
Appendix727

A Additional Experimental Results728

A.1 DMC729

Here we show additional experimental results, beginning with a full breakdown of the DMC results730

for each dataset. In Figure 6 we see the zero-shot transfer performance for models trained with731

random, medium and expert initial datasets, and 15 subsequent deployments. Interestingly, we see732

that the medium dataset proves to be the most effective for achieving high performance, this may be733

due to being more diverse than the expert dataset, which is a narrow distribution of high performing734

episodes.735

Figure 6: DMC Zero-Shot Results: Plots show the performance by environment and dataset, with the last row
being the task performance average over all three initial datasets. Plots show the mean and SEM over 10 seeds.

19

A.2 Atari Tasks736

Next we show detailed results in three Atari games: Montezuma’s Revenge, Frostbite and Hero737

in Fig. 7. We see that generally CASCADE discovers higher rewarding episodes (almost double738

the next best baseline in Montezuma’s Revenge), and also discovers more rewarding episodes on739

average. This translates to stronger zero-shot performance than all baselines in all three environments.740

On the other hand, the other baselines achieve worse zero-shot performance because they either741

(1) find an occasional high reward episode (Max Episode Return), but not in a sufficient quantity742

(Rewarding Episodes), or (2) collect abundant low rewarding episodes that are less helpful for learning743

good behavior polices. For instance, the random baseline is able to find Rewarding Episodes more744

frequently in Frostbite, but these are relatively low quality, hence the lower curve when assessing its745

Max Episode Return.746

Figure 7: From left to right on each row we show a frame from the game, a plot of the cumulative maximum
episode reward, the total number of rewarding episodes discovered and zero-shot average return, from 3M
training steps (15 deployments). Plots show mean and SEM over 10 seeds. Note that the max episode returns of
all methods stabilize after 15 deployments (3M training steps in total).

To understand why CASCADE performs well, in Figure 8 we plot trajectories from Montezuma’s747

Revenge. We see that the inclusion of a diversity-inducing objective does indeed lead to more diverse748

behaviors in the environment, with each policy exploring different regions of the room. In contrast, for749

PP2E, agents 3,4,5,6,7,9 all exhibit very similar behavior, likely indicating that random initialization750

alone is not sufficient to induce diversity when all agents optimize for the same objective.751

20

5DQGRP 33�(&$6&$'(

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW��

$JHQW���

Figure 8: Trajectories in Montezuma’s Revenge: Each row shows a trajectory from one of the 10 exploration
agents of a model after 3M training timesteps (P2E is omitted because it only has 1 agent.) We can see that
PP2E’s agents exhibit the most homogeneous behaviors, and result in trajectories that focus on the bottom right
of the room, while CASCADE agents manage to explore more of the room collectively.

21

B Implementation Details752

DreamerV2 consists of an image encoder that uses a Convolutional Neural Network (CNN, [56]), a753

Recurrent State-Space Model (RSSM [38]) that learns the dynamics, and predictors for the image,754

reward, and discount factor. The RSSM uses a sequence of deterministic recurrent states ht. At each755

step, it computes a posterior state zt conditioned on the current image xt, as well as a prior state ẑt756

without the current image. During world model training, the concatenation of ht and zt is used to757

reconstruct the current image xt, and predict the reward rt and discount factor �t. Once the world758

model is trained, it can be used to roll out “imaginary” trajectories where the model state is instead759

the concatenation of the deterministic state ht and prior stochastic state ẑt.760

RSSM

(Recurrent model: ht = f (ht�1, zt�1, at�1)
Representation model: zt ⇠ q (zt|ht, xt)
Transition predictor: ẑt ⇠ p (ẑt|ht)

(7)

761

Image predictor: x̂t ⇠ p (x̂t|ht, zt)

Reward predictor: r̂t ⇠ p (r̂t|ht, zt)

Discount predictor: �̂t ⇠ p (�̂t|ht, zt).

