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A Lemmas related to corruption effects

Here we states some basic lemmas that will be used all over the proofs.

Lemma A.1 (Corruption effects 1). For any interval I and hypothesis h, we have

1

|I|
∑
t∈I

(Rt(h)−R∗(h)) ≤ CI
|I|
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Proof.
1

|I|
∑
t∈I

(Rt(h)−R∗(h))

= Ex∼ν∗
1

|I|
∑
t∈I

(
Ey∼ηxt [1{h(x) 6= y}]− Ey∼ηx∗ [1{h(x) 6= y}]

)
≤ 1

|I|
∑
t∈I

max
x∈X

(
Ey∼ηxt [1{h(x) 6= y}]− Ey∼ηx∗ [1{h(x) 6= y}]

)
≤ 1

|I|
∑
t∈I

max
x∈X
|ηxt − ηx∗ | ≤

CI
|I|

Lemma A.2 (Corruption effects 2). For any interval I and hypothesis pair h, h′, we have
1

|I|
∑
t∈I

(Rt(h)−Rt(h′))− (R∗(h)−R∗(h′)) ≤ 2ρ∗(h, h
′)
CI
|I|

Proof.
1

|I|
∑
t∈I

(Rt(h)−Rt(h′))− (R∗(h)−R∗(h′))

= Ex

[
1

|I|
∑
t∈I

(
Et∼ηxt [1{h(x) 6= y} − 1{h′(x) 6= y}]− Et∼ηx∗ [1{h(x) 6= y} − 1{h′(x) 6= y}]

)]

= Ex

[
1{h(x) 6= h′(x)}

|I|
∑
t∈I

(
Et∼ηxt [1{h(x) 6= y} − 1{h′(x) 6= y}]− Et∼ηx∗ [1{h(x) 6= y} − 1{h′(x) 6= y}]

)]

≤ ρ∗(h, h′)

(
2

|I|
∑
t∈I

max
h∈H

(Rt(h)−R∗(h))

)

≤ 2ρ∗(h, h
′)
CI
|I|

B Analysis for Passive Learning: Proof of Theorem 3.1

With probability at least 1− δ, we have for any n samples,
R∗(hout)−R∗

≤
(
(R∗(hout)−R∗)− (R̄[1,n](hout)− R̄[1,n](h

∗))
)

+
(
R̄[1,n](hout)− R̄[1,n](h

∗)
)

≤ 2
Ctotal

n
ρ∗(hout, h

∗) +
(
R̄[1,n](hout)− R̄[1,n](h

∗)
)

≤ 2
Ctotal

n
ρ∗(hout, h

∗) +
(
R̂[1,n](hout)− R̂[1,n](h

∗)
)

+

√
ρ∗(hout, h∗)

4 log(|H|/δ)
n

+
log(|H|/δ)

n

≤ 4
Ctotal

n
max{R∗(hout)−R∗, 2R∗}+

√
max{R∗(hout)−R∗, 2R∗}

4 log(|H|/δ)
n

+
log(|H|/δ)

n
where the second step can from our definition of corruptions and fact that ν∗ is not corrupted (see
Lemma A.2 for details), third inequality comes from the Bernstein inequality and the last inequality
comes from the definition of hout and the fact ρ∗(h, h′) ≤ 2 max{R∗(h) − R∗, 2R∗}. Now if
2R∗ ≥ R∗(hout) − R∗, then we directly get the target result. Otherwise, by solving the quadratic
inequality, we have

R∗(hout)−R∗ ≤
5 log(|H|/δ)

n

1

(1− 4Ctotal
n )2
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C Analysis for Robust CAL

C.1 Proof of Theorem 4.1

For convenient, for all subscripts [0, t], we simply write as subscript t.

We first state a key lemma that is directly inspired by Theorem 3.1.

