes even with this limited scope.
In theorem proving (Lean), Kumarappan et al. (2024) try to mitigate this by developing a lifelong learning framework that
continuously learns and uses new theorems. In real-world engineering, the challenge of library and API versioning generally
spans across an entire repository, as everything must be kept consistent. To our knowledge, there are no techniques that
successfully deal with this challenge at such a large scale. This problem is difficult for a few reasons, which we discuss
below.

Version Identification: In order to successfully deal with version changes, a LLM must first identify which version of each
library is being used in a codebase. This may often be quite difficult, because versioning information can be hidden deeply
within a codebase. Sometimes, it can be found in comments or configuration files, but in the worst case, it must be inferred
from the library calls being used. To make things worse, some code may be compatible across multiple versions, while other
code will cause errors only in specific versions. Therefore, the model will often require a deep understanding of both the
codebase and the nuances between different versions in order to infer the version at hand.

Example: Debugging Frontend Code: Frontend framework usually has more frequent versions update, making it
hard for code LLMs to work with. For example, when helping a user debug the “NextRouter was not mounted” issue,
Claude 3.7 tries various solutions without recognizing that the core problem requires importing useRouter from
’next/navigation’ instead of ’next/router’, a crucial distinction since the user’s codebase leverages
App Router in Next.js 13.
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Version Adaptation: Many fast-changing libraries are not backward compatible as older features become deprecated. It can
be difficult for LLMs to implicitly keep track of which constructs and patterns are associated with each version. Therefore,
consistently using constructs from the right version can be difficult. As we will see in the examples below, LLMs often write
code that mixes and matches API constructs from different versions of the same library.

Example. Typing Hints: While Python 3.5 required importing types from the typing module, Python 3.9’s PEP 585
enabled direct use of built-in types for generics (e.g., list[int] vs typing.List[int]). However, language
models tend to default to the older typing module syntax.

Continuous Adaptation to Paradigms, Features, and APIs: New styles, patterns, and paradigms are often introduced
to replace older, more cumbersome ways to write code. For example, React came out with its Hooks paradigm in version
16.8 (2019). Over the next few years, developers transitioned from the old class components paradigm to using hooks, as
hooks made code cleaner and more maintainable. Only in early 2023, with the launch of react.dev, were Hooks the
default paradigm in the documentation. For language models, incorporating these features can take a long time, because
code in these new paradigms are initially completely absent in the training data and inherently in the low-resource regime.
In Kharma et al. (2025), the authors find that LLMs fail to utilize security features in compiler and toolkit updates (such
as in Java 17), still relying on legacy methods such as insecure random number generation. While it is possible to use
retrieved examples and documentation in order to coerce language models to write code using new and updated features, we
should strive to create AI coding assistants that can quickly internalize new changes and be able to naturally incorporate new
features and paradigms, even without an abundance of training data. For each task, the language model should be able to
reason about the best way to write the code, independently of the number of occurrences seen in the training data.
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Example. Lean 3 vs. Lean 4: Lean (De Moura et al., 2015) is a programming language that allows users to write
formal proofs of mathematical theorems. In 2017, using Lean 3, enthusiasts implemented a library for mathematics
called mathlib, with over half a million lines of code. Because Lean 3 had many shortcomings, Lean 4 (Moura
& Ullrich, 2021) was initiated at the beginning of 2021 to address many of these issues. There was a massive
undertaking to port all of the mathlib code over to Lean 4, and only in September 2023 was there a stable release
of Lean 4, the version of Lean that is predominantly used today. The two versions are generally incompatible. We
hypothesize that, due to the recency of Lean 4, most language models have been trained on much more Lean 3 code
compared to Lean 4 code. When asking models to generate code in Lean 4, it sometimes generates code with Lean 3
coding conventions. Other times, it uses theorems and lemmas from Lean 3 that are deprecated in Lean 4. In Listing
C.8, we show an example of prompting o3-mini with a Lean 4 problem, where it generates Lean 3 syntax (e.g.
begin).

Prompt: Write and prove the following in Lean 4: the sum of the first n positive
↪→ integers is n*(n+1)/2. Begin with "import Mathlib". Surround your Lean 4 code
↪→ with ‘‘‘lean4 and ‘‘‘

/-- The sum of the first n positive integers (i.e. 0 + 1 + ... + n) is n * (n + 1) /
↪→ 2. -/

theorem sum_first_n (n : N) : (range (n + 1)).sum id = n * (n + 1) / 2 :=
begin
induction n with n ih,
{ -- Base case: when n = 0, we have range (0 + 1) = {0} and so the sum is 0, which

↪→ matches 0 * (0 + 1) / 2.
simp [range],

},
{ -- Inductive step: assume the formula holds for n, and prove it for n + 1.

-- First, note that range (n + 2) = insert (n + 1) (range (n + 1)).
rw [range_succ],
-- Since (n + 1) /∈ range (n + 1), we can express the sum as:
rw [sum_insert (not_mem_range_self (n + 1))],
-- Substitute the induction hypothesis:
rw [ih],
-- We now have to verify:
-- n * (n + 1) / 2 + (n + 1) = (n + 1) * (n + 2) / 2.
-- This equality follows by algebra (ring calculation).
ring,

}
end

C.9. High Logical Complexity and OOD Domains

Tasks such as writing highly concurrent code or discovering performance optimizations have a high logical
complexity, often proving difficult for even the best human coders. Similar to solving research-level math problems,
these out-of-distribution domains are very hard for LLMs.

Potential solutions: D.2.1

Some programming tasks are challenging for even the best human programmers, requiring approaches with a very high
logical complexity. Examples of tasks that fall into this category include superoptimizing programs, discovering attacks for
purportedly secure code, writing performant compilers, optimizing GPU kernels (Ouyang et al., 2025), and writing very
error-prone and very technical code.
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Example. Synthesis of Sorting Kernels: An example of an out-of-distribution domain is synthesizing fast assembly
code for sorting kernels. In 2023, AlphaDev (Mankowitz et al., 2023b) used reinforcement learning to find a SoTA
kernel for sorting length 3-5 arrays. While this appeared to be a superhuman performance, shortly after, (Neri, 2023)
hand-wrote a kernel shorter and faster than the one found by AlphaDev. Later, (Ullrich & Hack, 2025) developed
an algorithm based on enumeration and intelligent heuristic-based sampling that beat both of these. In addition,
the algorithm ran faster than AlphaDev by two orders of magnitude. In this case, while AI was able to achieve an
impressive performance, humans were able to discover better algorithms.

Example: Verifying File System Properties: In formal verification, when working with new domains, it is necessary to
devise new theories to faithfully represent desired properties. For example, FSCQ is a formally certified crash-proof
file system with the provable guarantee that under any sequence of crashes followed by reboots, FSCQ will recover
the file system correctly without losing data (Chen et al., 2015). In this domain, one challenge is that proving safety
cannot be done at the source code level–because instructions are not atomic, data may be lost if the crash occurs
within a non-atomic instruction. Instead, a new logic known as the Crash Hoare logic (CHL) needed to be developed,
and constructs representing a crash condition and recovery procedure needed to be described. Constructing a logic
like this would be very difficult for AI systems.

Limits of Symbolic Techniques: When it comes to applying symbolic techniques to these tasks, there are a few limiting
factors that make them difficult to tackle. First, for synthesis-style tasks, the search space can be very large. Deductive and
rewrite-based synthesis techniques are unable to explore a majority of the search space. Second, verifiers can be limited in
power, such as when dealing with properties in concurrency or weak memory models. Third, many domains lack clean
models to reason about properties, such as dealing with memory bandwidth in GPU kernels.

Because they are hard for humans, these tasks are very rarely in the training data of today’s language models. They have
unique, domain-specific, challenges that making generalizing from existing data difficult. For these problems, language
models rely heavily on feedback-driven search algorithms (Mankowitz et al., 2023b), and it can be difficult to navigate the
search space effectively. In addition, many of these tasks lack feedback mechanisms, which is crucial for AI to pick up
learning signals. When designing a complex algorithm or data structure, it is often hard to know if you are on the right track
until you get to the correct result. When writing code for a large multithreaded operation, it may be hard to know if the
algorithm has concurrency issues until all the parts are fully fleshed out. Without feedback, incremental improvement is
nearly impossible.