(8)

Our implementation (https://github.com/ainomearod/divwm) was built on top of the official762

DreamerV2 repository https://github.com/danijar/dreamerv2. We used the default hyper-763

parameter values in the DreamerV2 repository. Table 1 lists the additional hyperparameters used in764

our experiments.765

We also incorporate a latent disagreement ensemble, following Plan2Explore [95]. This involves766

training, alongside the RSSM model, an MLP ensemble with 10 members (each having 4 hidden767

layers, 400 units per layer, and different parameter initializations). These one-step models take action768

at and latents zt, ht as inputs, and try to predict the next stochastic latent zt+1. The variance across769

these outputs during imagined rollouts is then used as the reward signal that forms the Information770

Gain (InfoGain) objective. Note that this ensemble is otherwise unused, and is solely trained for the771

purposes of the exploration objective.772

Table 1: CASCADE hyperparameters

Environment Parameter Value

MiniGrid-FourRooms

CASCADE weight (�) 0.1
batch size 200k
deployments 5
explorer train steps 10k
offline model train steps 20k

MiniGrid-MultiRoom-N4S5

CASCADE weight (�) 0.3
batch size 200k
deployments 5
explorer train steps 10k
offline model train steps 20k

Montezuma’s Revenge

CASCADE weight (�) 0.8
batch size 200k
deployments 15
explorer train steps 10k
offline model train steps 5k

Walker

CASCADE weight(�) 0.1 (Random)
0.3 (Medium/Expert)

batch size 200k
deployments 2
explorer train steps 250
offline model train steps 5k

22

https://github.com/ainomearod/divwm
https://github.com/danijar/dreamerv2

C Deriving the Objective773

C.1 An Information Theoretic Perspective774

Inspired by [95], we derive a data acquisition objective based on the mutual information between the775

collected data and parameters of the world model M . M can be either stochastic or deterministic,776

and can also be an ensemble of empirical models. Crucially however, we eschew the reliance on777

one-step information gain (as performed in [95]), and instead aim to maximize diversity directly in778

the space of trajectories. To do this, let � : � ! ⌦ be an summary function mapping trajectories779

into an embedding ‘summary’ space. For any model M we use the notation P⇡[M] to denote780

the distribution over trajectories generated by policy ⇡ in M and use M ⇠ PM to denote the781

posterior distribution over models. The later depends on the data collected so far.782

In this work we consider different embedding functions �,783

1. Final State Embedding. In this setting we define �(⌧) = hH where hH corresponds to784

the H�th (and last) state embedding in the trajectory ⌧ . Since we use an RNN world model,785

the use of this summary embedding is analogous to the final encoder embedding in seq2seq786

language models [101].787

2. Visitation Frequencies. In the tabular setting if we define �(⌧) as a discounted count788

statistic for states in ⌧ , we recover P�
⇡
[M] = d

⇡

M
where d

⇡

M
corresponds to the789

discounted visitation distribution of policy ⇡ in model M .790

The authors of [95] study a per state-action mutual information objective that informs the construction791

of a greedy mutual information maximizing policy. Implicitly, this per-step objective assumes the792

model to factor in independent transition operators pertaining to each state-action pair. This is793

certainly not the case when using powerful function approximators such as neural networks. In794

this case, the dynamics model corresponding to the state transitions of a specific state action pair is795

correlated with the state transition model of other state-actions. This is not captured accurately by the796

objective in [95]. Instead, we consider the following choice for an exploratory policy in the single797

policy setting studied in [95]:798

⇡EXP = max
⇡

I
�
P�
⇡
[M];M

�
= H(P�

⇡
[M])�H(P�

⇡
[M]|M). (9)

⇡EXP is a policy whose distribution over summaries �(⌧) with ⌧ ⇠ P⇡[M] and M ⇠ PM has799

large entropy, but such that the average entropy of the summaries in every individual model is small.800