Lemma C.1. For any t that log(t) = N, under the assumption of this theorem, as long as h∗ ∈ Vt,
we have

R∗(ĥt)−R∗ ≤
22 log(|H|/δ)

t
+ 4

Ct
n
R∗ +

√
R∗

8 log(|H|/δ)
t

≤ 22 log(|H|/δ)
t

+
R∗

2
+

√
R∗

8 log(|H|/δ)
t

(By assumption on Ct)

≤ 26 log(|H|/δ)
t

+R∗ (By the fact
√
AB ≤ A+B

2
)

Proof. With probability at least 1− δ, by combine the same proof steps as in Theorem 3.1 and the
fact that R̂[1,t](ĥt)− R̂[1,t](h

∗) = L̂t(ĥt)− L̂t(h∗) ≤ 0, we can get the similar inequality as follows

R∗(ĥt) ≤ 4
Ct
n

max{R∗(ĥt)−R∗, 2R∗}+

√
max{R∗(ĥt)−R∗, 2R∗}

4 log(|H|/δ)
t

+
log(|H|/δ)

t

Then again by quadratic inequality and the assumption that Ct

t ≤
1
8 , we have

R∗(ĥt) ≤
22 log(|H|/δ)

t
+ 4

Ct
n
R∗ +

√
R∗

8 log(|H|/δ)
t

This lemma suggests that, as long as the corruptions are not significantly large. For example, in this
theorem, Ct ≤ 1

8 t. Then the learner can still easily identify the Õ( 1
t +R∗)-optimal hypothesis even

in the presence of corruptions. Therefore, we can guarantee that the best hypothesis always stay in
active set Vt after elimination. We show the detailed as follows.

Define E1, E2 as

E1 :=

{
∀t that log(t) = N, (Rt(h)−Rt(h′))− (R̂t(h)− R̂t(h′)) ≤

√
2βtρ̂t(h, h′)

t
+
βt
t

}

E2 :=

{
∀t that log(t) = N, (Rt(h)−Rt(h′))− (R̂t(h)− R̂t(h′)) ≤

√
2βtρ∗(h, h′)

t
+
βt
t

}

E3 :=

{
∀t that log(t) = N, |ρ∗(h, h′)− ρ̂t(h, h′)| ≤

√
2βtρ̂t(h, h′)

t
+
βt
t

}

By (empirical) Bernstein inequality plus union bound, it is easy to see P(E1 ∩ E2 ∩ E3) ≥ 1− δ.

First we show the correctness.
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For any t that log(t) = N, assume that h∗ ∈ Vt, then we have

L̂t(h
∗)− L̂t(ĥt) = R̂t(h

∗)− R̂t(ĥt)

≤ R̄t(h∗)− R̄t(ĥt) +

√
βtρ̂t(h∗, ĥt)

t
+
βt
2t

≤ R∗ −R∗(ĥt) +

√
2βtρ̂t(h∗, ĥt)

t
+
βt
t

+ ρ∗(h
∗, ĥt)

2Ct
t

≤

√
2βtρ̂t(h∗, ĥt)

t
+
βt
t

+ ρ∗(h
∗, ĥt)

2Ct
t

≤

√
2βtρ̂t(h∗, ĥt)

t
+
βt
t

+

ρ̂t(h∗, ĥt) +

√
2βtρ̂t(h∗, ĥt)

t
+
βt
t

 2Ct
t

≤

√
2βtρ̂t(h∗, ĥt)

t
+

3βt
2t

+
1

2
ρ̂t(h

∗, ĥt)

where the first and forth inequality comes from the event E1 and E3, the second inequality comes
from Lemma A.2, the third inequality comes from the definition of R∗ and last inequality comes

from
√

2βtρ̂t(h∗,ĥt)
t ≤ ρ̂t(h

∗,ĥt)
2 + βt

t and the assumption that Ct

t ≤
1
8 .