D. Paths Forward
D.1. Data Collection

One bottleneck in the development of AI for SWE in the open-source community is the lack of access to
fine-grained and high-quality code data. In Sec. D.1.1, we discuss how automated techniques can miti-
gate this by augmenting existing programs with symbolic information and generating synthetic data with
symbolic verifiers. However, there are other crucial signals in programming that can be hard to automate.
We envision that a large community-based coding data curation effort will be very impactful. In Sec. D.1.2,
we discuss examples of datasets that such a community could create that would unlock new capabilities in code LLMs.

Challenges addressed: C.1, C.3, C.6

D.1.1. AUTOMATIC DATA CURATION

Augmenting Data with Program Information: One challenge in enabling LLMs to develop a world model of code is
that programs are often treated like text: as tokens with no semantic information. However, modern programming tools
allow us to extract rich semantic and structural information about code. By leveraging these tools, we can augment training
datasets with detailed annotations describing various properties of programs. We hypothesize that this augmentation will
significantly improve a model’s understanding of code, leading to better generalization and stronger coding capabilities.
Information can include:
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• Static analysis: the syntactic structure of a program (abstract syntax trees, control flow graphs), information about the
type of each variable, data flow analysis (reachability, liveness analysis)

• Program instrumentation: memory consumption, runtime analysis, aliasing, and code coverage (like statement or
branch coverage)

• Dynamic analysis: program states at various points in the program, call stacks, dynamically curated properties (often
relies on instrumentation)

• Formal verification: concurrency analysis, program invariants, loop invariants, memory safety

There have been a few examples of this in the literature: Ouyang et al. (2025) leverage profiler feedback to improve GPU
kernel generation, Ding et al. (2024c;b); Ni et al. (2024) incorporate execution trace information, Pei et al. (2023) train with
program invariants, GraphCodeBERT (Guo et al., 2020) incorporate data flow information, and Shypula et al. (2023) train
on a dataset of performance-improving edits.

High-quality, Verifiable Synthetic Data: The advantage of code is it is possible to achieve strong, verifiable feedback with
test cases, program execution engines, and other symbolic tools. This makes high-quality synthetic data generation viable,
as it is possible to generate a large batch of data and filter out low-quality samples. For example, to generate code with
interesting program invariants, we can sample a large batch of programs, run an invariant detection engine, and retain only
programs with interesting invariants. While synthetic data in code has mostly been at the function-level scope, there are no
fundamental bottlenecks to expanding to larger scopes. As code is quite compositional, individual building blocks can be
combined to generate complex synthetic data at the repository-level scope, which can be very helpful in both training and
evaluation.

While the importance of having high-quality data vs. high quantities of data is debated, using verified data has proven to be
useful. For example, Liu & Zhang (2025) shows that simply removing bugs in existing datasets such as TACO (Li et al.,
2023) can lead to significant boosts. KodCode (Xu et al., 2024a) also showed that fine-tuning on verified synthetic data
also leads to significant improvements. However, these works work with programs at the function-level scope with low to
medium logical complexity, and we imagine that general SWE abilities can improve with synthetic data across scopes and
logical complexities.

In DSLs, where programs can be cleanly described with semantics and rewrite rules, one can symbolically generate programs
with desired properties via sampling, drawing on enumeration techniques from program synthesis (Gulwani et al., 2017).
This technique has been successfully applied to make considerable progress in difficult reasoning tasks such as ARC-AGI
(Li et al., 2024d) and math olympiad problems (Trinh et al., 2024; Google, 2024; Chervonyi et al., 2025).

D.1.2. HUMAN-CENTRIC DATA CURATION

Below, we list three classes of human-annotated data that would be invaluable for the next generation of coding LLMs.

Fine-Grained Data of the Developmental Process: Many code LMs are trained on datasets such as the Stack (Kocetkov
et al., 2022; Lozhkov et al., 2024), consisting of trillions of tokens sourced from GitHub. However, training on raw GitHub
tokens omits many crucial human signals in the process of software development. For example, companies such as Google
rely on internally captured logs of high-quality SWE data. This includes ”fine-grained code edits, build outcomes, edits to
resolve build issues, code copy-paste actions, fixes of pasted code, code reviews, edits to fix reviewer issues, and change
submissions to a repository“ (Chandra, 2024). Similarly, Meta and GitHub Copilot use telemetry with their AI coding
assistants to track and leverage signals from AI-generated code (Murali et al., 2024; Ziegler et al., 2024). These tools, along
with coding IDEs like Cursor, could provide a treasure trove of reward data for RL-based methods. With direct access to the
full history and evolution of a codebase, they can track which suggestions are adopted over time. However, collecting data
from human usage also raises critical privacy and intellectual property concerns.

Data for Diverse SWE Tasks: Most of today’s code LLM training recipes still focus primarily on code generation because
large-scale datasets are mostly in a continuous, tokenized format. However, as described in Sec. B), there are many tasks
involved in software engineering which models lack exposure to. Training on a broader set of tasks would also incentivize
models to learn general software engineering capabilities beyond generation (e.g. a better understanding of program
semantics). As initial evidence, (Li et al., 2025a) find that training models on input-output prediction data leads to consistent
improvements on reasoning tasks.
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The lack of high-quality data on these tasks makes it hard to train on them. It can also be hard to automatically curate them
on GitHub. For example, for code refactoring (Sec. B.2.1), we need paired repositories before and after refactoring, ideally
with the refactoring changes described. While some signal such as commit messages and version releases can be used, many
repositories lack clean commit histories and releases conflate many features at once. Therefore, to mitigate this, we envision
large community-based efforts curating task-specific data on these diverse challenges.

Human-Centric Data: Code LLMs are typically trained and evaluated on carefully curated datasets with clear instructions
and verifiable test cases. However, as discussed in Sec. C.3, these models are often deployed in real-world scenarios where
users provide vague specifications or incomplete requirements in their queries. Collecting human-centric data that reflects
real-world model usage is a promising approach to bridging the gap between model development and deployment. Recent
efforts, such as Copilot Arena (Chi et al., 2025) and WebDev Arena, have explored gamified arenas to gather data on
human preferences, offering an alternative to purposefully curated datasets. However, such data collection methods may
introduce noise, and arena-style approaches are not well-suited for long-horizon, interactive tasks. One potential approach is
to leverage existing coding tools and environments, such as developing plugins for GitHub Copilot (Bajpai et al., 2024)
or open-source IDEs, to capture real-world interactions. Unlike static datasets, human-centric data can also be collected
encompassing diverse interaction modalities, such as users providing sketches to AI coding systems for web development (Li
et al., 2024c). As AI coding systems continue to emerge and evolve, launching data initiatives focused on human-centric
SWE data is also a crucial direction for advancing human-AI collaboration in software development.

D.2. Training

D.2.1. ENVIRONMENT DESIGN FOR CODE RL

Reinforcement Learning from Verifiable Rewards (RLVR) (Lambert et al., 2025) has emerged as a powerful
paradigm in math and coding domains where model outputs can be evaluated against a ground truth outcome such as
exact match and passing a set of unit-tests. Towards this direction, promising avenues include collecting executable
codebase environments, sourcing task prompts/rewards from GitHub, and designing non-execution based rewards
based on program syntax and semantics.

Challenges addressed: C.4, C.9

Collecting executable codebases: In recent months, RLVR has seen success in solving algorithmic programming problems
through DeepSeek-R1 (DeepSeek-AI et al., 2025) and OpenAI o1. Recently, on SWE-Bench, SWE-RL (Wei et al., 2025)
use RL on a rule-based reward to improve performance on SWE-Bench. We find it promising to continue scaling the RL
approach to problems collected from real-world software engineering repositories. Towards this, we believe that collecting
execution-assisted gym-like reinforcement-learning environments will lead to further performance improvements. These
environments can be used further to improve reasoning skills, environment-interaction capabilities and tool usage.

Several prior works (Jain et al., 2024c; Pan et al., 2024; Guo et al., 2025; Xie et al., 2025) curate executable environments
for programming agents by supporting CI/heuristic-based repository installations. However, these works are at a relatively
small scale and limited in scope, offering only a few thousand tasks from a maximum of a thousand repositories and more
importantly, limited to the Python language. Scaling this up significantly requires solving several research and engineering
problems. First, installing arbitrary repositories from Github, even using CI is challenging and we require smarter solutions
potentially involving LLM-based installation agents. Next, setting up execution infrastructure would require storing installed
repository images in something akin to docker for efficient storage and fast container startup times (Team et al., 2025).
Notably, combined docker images can grow massively large and often grow at hundreds of gigabytes even at a modest scale
of a few hundred repositories. They require engineering support for efficient storage and serving of such images.