The term H(P�
⇡
[M]) captures the total uncertainty (epistemic + aleatoric) while subtracting the801

conditional entropy removes the aleatoric uncertainty resulting from noise within the model and the802

policy.803

To gain intuition about this objective, consider the case where � equals the final state embedding.804

For simplicity, we consider the scenario when all models M ⇠ P and all policies ⇡ ⇠ ⇧ are such805

that for any realization of M = m , the conditional entropy H(P�
⇡
[M]|M = m) = �(m)806

is a function of the world m and not of the policy. In this case, the policy ⇡EXP is the entropy807

maximizing policy:808

⇡EXP = max
⇡

H(P�
⇡
[M]).

The scenario above is realized for example when all models M ⇠ PM are deterministic and all809

policies in ⇧ are deterministic. In this case, for every realization of M = m , the conditional810

entropy H(P�
⇡
[M]|M = m) = 0. The assumption H(P�

⇡
[M]|M = m) = �(w) is811

also realized when the distribution �(⌧) ⇠ P�
⇡
[m] is approximated as a Gaussian distribution812

P�
⇡
[m] ⇡ N (µ(m ,⇡),⌃(m)) with policy dependent mean µ(m ,⇡) and policy independent813

covariance ⌃(m).814

In these cases ⇡EXP is the policy that produces the most diverse distribution over final states across815

the posterior distribution over models PM . Since access to H(P�
⇡
[M]) may not be possible,816

in our experiments we make further approximations inspired by [95]. Under the same gaussian817

approximation P�
⇡
[m] ⇡ N (µ(m ,⇡),⌃(m)), optimizing max⇡H(P�

⇡
[M]) is achieved by818

23

finding the policy ⇡ that makes the ensemble means µ(m ,⇡) as far apart as possible. A suitable819

surrogate for this objective is to maximize the empirical variance over means,820

Var(⇡) =
1

|M |� 1

X

m

kµ(m ,⇡)� µ
0(⇡)k2

where |M | denotes the number of samples m , and µ
0(⇡) = 1

|M |
P

m
µ(m ,⇡). We now821

consider a “batch” version of Eq. 9 involving a population of B agents:822

{⇡
(i)
EXP}

B

i=1 = max
⇡(1),··· ,⇡(B)2⇧B

I

BY

i=1

P�
⇡(i) [M];M

!
=

H

BY

i=1

P�
⇡(i) [M]

!
�H

BY

i=1

P�
⇡(i) [M]

���M

!
(10)

where
Q

B

i=1 P�
⇡(i) [M] is the product measure of the candidate policies embedding distributions823

over the model M . By definition the conditional entropy factors as,824

H

BY

i=1

P�
⇡(i) [M]

���M

!
=

BX

i=1

H

⇣
P�
⇡(i) [M]

���M

⌘
. (11)

The objective in Eq. 10 has a similar interpretation as in the single policy case. We are hoping to find825

a set of policies whose average conditional entropies are small (Eq. 4), but whose total entropies are826

large. Intuitively, we see this objective is more amenable to our population of policies. Concretely, by827

considering distributions directly over the space of trajectories, we ensure that each agent does not828

‘double count’ the explored states under Eq. 10, whereas applying the same principal to a one-step829

information gain objective would simply ensure diversity conditioned on that state and action, and830

doesn’t explicitly ensure diversity in the visited states by the population.831

C.1.1 Proof of Lemma 1832

In the proof of Lemma 1 we will make use of the following supporting result,833

Lemma 3. Let p 2 (0, 1] and p1, p2 > 0 satisfying p1 + p2 = p then,834

p log(1/p) < p1 log(1/p1) + p2 log(1/p2).

Proof. Let p1 = ↵p with ↵ 6= 0, 1, then,835

p1 log(1/p1) + p2 log(1/p2) = ↵p log(1/(↵p)) + (1� ↵)p log(1/((1� ↵)p))

= p log(1/p) + p

0

@↵ log(1/↵) + (1� ↵) log(1/(1� ↵))| {z }
>0

1

A

> p log(1/p).