According to the elimination condition 10 in Algo. 1, this implies that h∗ ∈ Vt+1. Therefore, by
induction, we get that h∗ ∈ Vn. By again using Lemma C.1, we can guarantee that

R∗(hout)−R∗ ≤
22 log(|H|/δ)

n
+

4R∗Ctotal

n
+

√
R∗

8 log(|H|/δ)
n

Next we show the sample complexity. For any t that log(t) = N and any h ∈ Vt, we have

∆h =
(
∆h − (R̄t(h)− R̄t(h∗))

)
+
(

(R̄t(h)− R̄t(h∗))− (R̂t(h)− R̂t(h∗))
)

+ (R̂t(h)− R̂t(h∗))

≤ 2Ct
t
ρ∗(h, h

∗) +

√
2βtρ∗(h, h∗)

t
+
βt
t

+ R̂t(h)− R̂t(ĥt)

≤ 1

4
ρ∗(h, h

∗) +

√
2βtρ∗(h, h∗)

t
+
βt
t

+

√
2βtρ̂t(h∗, ĥt)

t
+

3βt
2t

+
1

2
ρ̂t(h

∗, ĥt)

≤ 19

24
ρ∗(h, h

∗) +

√
2βtρ∗(h, h∗)

t
+

√
2βtρ̂t(h, h∗)

t
+

√
2βtρ̂t(ĥt, h∗)

t
+

6βt
t

≤
(

19

24
+

25

24β4

)
ρ∗(h, h

∗) +
13

24β4
ρ∗(ĥt, h

∗) +

(
2β4 + 6 +

21

2β4

)
≤
(

19

24
+

25

24β4

)
∆h +

13

24β4
∆ĥt

+

(
2β4 + 6 +

21

2β4

)
βt
t

+ 2

(
19

24
+

25

24β4
+

13

24β4

)
R∗

≤
(

19

24
+

25

24β4

)
∆h +

(
2β4 + 6 +

169

12β4
+

21

2β4

)
βt
t

+ 2

(
19

24
+

25

24β4
+

13

24β4
+

13

48β4

)
R∗

where the first inequality comes from the event E2 and the definition of ĥt, the second inequality
comes from the elimination condition 10 in Algo. 1. For the third and forth inequality, we use the
fact
√
AB ≤ A+B

2 multiple times and the last inequality comes from Lemma C.1.

Finally, choose β4 = 25 and solve this inequality, we get ∆h ≤ 120βt

t + 12R∗
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Therefore, we get the probability of query as

P (xt+1 ∈ Dis(Vt+1)) ≤ P
(
∃h ∈ Vt+1 : h(xt) 6= h∗(xt),∆h ≤

120βt
t

+ 12R∗
)

≤ P
(
∃h ∈ Vt+1 : h(xt) 6= h∗(xt), ρ∗(h, h

∗) ≤ 14R∗ +
120βt
t

)
≤ θ∗(14R∗ +

120βt
t

)

(
14R∗ +

120βt
t

)
Therefore, we get the final prove by summing this probability over all the time.

C.2 Why vanilla Robust CAL does not work?

Proposition C.1. When R∗ � 0 and the corruptions are unknown to the learner, there exists an
instance and an adversary such that the vanilla Robust CAL can never output the target hypothesis.

Proof. Suppose X = {x1, x2, x3} where ν∗(x1) = ξ1 � 0, ν∗(x2) = ξ2 ≤ ξ1
64 and ν∗(x3) = 1 −

ξ1− ξ2. Here we further assume that ν is given to learner. For labels, we set ηx1
∗ = 1

2 , η
x2
∗ = ηx2

∗ = 1.
Now consider h1 : h1(x1) = h1(x2) = h1(x3) = 1 and h2 : h2(x1) = h2(x2) = 0, h2(x3) = 1.
With some routine calculations, we can obtain that:

R∗ = R∗(h1) =
1

2
ξ1, R∗(h2) =

1

2
ξ1 + ξ2, ρ∗(h1, h2) = ξ1 + ξ2

Now suppose the adversary corrupts ηx1
∗ from 1

2 to ηx1
s = 15

32 for all s ≤ τ and will stop corrupting at
certain time τ . Consider this case Ct ≤ 1

32 t, which satisfies our corruption assumption.