Sourcing task prompts and rewards: Beyond environments, performing large-scale reinforcement learning would require
collecting diverse challenging problems with an appropriate way to compute the rewards. These task prompts can be
collected from Github (Pan et al., 2024) or generated synthetically from problems on Github. Moreover, assuming access to
many executable repositories, we can source various end-to-end problems for tasks beyond bug-fixing such as optimization,
fuzzing, etc. Access to pre-existing or generated test cases allows for measuring correctness and providing rewards.

However, we envision many practical challenges to remain. For example, longer-horizon tasks are usually more ambiguous
and approaches may require multi-turn interactions beyond autonomous coding agents. This would pose a considerable
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challenge during reinforcement learning where ambiguity resolution might need to be modeled in the reinforcement learning
process itself. We elaborate on human collaboration further in Section D.2.3. Reward hacking (Skalse et al., 2022) poses
another challenge as we build more real-world coding challenges. Test cases often suffer from coverage issues and can
grade correct solutions as incorrect. For example, (Baker et al., 2025; Denison et al., 2024) identified that models attempt to
bypass or cheat against the testing harness when optimized using reinforcement learning.

Rewards without execution: As setting up execution environments can lead to considerable overhead, another potential
strategy is to use proxy metrics and trained language models to judge correctness. This was common in the pre-LLM era,
researchers often used BLEU/CodeBLEU (Papineni et al., 2002; Ren et al., 2020) and BERTScore/CodeBERTScore (Zhang
et al., 2019; Zhou et al., 2023) to assess correctness of text and code. In code, semantic and structural properties can be used
to improve similarity metrics. Two examples of this are Dolos (Maertens et al., 2022), an AST-aware plagiarism detector,
and difflib.SequenceMatcher, which can be used to compute the similarity between two patches (Wei et al., 2025;
Ma et al., 2025b). Beyond rule-based rewards, LLMs-as-a-judge approaches can also be used as reward functions, possibly
in conjunction with other execution-based or execution-free approaches.

D.2.2. ADAPTING TO SPECIALIZED AND QUICKLY CHANGING CODEBASES

Low-resource languages (Sec. C.7), custom APIs, library version updates (Sec. C.8), large codebases (Sec. C.5),
and custom coding styles all surface the fact that code LMs struggle to adapt to unseen specialized contexts.
Customization can be achieved through test-time training, keeping specialized information in an information bank. A
cheaper and alternative approach to test-time training is to apply prompt and prefix tuning, where codebase-specific
embeddings are learned and applied depending on the context.

Challenges addressed: C.7, C.8

Test-time training (TTT) to custom codebases: TTT is the recent paradigm of adapting to a specific problem instance
by training on a narrow set of in-distribution examples (Akyürek et al., 2024; Sun et al., 2020). This can be used when
working in a low-resource context, for example training on a specific codebase, new domain, or unseen API. One challenge
in this setting is customizing the model to the particular codebase while retaining general coding knowledge, potentially
by using algorithms that can induce controllable forgetting (Wu et al., 2024). To get data in specialized contexts, we
envision two mitigation strategies: generating synthetic data and collecting trajectories. In-distribution synthetic data can be
generated in large quantities and then filtered and annotated with symbolic (e.g. compiler) information to gain a more global
understanding of the current environment and setting. To gather agentic trajectories, we can keep track of previous model
attempts and failures to learn from past successes and avoid making repeated mistakes. This will steer the model closer to
the desired distribution–for example, to generate code in the specified version of libraries being used in the current context.

Keeping an information bank of code information: For library and versioning issues, retrieval (Sec. D.3.1) can be very
effective for preventing hallucinations of wrong versions of libraries, which can inherently lead to better synthetic data
and agentic trajectories. During the TTT process, we can also keep a large growing memory bank of code, documentation,
synthetic code, and agentic trajectories in the specialized context. Retrieving from the memory bank would improve the
success of generating code, which can then be augmented to the memory bank, and so on, continuously increasing the
amount of data and knowledge available.

Prompt and prefix tuning for specialized code contexts: One issue that makes it difficult to continuously keep up with
library updates is that doing full finetuning every time something changes is very expensive. Because only a small amount
of knowledge needs to be learned compared to that of the pre-trained model, we believe less expensive approaches such
as prompt tuning (Lester et al., 2021) and prefix-tuning (Li & Liang, 2021) could suffice. Both these methods append a
set of learned task-specific vectors to the input sequence in order to model a specified context, though prompt tuning only
modifies the input and prefix-tuning modifies the input at each layer. These methods have also been shown to have good
OOD performance, and we believe they present a promising approach to dealing with multiple library versions. A separate
prompt/prefix can be trained for each version and then applied according to the context. When an API has new updates, the
prompt/prefix can then be cheaply re-tuned to reflect the new updates without undergoing full fine-tuning. This approach
also applies to adhering to specific coding styles, where codebase-specific prompts/prefixes can also be learned.

Learning on the fly: When humans are faced with a task they have never seen before, they are often able to draw from
past experiences and quickly adapt and generalize to the new domain. This is one of the big unsolved challenges of today’s
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LLMs: given an OOD coding task, how can models get up to speed and productively work on the task with few samples?
On toy domains, an example of this is DreamCoder (Ellis et al., 2021), a system that learns to solve problems by writing
programs and automatically discovering domain concepts and composing concepts together. Designing such approaches for
more practical applications is an exciting research direction that will have drastic implications for coding and reasoning.

D.2.3. TRAINING CODE LLMS TO COLLABORATE WITH HUMANS

Training the next generation of code LLMs needs to account for human-AI collaboration, as these models will likely
be deployed in ambiguous and interactive scenarios. We highlight two key directions for improving collaboration:
First, learning to leverage specifications beyond natural language through formal methods and user-specified tests
can mitigate vague specifications. Second, improving uncertainty quantification and proactive communication
through post-training has the potential to prevent hallucination and misalignment.

Challenges addressed: C.3

Learning to Leverage Specifications Beyond Natural Language: As discussed in Section C.3, while natural language
prompts offer intuitive and flexible ways to express requirements, they often suffer from ambiguity and incompleteness. One
direction to address this limitation is to train models to leverage enhanced specifications with more precise and verifiable
representations, such as formal specifications and test-based specifications.

Formal specifications: To mitigate underspecification issues, one solution is to develop systems that can translate user intent
into formal specifications (Szegedy, 2020; Endres et al., 2024). While current autoformalization approaches face challenges
in accurately capturing user intent (see example below), we envision next-generation systems that will iteratively refine
formal specifications through interactive verification with human feedback. These systems would present intermediate
formalizations in accessible notation, enabling non-expert users to verify correctness before code generation.

Example: Incomplete specification in Verus: Here, we show a failure mode of LLMs when writing specifications and
proofs in Verus. The LLM is asked to write the ensures postcondition clause for a a ring buffer enqueue functiona.
Here, the postcondition is incomplete: it does not check, for example, that the original elements were maintained in
the ring buffer.

fn enqueue(&mut self, val: T) -> (ret: bool)

ensures
ret == !old(self).is_full(),
self.inv(),
if ret { self.view() === old(self).view().push(val) } else { self.view() ===

↪→ old(self).view() }

{
if self.is_full() {

false
} else {

self.ring.set(self.tail, val);
self.tail = (self.tail + 1) % self.ring.len();
true

}
}

aFull example here

Tests as specifications: Another approach to specify software behavior is through tests. These range from input-output
examples and assertions to property-based tests. However, in practice, hand-crafted test suites are often incomplete, failing
to capture the full intended behavior, particularly edge cases. This can lead to misalignment, where AI-generated code
passes tests but does not genuinely meet functional requirements, potentially misleading users. Moving forward, a direction
is training models to generate high-quality test cases based on the user’s initial query, ensuring more comprehensive
specification coverage.
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Example: For instance, in a release of AI CUDA Engineer by Sakana AI, an AI-generated CUDA kernel for
lower triangular matrix multiplication—purportedly achieving significant speedups—was later found to exploit
out-of-bounds memory access to bypass correctness checksa. Advancing research on frameworks that facilitate test
generation and automated adversarial testing represents an important direction.

aThe full LLM-generated kernel code can be found in Listing 3, pg. 46-47 of (Lange et al., 2025)

Learning to Quantify Uncertainty and Communicate Proactively: As AI coding systems are increasingly deployed
to complex software engineering tasks, they encounter more ambiguous and uncertain scenarios compared to traditional
benchmarks for coding models. Ideally, in such situations, these systems should proactively communicate with users
to clarify tasks and acknowledge its own limitations rather than becoming stuck in endless failure loops or generating
buggy code. A key challenge is enabling models to distinguish between well-specified and ambiguous instructions while
quantifying uncertainty in a robust manner. While early studies, such as Vijayvargiya et al. (2025) and the example
below, demonstrate that interactive LLMs can improve performance through clarification-seeking behavior, current models
still struggle with uncertainty estimation. Equipping models with the ability to quantify uncertainty will likely require
incorporating corresponding reasoning data into the post-training stage.