836

Lemma 3 implies the following result,837

Lemma 4. Let p 2 [0, 1]K be a vector satisfying
P

K

i=1 pi = 1 and let C be a partition of [K] such838

that |C|  K � 1. For all C 2 C denote p(C) =
P

i2C
pi. The following inequality holds,839

X

C2C
p(C) log(1/p(C)) 

KX

i=1

pi log(1/pi).

24

If pi > 0 the inequality is strict,840

X

C2C
p(C) log(1/p(C)) <

KX

i=1

pi log(1/pi).

Proof. W.l.o.g we call C1 the partition set containing 1 and assume p1 > 0. If pi > 0 for only one841

element of C1, it must be the case that p1 log(1/p1) = pC1 log(1/pC1).842

We now assume that |C1| > 1 and that C1 has at least two indices i 6= j such that pi,pj > 0. Let843

l denote the size of C1 and w.l.o.g. let’s say C1 = {1, 2, · · · , l}. Lemma 3 implies the following844

inequalities,845

p(C1) log(1/p(C1)) < p1 log(1/p1) + p(C1\{1}) log(1/p(C1\{1}))

< · · ·

<

X

i2C1

pi log(1/pi).

Applying this reasoning to each element in the partition C yields the desired result.846

847

Lemma 1. When all models M in the support of the model posterior are deterministic and tabular,848

and the space of policies ⇧ consists only of deterministic policies, there always exists a solution849

{⇡
(i)
EXP}

B

i=1 satisfying ⇡
(i)
EXP 6= ⇡

(j)
EXP8i 6= j. Moreover, there exists a family of tabular MDP models,850

such that the maximum cannot be achieved by setting ⇡EXP(i) = ⇡ for a fixed ⇡.851

Proof. First let’s observe that when the models and policies are all deterministic, the conditional852

entropies satisfy,853

H

BY

i=1

P�
⇡(i) [M]

���M

!
=

BX

i=1

H

⇣
P�
⇡(i) [M]

���M

⌘
= 0.

We assume the set of policies ⇧ is of size at least B. Otherwise, the result cannot be true. The first854

result follows immediately by Lemma 4. For any fixed ⇡, the product distribution
Q

B

i=1 P�
⇡
[M] is a855

distribution over ‘diagonal’ tuples of the form (b, · · · , b)| {z }
size B

where b is an embedding.856

Consider an arbitrary set of policies ⇡
(2)

, · · · ,⇡
(B) satisfying ⇡

(i)
6= ⇡

(j)
6= ⇡ for all i, j 2857

{2, · · · ,K}. Call ⇡(1) = ⇡. The distribution over embeddings induced by the product distribution858 Q
B

i=1 P�
⇡(i) [M] is made of tuples of the form (b1, · · · , bB). Call p(b1, · · · , bB) the probability un-859

der the product measure
Q

B

i=1 P�
⇡(i) [M] of the tuple (b1, · · · , bB). Notice the ‘projection measure’860

onto the first coordinate satisfies861

BY

i=1

P�
⇡(i) [M](b1) =

BY

i=1

P�
⇡
[M](b1, · · · , b1) := p1(b1)

and that
P

b2,··· ,bK p(b1, b2, · · · , bK) = p1(b1). This induces a partition over the outcome space862

(b1, · · · , bK) corresponding to C(b1) = {(b1, b2, · · · , bK)}b2,··· ,bK .863

A direct use of Lemma 4 implies the entropy of the product distribution over finer grained tuples864

is larger than the entropy over the diagonal of the product distribution having all coordinates equal865

to each other. In fact this result also informs when the inequality will be strict. This happens when866