With such corruptions, we have that for any t ≤ τ ,

R̄t(h1) =
17

32
ξ1, R̄t(h2) =

15

32
ξ1 + ξ2,

Since R̄t(h2) ≥ R̄t(h1), so h2 will never be eliminated before τ . Next we show that h1 can be
eliminated before τ . Note that, when τ ≥ O( 1

ξ1
), we can always find a proper t ≤ τ such that

R̂t(h1)− R̂t(h2) ≥ 1

16
ξ1 − ξ2 − Õ

(√
ξ1 + ξ2

t
+

1

t

)
In the non-corrupted setting, the confidence threshold of vanilla Robust CAL is always

Õ
(√

ξ1+ξ2
t + 1

t

)
, which can be smaller than 1

16ξ1 − ξ2 − Õ
(√

ξ1+ξ2
t + 1

t

)
for large enough t,

so the above inequality shows that h1 can be eliminated before τ . This implies that, if our target
accuracy ε < ξ2, then the vanilla Robust CAL will never able to output the correct answer no matter
how many unlabeled samples are given. On the other hand, in the passive learning, one can still
output the target h1 as long as n� τ .

D More detailed explanation for CALRuption for line 9 to 13

Here we provide a more detailed explanation on line 9 13

• In Line 9, we are going to estimate the underlying distribution of samples based on the
collected samples. To be specific, we have the estimated gap between each pair of h and
h′, so the initial desire is to find a proper distribution that induces all gaps uniformly close
to all the estimated gaps. But this is impossible, so we instead choose the distribution that
minimizes the worst-case pairs scaled with its variance. With such an estimated distribution,
we can naturally get the estimated error of each hypothesis h denoted as RD̂(h).

• In Line 10, recall that we already have the RD̂(h), and the previously estimated gap between
any hypothesis h and the previous estimated best hypothesis ĥl−1

∗ , denoted as ∆̂l−1
h .
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So based on these two terms, we can have a pessimistic estimation of the current best hypothesis
ĥl−1
∗ .

• Then in Line 11, based on the estimated best hypothesis ĥl−1
∗ , we can further have a new

estimated gap ∆̂l
h.

Up to this point, we have an estimate of the performance of each hypothesis ( ∆̂l
h ). Now recall that

in the traditional elimination-style algorithms like Robust CAL, we will permanently eliminate all
the hypotheses for which ∆̂l

h is larger than some threshold and then do a disagreement-based query
on the remaining hypothesis set. But here, the learner never makes a “hard" decision to eliminate any
hypothesis. Instead, it assigns different query probability to each based on the estimated gap ∆̂l

h for
each hypothesis, That is what Line 12 and Line 13 are doing. To be specific:

• In Line 12, we divide the hypothesis into l + 1 sets based on ∆̂l
h. Again in the traditional

elimination-style algorithm, the only remaining active hypothesis set is V ll+1.
• In Line 13, based on these layered hypothesis sets, we are going to assign the query

probability on the incoming x. Intuitively, for each x, we want to find the lowest policy set
it belongs to, among all those layered sets. Then, because the lower the set is, the smaller its
corresponding estimated gap is, so intuitively, we want to assign a higher query probability
to those that have a lower corresponding hypothesis set.

E Analysis for CALRuption

E.1 Notations

Let Il denotes the epoch l, Cl denotes CIl .

E.2 Concentration guarantees on δ-robust estimator

In this section, we show the analysis by using the Catoni’s estimator which is described in detail as
below. Note that the same estimator has been used in previous works including Wei et al. [2020],
Camilleri et al. [2021], Lee et al. [2021].
Lemma E.1. (Concentration inequality for Catoni’s estimator Wei et al. [2020]) Let F0 ⊂ · · · ⊂
Fn be a filtration, and X1, . . . , Xn be real random variables such that Xi is Fi -measurable,
E [Xi | Fi−1] = µi for some fixed µi, and

∑n
i=1 E

[
(Xi − µi)2 | Fi−1

]
≤ V for some fixed V.