Besides uncertainty quantification, Shao et al. (2024b) identify communication as a primary challenge in human-agent
collaboration, highlighting the need for improving models’ proactive communication capability. Current models often fail to
ask meaningful questions when user input is ambiguous or insufficient, and they struggle to provide progress updates or
verify plans in interactive settings. Enhancing models’ proactive communication abilities requires innovative approaches to
reward behaviors that yield benefits over multiple steps. Since communication with users does not immediately resolve the
task at hand but may improve long-term outcomes, effective strategies must account for delayed rewards in training.

Example: Discussion Helps Coding Agents Resolve Github Issues: In SWE-bench (Jimenez et al., 2024)
pydata xarray-4750, the original issue description requests limiting the number of data rows displayed
in repr. While it suggests a maximum of 25 rows, it does not specify whether this number should be config-
urable—a key requirement that emerged during the issue discussion. When SWE-Agent (Yang et al., 2024b), powered
by GPT-4o, uses only the issue description as the problem statement, it generates a function that hardcodes the
maximum at 25, causing the solution to fail the test. However, incorporating the issue discussion allows the agent to
produce a correct, test-passing implementation (see Listing 2). This suggests that enabling coding agents to engage
in discussions with users could potentially improve the issue solving rate.

D.3. Inference Time Approaches

D.3.1. SEMANTIC-AWARE EMBEDDINGS AND RETRIEVAL

In contrast to text, embeddings for code should incorporate execution and semantic information, improving retrieval.
RAG benefits from both context-aware retrievals and explicit training on how to use them, enhancing code reuse
across languages and APIs. Beyond static retrieval, AI agents could also dynamically navigate codebases using
command-line tools and IDE functions.

Challenges addressed: C.5

Semantic and execution aware code embeddings: When training LLMs, code is often treated as pure tokens (just like
text) rather than explicitly incorporating code-specific information such as program execution and semantics. As a result,
code that is close in embedding space is more often syntactically similar than semantically similar (Utpala et al., 2023; Zhao
et al., 2023), and there are few reliable methods today to retrieve semantically similar code. However, before the LLM era,
there were a variety of efforts to incorporate code properties when training embeddings. For example, Nye et al. (2020)
train neural modules to represent program operations, leading to compositional program representations that encode the
semantics of the underlying programming language. Many other works (Zohar & Wolf, 2018; Ellis et al., 2019; Chen et al.,
2021b) attempt to learn execution-aware latent representations for partial and full programs, taking semantics into account.

We speculate that incorporating these techniques to train models to have better and more semantically aware representations
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Listing 2. SWE-Agent improves when incorporating issue discussions
# Use only the issue description
def _mapping_repr(mapping, title, summarizer, col_width=None):

if col_width is None:
col_width = _calculate_col_width(mapping)
summary = [f"{title}:"]

if not mapping:
summary += [EMPTY_REPR]

else:
items = list(mapping.items())
if len(items) > 25: # Show first 12 and last 12 items

first = items[:12]
last = items[-12:]
summary += [summarizer(k, v, col_width) for k, v in first]
summary += [" ..."]
summary += [summarizer(k, v, col_width) for k, v in last]

else:
summary += [summarizer(k, v, col_width) for k, v in items]

return "\n".join(summary)

# Use the issue description and discussion
def _mapping_repr(mapping, title, summarizer, col_width=None):

col_width = _calculate_col_width(mapping)
summary = [f"{title}:"]
if mapping:

items = list(mapping.items())
if title == "Data variables" and len(items) > OPTIONS["display_max_rows"]:

# Show first and last variables if there are too many
first_n = OPTIONS["display_max_rows"] // 2
last_n = OPTIONS["display_max_rows"] - first_n
selected_items = items[:first_n] + [("...", "...")] + items[-last_n:]

else:
selected_items = items

summary += [summarizer(k, v, col_width) if k != "..." else " ..."
for k, v in selected_items]

else:
summary += [EMPTY_REPR]

return "\n".join(summary)

may lead to models with a more general understanding of code (Sec. C.6). For example, if correct and buggy programs
could hypothetically be separated in embedding space, then models could be steered away from the incorrect program space.
While such a clean separation might not be possible, we believe that training embeddings to have interesting semantic
properties is worth exploring.

Better retrieval-augmented code generation: When retrieval-augmented language models were first introduced, they often
relied on training the retriever and language model jointly, as in FiD (Izacard & Grave, 2020), RETRO (Borgeaud et al.,
2022), and Atlas (Izacard et al., 2023). As language models increased in size, the field shifted to a black-box setting (Shi
et al., 2023), where the retrieval module is tuned independently to adapt to the pretrained black-box LLM. This setting is
much more cost-effective, but the language model is not explicitly trained on how to use its retrievals.

The black-box setting is ideal for challenges such as low-resource languages or specialized contexts. In these situations,
the model has not seen enough training data to fully grasp the context, and the challenge is often syntactic rather than
algorithmic. For example, when adapting to a domain or a codebase where the relevant API functionality or code style,
retrievals can be very instructive. When using APIs with multiple versions, providing retrievals in the correct version can
inform the model of how to use the API. When writing code in a completely new language, showing examples of for
loops and while statements will teach the model the syntax of these constructs. Retrievals should be diverse and given
in multiple forms, including documentation, function definitions of APIs that are used, and example use cases of target
functions.
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In many other cases, however, we believe that a black-box setting is insufficient. As described in Sec. C.5, there are two
challenges: 1) knowing what to retrieve and 2) using the retrieval. The first challenge relies on retrieving relevant examples,
both syntactically and semantically. We believe that having more semantically aware embeddings, as mentioned above,
will drastically improve this. For example, embeddings can be trained contrastively to minimize the distance between
semantically similar programs. Another potential direction is to consider a diverse set of potential retrievals and then train
the retriever to prefer samples that help during generation, as in Atlas (Izacard et al., 2023).

The second challenge, using the retrieval, is a code reuse task, which requires complex reasoning and code understanding.
Algorithms provided in retrievals may often need to be modified and adapted significantly to adapt to the current setting.
An example of this might be writing a C++ version of a shortest path algorithm when the retrieval is a Java version, a
translation task that models may not have been trained for explicitly. Long chunks of retrieved documentation may need to
be understood precisely so that correct hyperparameters and flags can be used. Yet, in a black-box setting, models have not
been explicitly trained to leverage this information. Therefore, just as training on incorrect-correct code pairs can improve
program repair, we believe that direct training can be very beneficial for code reuse and retrieval-augmented generation.
Execution information could also be useful, as code reuse often requires understanding the situation well enough to identify
subtle differences between the context of the retrieved code and the current context.

Retrieving via code navigation on the fly: Standard retrieval-augmented methods keep a large retrieval index containing
millions of embeddings, which can require a high one-time cost to create. As the codebase evolves, these embeddings may
also need to be continuously updated. Instead of keeping track of embeddings, another approach is to find retrievals on
the fly by navigating the codebase. We can imagine an agent that learns to use command line functions such as cd, ls,
and grep, as well as IDE functions such as jumping to function definitions or finding all references of a function. Static
analysis tools can also be paired with the agent to improve code navigation, such as providing the abstract syntax tree (AST)
or file structure of a codebase.