(for example the measure over M is the counting measure) there exists two worlds M
(1)

and867

M
(2)

such that the embedding tuples (b(1)1 , · · · , b
(1)
B

) and (b(2)1 , · · · , b
(2)
B

) satisfy b
(1)
1 = b

(2)
1 and868

(b(1)2 , · · · , b
(1)
B

) 6= (b(2)2 , · · · , b
(B)
B

).869

25

We will use this observation to prove the second claim. Consider a family of MDPs formed of depth870

L binary trees. In this family, the paths leading to the L� 1 layer are the same, but the connections871

from layer L� 1 to layer L are unknown. The ‘posterior’ distribution is assumed to be uniform over872

all plausible trees. Layer L� 1 has size 2L�1 and layer L has size 2L. W.l.o.g. we assume the set of873

nodes in layer L is labeled as [1, 2, · · · , 2L]. The distribution over models is supported over the set874

of partitions of size 2L�1 of [1, · · · , 2L] where each partition set has size 2. We assume 2L � B so875

that there are at least B distinct policies.876

Let ⇡ be a fixed policy. It is enough to show there exist two worlds M(1)

and M
(2)

such that policy877

⇡ ends in the same state for both M
(1)

and M
(2)

but that there exist distinct policies ⇡(2)
, · · · ,⇡

(B)878

such that their endpoints (b(1)2 , · · · , b
(1)
B

) and (b(2)2 , · · · , b
(2)
B

) in worlds M
(1)

and M
(2)

satisfy879

(b(1)2 , · · · , b
(1)
B

) 6= (b(2)2 , · · · , b
(2)
B

). The latter always holds because among the set of models that880

maintain the same endpoint for ⇡, there is a pair of models that has different endpoints for ⇡(2) for881

any arbitrary ⇡
(2)
6= ⇡. This suffices to show the entropy of the ensemble of distinct policies is882

strictly larger than the entropy of the ‘diagonal choice’ (⇡, · · · ,⇡)| {z }
size B

.883

884

C.1.2 InfoCascade885

Since the mutual information objective in Eq. 3 is submodular, a simple greedy algorithm yields a886

(1� 1
e
) approximation of the optimum [72]. This is the same observation that gives rise to the greedy887

algorithm underlying other batch exploration objectives, such as in BatchBALD [51].888

Let’s start by assuming we have candidate policies ⇡(1)
, · · · ,⇡

(i�1). InfoCascade selects ⇡(i) based889

on the following greedy objective,890

⇡
(i) = arg max

⇡̃(i)2⇧
I

0

@
iY

j=1

P�
⇡̃(j) [M];M

���⇡̃(j) = ⇡
(j)
8j  i� 1

1

A

= H

0

@
iY

j=1

P�
⇡̃(j) [M]

���⇡̃(j) = ⇡
(j)
8j  i� 1

1

A�H

0

@
iY

j=1

P�
⇡(j) [M]

���M , ⇡̃
(j) = ⇡

(j)
8j  i� 1

1

A .

891

Equation 4 implies892

H

0

@
iY

j=1

P�
⇡(j) [M]

���M , , ⇡̃
(j) = ⇡

(j)
8j  i� 1

1

A =
iX

j=1

H

⇣
P�
⇡(i) [M]

���M

⌘
(12)

and therefore if we approximate P�
⇡
[m] by a Gaussian P�

⇡
[m] ⇡ N (µ(m ,⇡),⌃(m)), the893

conditional entropy becomes a policy independent term. In this case finding ⇡
(i) boils down to894

solving for the policy that maximizes H

⇣Q
i

j=1 P�
⇡(j) [M]

���⇡(1)
, · · · ,⇡

(i�1)
⌘

. Using the same895

approximations described for the single policy objective, a suitable surrogate for this objective is896

to maximize max⇡ Var(⇡|⇡(1)
, · · · ,⇡

(i�1)), the empirical variance over means with respect to the897

policies found so far {⇡(j)
}
i�1
j=1,898

Var(⇡|⇡(1)
, · · · ,⇡

(i�1)) =

1

|M ||i|� 1

X

m

X

⇡̃2{⇡(1),··· ,⇡(i�1),⇡}

kµ(m , ⇡̃)� µ
0(⇡,⇡(1)