Denote µ , 1
n

∑n
i=1 µi and let µ̂n,α be the Catoni’s robust mean estimator of X1, . . . , Xn with a

fixed parameter α > 0, that is, µ̂n,α is the unique root of the function

f(z) =

n∑
i=1

ψ (α (Xi − z))

where

ψ(y) =

{
ln
(
1 + y + y2/2

)
, if y ≥ 0

− ln
(
1− y + y2/2

)
, else

Then for any δ ∈ (0, 1), as long as n is large enough such that n ≥ α2
(
V +

∑n
i=1 (µi − µ)

2
)

+

2 log(1/δ), we have with probability at least 1− 2δ,

|µ̂n,α − µ| ≤
α
(
V +

∑n
i=1 (µi − µ)

2
)

n
+

2 log(1/δ)

αn

≤
α
(
V +

∑n
i=1 µ

2
i

)
n

+
2 log(1/δ)

αn
.

Lemma E.2 (Concentration inequality in our case). For any fixed epoch l and any pair of classifier
h, h′ ∈ H, as long as Nl ≥ 4 log(1/δ), with probability at least 1− δ, we have

|(R̂l(h)− R̂l(h′))−Wh,h′

l | ≤

√
10 log(1/δ)ρ̂l(h, h′)

Nl minx∈Dis(h,h′) q
x
l
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where R̂l(h) = 1
|Il|
∑
t∈I Ey∼Ber(ηxt

t ) [1{h(xt) 6= y}] (restate)

Proof. First we calculate the expectation and variance of (ˆ̀
t(h)− ˆ̀

t(h
′)) for each t ∈ Il,

Ey∼Ber(ηxt
t )EQt

[
ˆ̀
t(h)− ˆ̀

t(h
′)
]

= Ey∼Ber(ηxt
t ) [1{h(xt) 6= y} − 1{h′(xt) 6= y}]

≤ 1{h(xt) 6= h′(xt)}
and,

Vart

(
ˆ̀
t(h)− ˆ̀

t(h
′)
)
≤ Ey∼Ber(ηxt

t )EQt

[(
ˆ̀
t(h)− ˆ̀

t(h
′)
)2
]

= Ey∼Ber(ηxt
t )EQt

[
1{h(xt) 6= h′(xt)}

(qxt

l )2

]
=

1{h(xt) 6= h′(xt)}
qxt

l

≤ 1{h(xt) 6= h′(xt)}
minx′∈Dis(h,h′) q

x′
l

Then according to the Lemma E.1, we have

|(R̂l(h)− R̂l(h′))−Wh,h′

l |

≤
αh,h

′

l

(∑
t 1{h(xt)6=h′(xt)}

minx′∈Dis(h,h′) q
x′
l

+
∑
t 1{h(xt) 6= h′(xt)}

)
Nl

+
2 log(1/δ)

αh,h
′

l Nl

≤
2αh,h

′

l ρ̂l(h, h
′)

minx′∈Dis(h,h′) q
x′
l

+
2 log(1/δ)

αh,h
′

l Nl

=

√
10 log(1/δ)ρ̂l(h, h′)

Nl minx∈Dis(h,h′) q
x
l

The last one comes from choosing αh,h
′

l =
√

2 log(1/δ) minx∈Dis(h,h′) q
x
l

5Nlρ̂l(h,h′)
and also it is easy to verify

that

(αh,h
′

l )2

(
Nlρ̂l(h, h

′)

minx′∈Dis(h,h′) q
x′
l

+
∑
t

((R∗(h)−R∗(h′))− (Rt(h)−Rt(h′)))2

)
+ 2 log(1/δ)

≤ 4 log(1/δ) ≤ Nl.