D.3.2. INTEGRATION WITH SWE DEVELOPMENT FRAMEWORKS

Integrating AI with SWE development frameworks is critical for practical applications and impact on developer
workflows. While software development is inherently integrated with tools, workflows, scaffolding, and meta-code,
these are often absent from source code and scarce in AI training data. Ensuring that AI deeply understands software
deployment beyond code editing is crucial, as writing code is only a small part of the development cycle. These can
include automated reviews, deployment risk assessments, and documentation generation. We can also fine-tune
LLMs to recognize and avoid known software anti-patterns such as CWEs.

Challenges addressed: C.4, C.5

Incorporating AI into the CI/CD process: In continuous integration and continuous deployment (CI/CD), automated
pipelines are the backbone for building, testing, and deploying code changes. CI/CD accelerates feedback cycles and
minimizes integration issues. AI offers several integration points within CI/CD. AI-powered code review tools can be
incorporated into CI pipelines to automatically identify and flag style violations, potential security vulnerabilities, and code
smells before human reviewers are involved. Furthermore, AI can provide intelligent deployment risk assessments. By
analyzing code changes, test outcomes, and historical deployment data, AI can predict the likelihood of deployment issues,
informing decisions about whether to proceed with automated deployment or mandate manual verification steps. Finally,
AI can automate the generation of release notes by summarizing commit messages, issue tracker data, and relevant code
modifications within the CI/CD process.

Steering away from software anti-patterns: In software engineering, certain anti-patterns frequently lead to bugs.
For example, common weakness enumeration (CWE) is a categorization of software and hardware weaknesses often
leading to vulnerabilities. Because publicly available GitHub code often contains code with anti-patterns, bugs, and CWE
vulnerabilities, LLMs often write code susceptible to these issues (Asare et al., 2023; Fu et al., 2023). We hypothesize that
explicitly steering models against these vulnerabilities will lead to more secure and correct code. One way to do this is
to collect a large number of program samples violating each CWE (either synthetically or on GitHub) and then use these
samples as negative signal during further supervised fine-tuning or RL stages.
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D.3.3. INCORPORATING SWE TOOLS

Software engineers integrate a variety of domain-specific tools when writing code. By repeatedly interacting with
tools in an RL-style manner, AI can develop the ability to do the same. Beyond tool use, using neurosymbolic
approaches such as incorporating program analysis and type-checking can also help enhance LLM capabilities.

Challenges addressed: C.2

Learning to use SWE Tools: As mentioned in Sec. C.2, we believe SWE agents should understand the intricacies of
programming tools and be able to autonomously invoke them as needed. There are three skills to learn: which tool to use,
how to use the tool, and how to incorporate the results of the tool. Similar to how models learn to play complicated games,
we believe that intelligent tool integration can be learned through repeated interactions with the tool in a RL-style manner.
One way we envision this is as follows: first, the interface of the tool must be precisely specified. Next, data containing
repeated interactions from the tool (with varying degrees of success) should be collected. Finally, multiple rounds of RL and
expert iteration can be done to improve understanding of the tool and learn from misuses.

Evidence that learning higher-level strategies might be possible is that through test-time techniques, OpenAI’s o3 model
learned to write brute-force solutions to verify the correctness of more complicated solutions (El-Kishky et al., 2025). We
envision that after learning to use tools, AI coding agents can autonomously invoke tools as needed to improve its overall
world model of the code and hence its software engineering capabilities.

Neurosymbolic Approaches: Code is a unique domain because there is a vast body of techniques from programming
languages (PL) research to build off of, but the majority of AI for code research today does not leverage the symbolic
properties of code. Some of these PL techniques are as follows: abstract interpretation (Cousot & Cousot, 1977) is a
technique to compute over-approximations of program state in order to prove the soundness of program properties at points
in the code. Concolic testing (Godefroid et al., 2005; Sen et al., 2005) finds bugs in software by combining concrete and
symbolic execution. Model checking (Clarke, 1997) is a way to prove properties of execution traces via temporal logic.
Linting and type-checking (Cardelli, 1996) provide a static check to ensure that variables, expressions, and functions adhere
to a programming language’s rules. Finally, many other program analysis algorithms leveraging these tools have been
designed to prevent bugs and ensure code correctness properties.

Traditional PL approaches have a few common shortcomings, which overlap with some of the issues mentioned in Sec. B.6.
First, they often require very complete and precise specifications. Many tools need to have specifications for all library
functions, need to specialize to a precise version of the language, and need to specialize to the build system. Second, there is
often a high computational cost due to the large search space. Third, there can be many false positives due to the limitations
of the tool. We believe that deeply integrating these symbolic tools with LLMs can partially mitigate these challenges.

We provide a few examples of this potential integration. When generating code, program analysis techniques could be
applied on shorter snippets of AI-generated code to surface potential bugs or prove properties of the generated code. To
improve general code understanding, LLMs can be trained with information about program structure such as abstract syntax
trees (Gong et al., 2024). When debugging a large codebase, when the scale is too large to directly apply PL techniques,
AI could be first used to narrow down potentially problematic sections of the code which are then handed off to PL tools
for debugging. During code generation in DSLs, LLMs can leverage the grammar of the programming language to do
constrained decoding (Poesia et al., 2022; Geng et al., 2023; Wei et al., 2023b) to mitigate syntactic errors. During code
refactoring, abstract interpretation and static analysis can be used to identify whether new errors have been introduced and
preemptively cut off unpromising search paths.

Deductive Synthesis and Intermediate Languages: Early program synthesis relied on deductive synthesis approaches
(Burstall & Darlington, 1977), where programmers would write a clean simple implementation and then apply transformation
rules to convert it into a more efficient one. The appeal of deductive approaches is that because these rewrite rules are
semantics preserving, there is a correct-by-construction guarantee. One success story of deductive synthesis is Spiral
(Puschel et al., 2005), a DSL for signal processing kernels that takes advantage of domain-specific transformation rules to
produce implementations beating expert hand-crafted code. Another example is Halide (Ragan-Kelley et al., 2013), a DSL
for high-performance image and array processing code. Due to the difficulty of writing optimized code, humans generally
opt for writing code in these intermediate DSLs, and we find it promising for LLMs to do the same.
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Example. LLM-aided Compilation for Tensor Accelerators: As an example, Hong et al. (2024) consider the task of
generating highly optimized, hardware-efficient code for a tensor accelerator from a high-level specification of a
computation (e.g. C++ code). Their pipeline works in two steps: first, the high-level specification is translated to
a DSL. Then, the DSL code is symbolically compiled to hardware-specific instructions. The LLM is also used to
optimize the DSL code via a cost model driven search, where it suggests rewrites and scheduling operations (e.g.
loop reordering) that guarantee semantic equivalence.

D.3.4. SCAFFOLDING HUMAN SUPERVISION

At inference time, most machine-generated code will be presented to humans in a format shaped by the human-AI
interface design. Since AI may be responsible for generating the majority of the code within a human-AI team,
it is important to ensure human control and oversight. By scaffolding human supervision with techniques like
summarization and interactive verification, we could potentially improve trust in AI-generated code.

Challenges addressed: C.3

Once code LLMs are deployed for inference, it is crucial to scaffold human supervision of AI-generated code. This goes
beyond merely enhancing the accuracy of AI-generated code, as humans often still need to make the final decision on whether
to accept the code or understand it for future integration and maintenance. A study on Github Copilot usage (Al Madi, 2023)
revealed that programmers tend to allocate less visual attention to AI-generated code. While one solution is to train humans
to better identify issues in AI-generated code (Singhal & Kumar, 2023), a more desirable approach is to design AI systems
that scaffold human supervision, reducing their cognitive load when reviewing generated code.

One way to achieve this is by enriching AI-generated content with additional contextual information. Modern LLM chatbots
now routinely generate text with citations for knowledge-intensive queries. In Collaborative STORM (Jiang et al., 2024),
researchers demonstrated that dynamically presenting hierarchical “mind maps” alongside the actual collected information
significantly enhanced human-AI collaboration, particularly in long sessions. In software engineering specifically, Sun et al.
(2024b) highlighted the benefits of high-quality source code summarization in aiding software developers in understanding
and maintaining machine-generated code. Second, interactive approaches can also enhance supervision. One example is Live
Programming (Ferdowsi et al., 2024), a continuous display of the runtime values of a program, as a means of lowering the
cost of validating AI-generated code. However, these existing studies are largely limited to specific programming languages
and small codebases. Finally, improving the readability and interpretability of AI-generated code itself presents a promising
direction. For example, Pu et al. (2020) showed that modeling program synthesis as rational communication improved
end-user interpretation and subsequent communication of code. Expanding on these ideas, future research should prioritize
human interpretability in the design and optimization of AI coding systems, fostering greater trust and control in AI-assisted
software development.