, · · · ,⇡
(i�1))k2

Where µ
0(⇡,⇡(1)

, · · · ,⇡
(i�1)) = 1

|M ||i|
P

m

P
⇡̃2{⇡(1),··· ,⇡(i�1),⇡} µ(m , ⇡̃).899

26

D Theoretical RL Intuition900

The problem we study in this work can be thought of as the “batch” version of the Reward Free901

Exploration formalism [44]. In this setting, the learner interacts with an MDP in two phases: 1) a902

training phase, where it is allowed to collect data from the environment; 2) a test phase, where the903

learner is presented with an arbitrary task (parametrized by a reward function unseen during training)904

and it must produce a near optimal policy. When faced with this problem, the learner is required905

to design a careful exploration strategy that permits them to build an accurate model in all areas of906

the state-space that can be reached with sufficient probability. There have been multiple follow up907

works that have also studied this problem in the context of Linear MDPs [113] and neural function908

approximation [85]. Nonetheless, there has been limited focus on the batch setting, where the learner909

is required to collect data via parallel data gathering policies in each training phase.910

Due to the adaptive nature of the algorithm (every single environment query uses all information911

collected so far), there is an inevitable drop in performance when moving from the sequential (912

fully online) setting to the batch (deployment efficient) setting, as measured by the total number of913

environment interactions (in our case, T ⇥B where T is the number of training rounds and B the914

number of parallel collection policies). To illustrate how CASCADE mitigates this loss in sample-915

efficiency, we outline the pseudo-code of CASCADE-TS, a greedy Thompson Sampling algorithm916

(see [4]) that produces the i�th batch exploration policy in a tabular enviornment by incorporating917

fake count data from rolling out policies ⇡(1)
, · · · ,⇡

(i�1) in the model. In the algorithms we present918

in the main body, we incorporate data gathered in the model by previous i� 1 selected policies into919

the batch when building the i�th exploration policy; this is directly related to the approach behind920

CASCADE-TS. Concretely, encouraging policy ⇡
(i) to induce a high variance among the embeddings921

produced by {⇡
(1)

, · · · ,⇡
(i�1)

} can be thought as adding a bonus to encourage ⇡(i) to visit regions of922

the space that have a low embedding visitation count by the previous policies in {⇡
(1)

, · · · ,⇡
(i�1)

}.923

Algorithm 2 CASCADE-TS

1: Input: Exploration batch size B. Fake samples parameter M .
2: Initialize model P̂0 over S ⇥A state actions.
3: Initialize the batch collection policies as {⇡(i)

0 }
B

i=1 to uniform.
4: for time in k = 0, 1, 2, . . . do
5: Collect trajectory data {⌧

(i)
k

}
B

i=1 from ⇡
(i)
k

for all i = 1, · · · , B. Update D
k+1
 D

k
[

{⌧
(i)
k

}
B

i=1.
6: Initialize the fake data buffer Dk+1

fake = ;.
7: for i = 1, · · · , B do
8: Sample MDP model from posterior eP(i)

k+1 ⇠ P(·|Dk+1
[D

k+1
fake).

9: Compute fake counts N (i)
k+1(s, a) =

P
(s̃,ã,s̃0)2Dk+1[Dk+1

fake
1(s̃ = s, ã = a).

10: Compute fake uncertainty bonuses b(i)
k+1(s, a) /

r
1

N
(i)
k+1(s,a)

11: Solve for ⇡(i)
k+1 by solving,

⇡
(i)
k+1 = max

⇡

E
⌧⇠eP(i),⇡

k+1

"
HX

h=1

b
(i)
k+1(sh, ah)

#

12: Collect fake trajectory data {⌧
(i)
`,fake}

M

`=1 from posterior sampled model eP(i)
k+1.