E.3 High probability events

Define the event Egap as

Egap :=

{
∀l,∀h, h′ ∈ H, |(R̂l(h)− R̂l(h′))−Wh,h′

l | ≤

√
10β3ρ̂l(h, h′)

Nl minx∈Dis(h,h′) q
x
l

}
,

and event Edis1, Edis2 as

Edis1 :=

∀l,∀h, h′ ∈ H, |ρ̂l(h, h′)− ρ∗(h, h′)| ≤
√
β3ρ̂l(h, h′)

Nl
+
β3

Nl


Edis2 :=

∀l,∀h, h′ ∈ H, |ρ̂l(h, h′)− ρ∗(h, h′)| ≤
√
β3ρ∗(h, h′)

Nl
+
β3

Nl

 .

By condition 1 of δ-robust estimator in Algo 2, the (empirical) Bernstein inequality and the union
bounds, we have easily get P(Egap ∩ Edis1 ∩ Edis2) ≥ 1− δ as shown in the following lemmas.
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Lemma E.3. P(Eest) ≥ 1− δ/3

Proof. We prove this by condition 1 in Algo 2 and the union bound over |H|2 number of hypothesis
pairs and 1

2blog(n)c number of epochs.

Lemma E.4. P(Egap1) ≥ 1− δ/3,P(Egap2) ≥ 1− δ/3

Proof. We prove this by (empirical) Bernstein inequality in Algo 2 and the union bound over |H|2
number of hypothesis pairs and 1

2blog(n)c number of epochs.

E.4 Gap estimation accuracy

In this section, we show that ∆̂l
h is close to ∆h for all l, h. To prove this, we first show some auxiliary

lemmas as follows.
Lemma E.5 (Estimation accuracy for D̂l). On event Egap, for any fixed epoch l, for any fixed pair
h, h′ ∈ H, suppose j = max{i|h, h′ ∈ V il }, we have

|(RD̂l
(h)−RD̂l

(h′))− (R∗(h)−R∗(h′))|

≤ 1

16

(
max{∆̂l−1

h , ∆̂l−1
h′ }+ εl

)
+

4Cl
Nl

R∗ +
2Cl
Nl

max{∆h,∆h′}

Proof. Firstly we show that, for any pair h, h′ ∈ H, we have
|(RD̂l

(h)−RD̂l
(h′))− (R∗(h)−R∗(h′))|

≤ |(RD̂l
(h)−RD̂l

(h′))−Wh,h′

l |+ |Wh,h′

l − (R̂l(h)− R̂l(h′))|+ |(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|

≤ max
h1,h2∈H

|

(
(RD̂l

(h1)−RD̂l
(h2))−Wh1,h2

l |

√
minx∈Dis(h1,h2) q

x
l

ρ̂l(h1, h2)

)√
ρ̂l(h, h′)

minx∈Dis(h,h′) q
x
l

+ |W v
l − (R̂l(h)− R̂l(h′))|+ |(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|

≤ max
h1,h2∈H

|

(
(R̂l(h1)− R̂l(h2))−Wh1,h2

l |

√
minx∈Dis(h1,h2) q

x
l

ρ̂l(h1, h2)

)√
ρ̂l(h, h′)

minx∈Dis(h,h′) q
x
l

+ |W v
l − (R̂l(h)− R̂l(h′))|+ |(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|

≤ 2 max
h1,h2∈H

|

(
(R̂l(h1)− R̂l(h2))−Wh1,h2

l |

√
minx∈Dis(h1,h2) q

x
l

ρ̂l(h1, h2)

)√
ρ̂l(h, h′)

minx∈Dis(h,h′) q
x
l

+ |(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|

≤ 2

√
10β3

Nl

√
ρ̂l(h, h′)

minx∈Dis(h,h′) q
x
l

+ |(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|

The third inequality comes from the definition of D̂l and the last inequality comes from the Condition 1
of δ-robust estimator in Algo. 2.