E. Limitations
We identify a few limitations below:

Speculative nature of future work: The ideas we list in the future work section are opinionated directions we believe have
a high chance of success. Many draw upon insights from related work in the literature, but many lack strong and concrete
evidence. We encourage further research validating or disproving the effectiveness of these ideas.

Limited scope of future work: We also do not include any novel moonshot ideas, and many of the directions we propose
have their roots in existing code LLM literature. Our future work section is also relatively general and applies holistically to
AI for code. However, the field has many tasks and challenges that can benefit from using domain-specific knowledge and
insights, and we do not touch on these. Finally, this paper is written by people primarily in the academic community, who
may not know the details of cutting-edge methods employed in frontier industry labs. We cater this paper towards areas we
have more expertise in, and thus leave out many promising directions such as novel architectures.

Focus towards code-specific challenges: In this paper, we mostly focus on code-specific challenges and techniques.
However, there are many techniques that apply to general LLM reasoning and development that could be directly applied to
code. We believe many of these methods can be used in synergy with code-specific techniques.
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Quickly changing nature of the field: The field of LLM for software engineering is progressing very rapidly, with new
innovations released weekly. It is possible that a reader reading this paper a few months down the line will find that several
of the mentioned challenges will have been partially or entirely resolved.

F. Conclusion
In this position paper, we have identified key tasks at the heart of AI for software engineering as well as a set of three
measures to classify different realizations of these tasks. We have also highlighted critical cross-cutting challenges that
permeate throughout many tasks. Finally, to drive progress in AI for code, we’ve pinpointed a set of exciting and promising
research directions for alleviating these challenges and advancing AI towards being a more capable software engineer. We
hope this work provides valuable insights about the current landscape of AI for software engineering and encourages future
research in these directions. By building on these insights, we are optimistic that the community can work toward developing
AI-driven solutions that better support software engineers in real-world settings.
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H. Survey of Related Work: Tasks in AI Software Engineering
In this section, we briefly survey some of the relevant works for each of the tasks we mention in Sec. B. These works are by
no means complete, and we encourage the reader to check out the survey works mentioned in the introduction and in this
section for further references.

H.1. Code Generation

Code Completion: Completion typically happens in conjunction with live programming or within an IDE, helping
developers write code faster by suggesting relevant continuations. Traditional code completion systems rely heavily on
syntactic and type-aware models (e.g., AST-based models), but recent advances leverage LLMs trained on code corpora
to offer semantically rich and context-aware suggestions, naturally following the next-token prediction task in language
modeling (Radford et al., 2019). Tools like GitHub Copilot and Codex exemplify this trend (Chen et al., 2021a), and
are followed by commercial tools such as Cursor5 and Tabnine6. Recent advances in context-aware (Agrawal et al.,
2023), grammar-aligned (Park et al., 2024), and constraint-based decoding (Sun et al., 2023) have improved the quality
of local completions, particularly for shorter code snippets. For longer code snippets, the typical task formulation is
method implementation synthesis given a function signature. This setup is commonly evaluated using benchmarks such as
MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021a).

Natural Language to Code Generation: Translating natural language into code has long been a central challenge in
AI for programming. Early attempts at code generation involved semantic parsing (Zettlemoyer & Collins, 2012; Wong
& Mooney, 2006), where natural language is translated into logical forms or domain-specific languages. A prominent
example is SQL query synthesis from natural language questions, as seen in systems like Seq2SQL (Zhong et al., 2017) and

5https://www.cursor.so
6https://www.tabnine.com
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Spider (Yu et al., 2019), where the target language is constrained, small, and domain-specific. Recent work demonstrates
that large language models (LLMs) can generalize to general-purpose programming languages, enabling the generation of
larger and more complex code snippets (OpenAI, 2023b). When applied to code completion, users often begin with natural
language instructions in the form of comments, which LLMs use as context for code synthesis. Beyond function-level code
generation (Austin et al., 2021; Chen et al., 2021a), recent work has extended to class-level generation (Du et al., 2023),
which targets classes in object-oriented programming, and even project-level code generation (Cao et al., 2024; Wang et al.,
2024f), which involves generating or completing entire multi-file codebases.

Multimodal Code Generation: While text can describe most cases of code generation, certain instructions are better
defined visually. For example, in graphics applications, visual context such as a trajectory or a 3D model is essential to
synthesize the correct code. Demonstrations of GPT-4’s multi-modal capabilities have shown that models can generate
functional webpage code directly from paper sketches, translating visual layouts into HTML and CSS (OpenAI, 2023a).
LogoMotion (Liu et al., 2025b) explores visually grounded code synthesis for animations and motion graphics in JavaScript.
The system leverages vision-language models (VLMs) to incorporate both visual inputs and user instructions, enabling code
generation that aligns with spatial and temporal visual cues. Other works, such as SynthesizeCAD (Nandi et al., 2020)
and SGP-Bench (Qiu et al., 2024), explore how LLMs can interface with visual and 3D modalities by generating code in
languages like SVG and CAD.

Code Generation in Low-Resource Languages: As discussed in Sec. C.7, one major challenge is writing code in
low-adoption general purposed language and domain specific languages (DSLs). Benchmarks for this include MultiPL-E
(Cassano et al., 2023), McEval (Chai et al., 2024), and VerilogEval (Liu et al., 2023b). A popular method to improve
performance is to train on manually curated and processing data in low-resource languages such as Coq (Florath, 2024) and
Verilog (Pei et al., 2024). Another line of work aims to achieve transfer between different low-resource languages (Paul
et al., 2024; Cassano et al., 2024; Orlanski et al., 2023). Finally, since the lack of data is a large bottleneck, another popular
direction is using relevant retrievals such as useful functions and library documentation (Yang et al., 2023b; Zhou et al.,
2022; Yang et al., 2023b). For a recent survey of code generation for low-resource languages and DSLs, see (Joel et al.,
2024).

Security Concerns Surrounding Code Generation: Despite the growing power of LLMs for code generation, their outputs
often remain insecure, incorrect, or misaligned with user intent. For instance, BaxBench (Vero et al., 2025) evaluates
LLMs on generating secure and correct back-ends, revealing that while the average functional correctness is already
modest (∼ 60%), the rate of secure outputs is even lower (< 35%). To better understand and quantify these limitations,
several benchmarks and evaluation suites have been proposed. SecurityEval (Siddiq & Santos, 2022), SafeCoder (He
et al., 2024), CodeLMSec (Hajipour et al., 2023), CWEval (Peng et al., 2025), and CyberSecEval (Bhatt et al., 2023; Wan
et al., 2024a) each provide distinct lenses on evaluating vulnerabilities, unsafe API usage, or compliance with common
weakness enumerations (CWEs). In response, several approaches introduce human-in-the-loop guardrails, where developers
can interactively guide, inspect, or constrain the generation process. Dynex (Ma et al., 2025a), for instance, supports
dynamic, step-wise code synthesis with user feedback, enabling real-time correction and iterative refinement before errors
can accumulate.

Human Interaction in Code Generation: Modern code LLMs typically support interactive code generation through
conversational interfaces. Champa et al. (2024) conducted a quantitative analysis of developer-ChatGPT interactions using
the DevGPT dataset (Xiao et al., 2024), examining how the quality of the initial prompt influences conversation length.
Code LLMs can be further optimized for various interactive scenarios, including debugging environments (Surameery &
Shakor, 2023), educational settings (Kazemitabaar et al., 2023a;b; Prather et al., 2023; Sheese et al., 2024), and use by
non-professional programmers (Yan et al., 2024). Beyond human-driven interactions in chat-based setups, more advanced
code generation systems such as coding agents can proactively ask clarifying questions (Vijayvargiya et al., 2025) or
generate test cases for users to validate (Lahiri et al., 2022; Fakhoury et al., 2024) before generating the actual code, helping
to resolve ambiguities.