13: Update fake data buffer Dk+1
fake D

k+1
fake [{⌧

(i)
`,fake}

M

`=1.
14: end for
15: end for

Algorithm 2 works by sampling a model from a model posterior, solving for an optimal uncertainty924

seeking policy and updating the model with ‘fake’ data corresponding to trajectories collected in925

the model from this uncertainty seeking policy. After producing the i�th exploration policy in the926

batch, the recomputed uncertainty bonuses of the model are reduced in the areas of the state space927

27

most visited by the i�th policy. This will encourage subsequent uncertainty seeking policies (i.e.,928

⇡
(i+1)
k+1 ,⇡

(i+2)
k+1 , . . . ,⇡

(B)
k+1) to visit parts of the space not yet explored by previous policies.929

Why Thompson Sampling? The reader may wonder why Algorithm 2 samples a model eP(i)
k+1 from930

a TS posterior instead of using the empirical model resulting from fake and true data. The answer is931

that the raw empirical model may ascribe a probability of zero to certain transitions, which means932

we may miss exploring parts of the true state-action space. Having a TS prior that ascribes non-zero933

probabilities to all possible transitions fixes this potential issue.934

D.1 Proof of Lemma 2935

Let’s consider the class of deterministic MDPs with S = |S| states and A = |A| actions. It is936

clear that playing the same deterministic policy multiple times does not provide us with any more937

information than playing it once. We will then show that running Thompson TS, the learner will end938

up with a nonzero probability of producing at least two distinct policies within a batch of size B > 2.939

We will further assume the posterior is aware of the deterministic nature of the MDP family so that940

any sample MDP model eP(i)
k+1 is deterministic. For i > 1, the model eP(i)

k+1 is one whose transitions941

are consistent with the fake data generated by ⇡
(1)
k+1, · · · ,⇡

(i�1)
k+1 (and the true data in D

k).942

A deterministic MDPs can be encoded as a set of triplets (s, a, s0). We say a model943

{(s, a, s0)}s2S,a2A is ✏�accurate if at least a fraction of 1� ✏ of the triplets are correct.944

We now illustrate how the CASCADE-TS algorithm evolves in this setting. To simplify our task, we945

will further restrict our attention to the family of deterministic MDPs made of binary trees of height946

L. The number of nodes in any of such trees equals 2L+1
� 1.We will define the counts to be a large947

value (2L) when no data has been collected of a given state action pair. When data has been collected,948

we define the bonus terms to be of order at most 1.949

To figure out the connectivity of any such trees it is necessary to try out 2L � 1 distinct sequences950

of L actions (the nature and connectivity of the remaining leaf nodes can be inferred once all the951

other ones have been decoded). To build an ✏�accurate model, it is enough to know the connectivity952

structure of 1� ✏ proportion of paths corresponding to (1� ✏)(2L � 1) leaf nodes.953

To prove the result of Lemma 2, we observe that any batch strategy can be simulated by a fully954

sequential learner, so it immediately follows that T (✏, Sequential)  T (✏,AnyBatchStrategy). To955

show that CASCADE-TS will be better than SinglePolicyBatch in this tree example, as long as B is956

smaller than the remaining number of paths the learner has not tried out, it will produce a set of B957

policies different from any policy played so far and also different from each other.958

To see why the second inequality is true, it is enough to see that complete paths (real or imagined)959

have a total reward score of at most L, since the counts are always at most one for each edge that960

is present. Nonetheless, the counts over any path (sequence of L actions) that has not been visited961

nor has been imagined to be visited will be at least 2L. Thus, every step in the sequential batch962

construction mechanism will produce a new policy (sequence of L actions) not existent neither in963

the true nor the fake data so far. This finalizes the proof. Notice that the SinglePolicyBatch strategy964

will have tried only K unique paths after K batches have been collected, whereas the CASCADE-TS965

strategy will have tried BK, resulting in a potentially substantial improvement in sample efficiency.966

28