H.2. Code Transformation

Code Refactoring: Code refactoring aims to simplify and remove repetitions in complex repositories without altering
high-level program intent. While there have been traditional methods (Pailoor et al., 2024) that refactor data structures,
Aider AI introduces a refactoring benchmark7 evaluating LLM’s ability to output long chunks of code that simplify complex

7https://github.com/Aider-AI/refactor-benchmark
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programs without changing its behavior. More recently, RefactorBench (Gautam et al., 2024) introduced a more complex
benchmark with natural language refactor requests, as well as an LLM agent that can perform refactoring.

Code Migration: Compared to code refactoring, code migration typically refers to mid-scale modifications that affect a
program’s interface, dependencies, or underlying architecture. Common examples include switching the back-end database
from MySQL to PostgreSQL, migrating a machine learning model from TensorFlow to PyTorch, or upgrading the Java
version from legacy Java 8 to a more modern Java 17. While recent work has introduced benchmark designed to evaluate
library migrations (Islam et al., 2023), works at Google (Nikolov et al., 2025) and Amazon (Omidvar Tehrani & Anubhai,
2024) have explored LLM-driven solutions for simple but vast migrations. Google’s system identifies locations for changes,
generates edits with LLMs fine-tuned on internal code, and automatically validates changes through compilation and test
execution.

Code Translation (Transpilation): Moving beyond code migration, transpilation involves large-scale transformation of a
program’s underlying programming language. Transpilation serves not only to modernize outdated codebases but also to
eliminate classes of safety issues inherent to older languages. A particularly active area of research involves transpiling
C-based systems to Rust, a systems-level language that offers strong memory and concurrency safety guarantees. This
direction has garnered attention, including from the U.S. Department of Defense8, which maintains critical infrastructure
built on aging C code. An end-to-end LLM-based approach, such as Flourine (Eniser et al., 2024), has been proposed for
real-world code translation, but it has achieved only limited success due to frequent compilation errors. Recent efforts like
Syzygy (Shetty et al., 2024), C2SaferRust (Nitin et al., 2025), and AlphaTrans (Ibrahimzada et al., 2024) have shown the
potential for hybrid approaches combining LLMs with traditional program analysis techniques. However, some significant
challenges remain, as identified by Li et al. (2025b), including ensuring correctness in large codebases while maintaining
desirable attributes such as speed, reduced vulnerabilities, and idiomaticity. Specifically, We anticipate that the techniques
discussed in Section H.3 may help address these remaining challenges.

Code Optimization: Certain refactoring or transpilation tasks are specifically aimed at optimizing code performance. Prior
work has explored the use of LLMs for optimizing standalone programs, such as PIE (Shypula et al., 2023), which targets
C++ functions, and AlphaDev (Mankowitz et al., 2023a), which discovers more efficient sorting algorithms at the assembly
level. These tasks are particularly challenging due to the vast search space of possible code transformations. More recently,
KernelBench (Ouyang et al., 2025) introduced a benchmark focused on optimizing machine learning models written in
high-level PyTorch code into low-level, high-performance CUDA GPU kernels. For a broader overview of language models
applied to code optimization, see the survey by Gong et al. (2025).

H.3. Software Testing and Program Analysis

Short-horizon Testing: For short-horizon testing such as unit tests (Lemieux et al., 2023) and property-based tests (Vikram
et al., 2023), LLMs are employed to automatically generate targeted test cases (Li & Yuan, 2024; Mündler et al., 2025), and
even hill-climb on code coverage to improve test effectiveness (Ryan et al., 2024). At the granularity of individual functions,
LLM-generated tests have also been employed to support downstream tasks such as filtering implementations based on
behavioral correctness (Chen et al., 2022; Zhang et al., 2023b), as well as assisting in program debugging by surfacing
inputs that expose incorrect behavior (Chen et al., 2025).

Long-horizon Testing: Long-horizon testing involves evaluating system behavior across extended executions, complex
interactions, or multiple components, potentially embedded within a CI/CD (Continuous Integration or Delivery) pipeline.
Fuzzing (Miller et al., 1990) is a long-horizon testing approach that continuously generates novel random input. Recent
works such as Fuzz4All (Xia et al., 2024b), KernelGPT (Yang et al., 2023a), and OSS-Fuzz (Liu et al., 2023a; Chang
et al., 2024) have shown that LLMs can significantly improve effectiveness through better input generation and exploration
strategies. Specificatlly, OSS-Fuzz-Gen (Liu et al., 2024b) employs diverse LLMs for fuzzing harness generation, helping to
find novel and complex crashing interactions.

Static Analysis for Vulnerability Detection: Vulnerability Detection refers to the task of identifying weaknesses or flaws
in software code that could be exploited to compromise the system’s security, stability, or correctness. A wide range of
prior work leverages machine learning models such as Graph Neural Networks (GNNs) and Recurrent Neural Networks
(RNNs) to detect software vulnerabilities (Zhou et al., 2019; Chakraborty et al., 2020; Dinella et al., 2020; Hin et al., 2022;
Li et al., 2021). While some recent methods pre-train or fine-tune LLMs on code-specific datasets (Fu & Tantithamthavorn,

8https://www.darpa.mil/news/2024/memory-safety-vulnerabilities
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2022; Steenhoek et al., 2023; Cheng et al., 2022) to improve vulnerability classification, several studies have highlighted
the limitations of LLMs in real-world software (Steenhoek et al., 2024; Ding et al., 2024a; Khare et al., 2023). To combat
such limitations, works like Li et al. (2024a), IRIS (Li et al., 2024e), LLMDFA (Wang et al., 2024b), and InferROI (Wang
et al., 2023) explored augmenting static analysis tools (e.g., CodeQL) with LLMs for taint and resource leak analyses.
More recently, BigSleep (2024) demonstrated the potential of using LLMs at a much bigger scale by finding a real SQLite
vulnerability through exploratory variant analysis.

Specialized Program Analysis: Beyond long-running analysis to identify vulnerabilities, several traditional program
analyses have struggled to scale in practice despite their theoretical promise. For instance, inferring program invariants
(properties deemed to always be true at a program point) has been challenging with traditional symbolic methods such as
Daikon (Ernst et al., 2007; Padon et al., 2016) while being valuable for exposing bugs (Hangal & Lam, 2002) and aiding
software evolution (Ernst et al., 1999). Similarly, type inference for dynamically typed languages suffers from coverage
limitations of rule-based approaches and requires specialized tools like ShapeIt (Zheng & Sen, 2024) for domain-specific
challenges such as inferring symbolic tensor shapes.

Specification Inference: Specification inference is the task of automatically recovering formal description of a program’s
expected behavior, including pre-conditions, post-conditions, or invariants. The availability of specification is at the core of
establishing trust (Roychoudhury et al., 2025b), and existing works (Dinella et al., 2024b; Ruan et al., 2024) have shown
that LLMs can help the inference of such specifications. For instance, Dinella et al. (2024a) presents a program structure
aware technique for synthesizing pre-conditions for arbitrary code snippets, and have established a dataset of 18K LLM
generated pre-conditions on real Java projects.

Invariant Inference: As a subtask of specification inference, invariant inference aims at inferring loop, function, or class
invariants, which are greatly helpful in automatic program verification. There have been several LLM-based approaches for
invariant identification. They enhance traditional approaches through structured representations (Si et al., 2018), LLM-based
prompting (Kamath et al., 2023; Pei et al., 2023) and re-ranking (Chakraborty et al., 2023), and reinforcement learning (Yu
et al., 2023). Similarly, works have used sequence-to-sequence models (Wei et al., 2023a), few-shot LLM approaches
like TypeGen (Peng et al., 2023), and generate-then-rank methods like TIGER (Wang et al., 2024a) for type inference.
Consequently, we observe new benchmarks emerging in the space such as LIG-MM (Liu et al., 2024a) for loop-invariant
detection.

Binary Analysis: While the aforementioned tasks primarily focus on human-readable programming languages, many can
also be extended to operate on compiled machine code, or binaries. One prominent example is binary type inference, which
aims to recover high-level type information from low-level binary code. It has seen significant improvements with deep
learning models and LLMs (Pei et al., 2021; Zhu et al., 2024). These advancements, alongside other LLM-based analyses,
have enhanced the capabilities of decompilers, enabling them to synthesize human-readable code from binaries (Liu et al.,
2025a). Beyond decompilation, LLMs have also been applied to detect security vulnerabilities in binaries (Liu et al., 2023c)
and to generate semantic summaries that capture the high-level intent of binary code (Jin et al., 2023).

H.4. Software Maintenance

Code Navigation: Code navigation refers to the task of locating a specific position within a code repository based on either
a natural language description (Liu et al., 2024f) or a programmatic specification (Avgustinov et al., 2016). Common use
cases include identifying where a particular functionality is implemented, tracing the origin of user input that leads to a
vulnerability, or locating relevant files when starting work on a new feature. This capability underpins many downstream
tasks such as software testing, vulnerability detection, program repair, and code question answering. Code navigation or
code search modules are integral components of modern code agents (Yang et al., 2024b; Bouzenia et al., 2024; Xia et al.,
2024a), often implemented using find commands, embedding-based similarity search, or query-based tools like CodeQL and
Semgrep.

Code Documentation and Summarization: Several works have used LLMs for code summarization invoking techniques
like prompting (Sun et al., 2024b; Su & McMillan, 2024; Haldar & Hockenmaier, 2024; Ahmed et al., 2024b). RepoAgent
(Luo et al., 2024) is a framework that analyzes global contextual relationships in source code to generate fine-grained
documentation. Shi et al. (2024) show that LMs are capable of generating good natural language outlines – text descriptions
alongside code to partition it into semantically coherent sections. One challenge is that the evaluation of this task is very
tricky: the academic community currently lacks datasets and benchmarks that contain good documentation and the automatic
evaluation metrics do not align well with human metrics (Diggs et al., 2024).
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Pull Request (PR) Review: In industry, autonomous software agents such as OpenHands (Wang et al., 2024g) and Devin
have been able to automatically review and even fix PRs. At ByteDance, BitsAI-CR (Sun et al., 2025) is a code review
system that identifies issues based on a manually crafted taxonomy of review rules. In the academic community, there have
been several works studying the ability of AI systems to automatically review PRs (Tufano et al., 2021; 2022; Li et al.,
2022b; 2024b). Recently, AutoCodeRover (Zhang et al., 2024b) combines LLMs with code search to automatically fix
GitHub issues.

Program Repair: Automated program repair has had a long history, with many benchmarks covering different scopes and
languages. These include DroixBench (Tan et al., 2018) for android apps; Defects4J (Just et al., 2014), GitBug-Java (Silva
et al., 2024b), and growingBugs (Jiang et al., 2021; 2022a;b) for real-world Java; Bugsinpy (Widyasari et al., 2020) for
Python; BugSwarm (Tomassi et al., 2019) for multilingual; DebugBench (Hu et al., 2024), LiveCodeBench (Jain et al.,
2024b), and Codeflaws (Tan et al., 2017) for LeetCode-style problems; and many more.

Historically, there have been many techniques for this task, including heuristic-based APR (using genetic programming
to explore the search space of the correct patch), constraint-based APR (treating repair as a constraint-solving task),
pattern-based APR (apply expert hand-crafted repair templates), and learning-based APR (using language models) (Zhang
et al., 2024a). More recently, with LLMs, there have been agent-based approaches such as FixAgent (Lee et al., 2024) using
agents specializing in different aspects of debugging, and RepairAgent (Bouzenia et al., 2024) that invokes suitable tools.
On the other hand, Agentless (Xia et al., 2024a) uses a three-phase process of localization, repair, and patch validation.

Finally, program repair has also been used as a tool to improve code generation, where error messages and incorrect test
cases are fed back into the model to improve code generation (Madaan et al., 2023; Chen et al., 2024; Zhang et al., 2023a;
Olausson et al., 2024; Zhong et al., 2024a; Tang et al., 2025). This is also known as self-repair or self-debugging. For a
much more comprehensive survey of automated program repair, we recommend the reader check out this website9.

Code Understanding and Question Answering: Code understanding with language models has been studied for many
years. In earlier days, researchers used the CodeXGLUE (Lu et al., 2021) benchmark containing tasks such as clone
detection, code search, code summarization, and so on. Nam et al. (2024) create an IDE plugin containing features that help
users understand code through explaining highlighted sections of code and explaining domain-specific code. Yang et al.
(2025) present a survey touching on reasoning-enhanced code intelligence.

H.5. Scaffolding and Meta-Code

Beyond code generation, the broader software engineering ecosystem includes DevOps workflows, CI/CD pipelines,
and Infrastructure-as-Code (IaC). LLMs have shown particular promise in generating, debugging, and explaining CI/CD
configurations (e.g., GitHub Actions, Jenkinsfiles), assisting with environment setup, test orchestration, and deployment
logic. A case study at Ericsson (Chaudhary et al., 2024) demonstrates how an LLM-based chatbot can support CI/CD
question answering, enabling engineers to better understand and manage deployment pipelines. LLMs are also being
explored for automated testing across heterogeneous software environments. ExecutionAgent (Bouzenia & Pradel, 2024)
presents a language model-driven agent that autonomously installs, configures, and runs test suites for arbitrary projects.

Beyond CI/CD and testing, LLMs are increasingly used to reason about configuration logic and scaffolding code, which is a
critical but often overlooked layer of modern software systems. For instance, Yin et al. (2011) conducted an empirical study
of real-world configuration errors, identifying systemic causes of failure such as external dependencies, inter-parameter
violations, and overlooked default parameters. Building on this line of work, Ciri (Lian et al., 2024) confirms the feasibility
of using LLMs for configuration validation. Further, in the domain of IaC, an empirical study of 812 open-source
Terraform projects found that while access policies are commonly adopted, critical practices like encryption at rest are often
neglected (Verdet et al., 2023). This highlights the opportunity for LLMs to assist practitioners in detecting and enforcing
security best practices in IaC configurations.

H.6. Formal Verification

There are a variety of programming languages designed with different principles to support formal verification. Some of the
popular ones include TLA (Lamport, 1994), Coq (The Coq Development Team, 2024), Lean (De Moura et al., 2015), Dafny
(Leino, 2010), Isabelle (Nipkow et al., 2002), and Verus (Lattuada et al., 2024).

9https://program-repair.org/

60

https://app.devin.ai/
https://program-repair.org/
https://program-repair.org/


Position: Future Research and Challenges Remain Towards AI for Software Engineering

Formal software verification has seen a few great successes in the last few years: Astrée (Cousot et al., 2005) was able
to completely verify that Airbus A340’s primary flight-control software had no run-time errors, verifying 132,000 lines
of C code. More recently, formal methods have been applied to verify a cryptographic server (Erbsen et al., 2024) and
an IoT lightbulb at both a hardware and software level (Erbsen et al., 2021). CompCert (Leroy et al., 2016), a verified
compiler and seL4 (Klein et al., 2009), a verified microkernel are demonstrations that formal methods could be promising
for verifiable code. At Amazon, formal methods been used to verify and protect cryptographic software (Goel et al., 2024),
cloud resources (Xu et al., 2024b), and authorization (Disselkoen et al., 2025). Notably, SV-COMP (Beyer, 2023) is an
annual competition designed to evaluate program verifiers using a curated benchmark of verifiable C and Java code. It even
includes samples from the Linux Driver Verification (LDV) project (Beyer & Petrenko, 2012), aiding the verification of
Linux kernel device drivers. For more applications, we refer the reader to the survey in Huang et al. (2023).

Recently, the ability of LLMs to write formal verification code. Benchmarks like DafnyBench (Loughridge et al., 2024)
and miniCodeProps (Lohn & Welleck, 2024) were designed to measure the ability of LLMs to write software proofs in
Dafny and Lean, respectively. In Dafny, Poesia et al. (2024) use a combination of search and prompting to create a synthetic
dataset of annotations greatly improving performance on DafnyBench. Clover (Sun et al., 2024a) generates code alongside
consistency checks (like Dafny annotations), Li et al. (2025c) employ Dafny as an intermediate language to improve code
generation, and Misu et al. (2024) explore prompting and retrieval to generate Dafny. In Rust, Verus is a popular formal
verification language, with AutoVerus (Yang et al., 2024a) and AlphaVerus (Aggarwal et al., 2024) generating verified
specifications and proofs for Rust functions. There are also many IDE plugins designed to help humans to write code in
formal languages such as Dafny and Lean such as Silva et al. (2024a), Lean Copilot (Song et al., 2024), and llmstep (Welleck
& Saha, 2023).

Finally, there is a growing interest of work in using formal languages like Lean for mathematical theorem proving, which is
covered comprehensively in Li et al. (2024f) and Yang et al. (2024d).
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