For the first term, for any x ∈ Dis(h, h′), by the definition of qxl in line 13 and the fact that
(h, h′) ∈ Z(x), we have that,

qxl ≥
β1ρ̂l(h, h

′)

Nl
ε−2
j . , where j = max{i ∈ [l − 1] | h, h′ ∈ V il }

So we can further lower bound the minx∈Dis(h,h′) q
x
l by

min
x∈Dis(h,h′)

qxl ≥
β1ρ̂l(h, h

′)

Nl
ε−2
j , where j = max{i ∈ [l − 1] | h, h′ ∈ V il }

and therefore upper bound the first term as

2

√
10β3

Nl

√
ρ̂l(h, h′)

minx∈Dis(h,h′) q
x
l

≤ 2

√
10β3

β1
εj .
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For the second term, by the definition of corruptions, we have

|(R̂l(h)− R̂l(h′))− (R∗(h)−R∗(h′))|
≤ |(R̂l(h)− R̂l(h′))− (Rl(h)−Rl(h′))|+ |(Rl(h)−Rl(h′))− (R∗(h)−R∗(h′))|

≤ 2

√
β3

Nl
+

2Cl
Nl

ρ∗(h, h
′)

≤ 2

√
β3

β1
εl +

2Cl
Nl

(ρ∗(h, h
∗) + ρ∗(h

′, h∗))

≤ 2

√
β3

β1
εl +

4Cl
Nl

R∗ +
2Cl
Nl

max{∆h,∆h′}

where the second inequality comes from Bernstein inequality and Lemma A.2.

Finally we are going to make the connection between εj and the ∆̂l−1
h , ∆̂l−1

h′ . Note that if j < l − 1,
by definition of j, we must have h, h′ /∈ V j+1

l . By the definition that ∀h /∈ V il+1, ∆̂
l
h ≥ εi, we have

max{∆̂l−1
h , ∆̂l−1

h′ } > εj+1 =
εj
2
.

and if j = l − 1, we directly have εj
2 ≤ εl. Therefore, we have εj

2 ≤ max{∆̂l−1
h , ∆̂l−1

z′ }+ εl.

Lemma E.6 (Upper bound of the estimated gap). On event Egap, for any fixed epoch l, suppose its
previous epoch satisfies that, for all h ∈ H,

∆h ≤
3

2
∆̂l−1
h +

3

2
εl−1 + 3gl−1, (2)

∆̂l−1
h ≤ 2 (∆h + εl−1 + gl−1) , (3)

then we have,

∆̂l
h ≤ 2 (∆h + εl + gl)

where gl = 2
β1
ε2l
∑l
s=1 Cs

(
2R∗1

{
2CIs
Ns
≤ 1

16

}
+ 1

{
2CIs
Ns

> 1
16

})
.

Proof. According to the definition of ∆̂l
h, If

〈
h− ĥl∗, θ̂l

〉
− β2∆̂l−1

ĥl
∗
≤ εl, then the above trivially

holds, Otherwise, we have

∆̂l
h = RD̂l

(h)−
(
RD̂l

(ĥl∗) + β2∆̂l−1

ĥl
∗

)
=
(

(RD̂l
(h)−RD̂l

(ĥl∗))− (R∗(h)−R∗(ĥl∗))
)

+ (R∗(h)−R∗(ĥl∗))− β2∆̂l−1

ĥl
∗

≤
(

(RD̂l
(h)−RD̂l

(ĥl∗))− (R∗(h)−R∗(ĥl∗))
)

+ ∆h − β2∆̂l−1

ĥl
∗

≤ 1

16

(
max{∆̂l−1

h , ∆̂l−1

ĥl
∗
}+ εl

)
+

1

16
max{∆h,∆ĥl

∗
}+ ∆h − β2∆̂l−1

ĥl
∗

+
4Cl
Nl

R∗1{2Cl
Nl
≤ 1

16
}+

2Cl
Nl

1{2Cl
Nl

>
1

16
}︸ ︷︷ ︸

Corruption Term

=
1

16
(∆̂l−1

h + εl) +
1

16
∆h +

1

16
∆̂l−1

ĥl
∗

+
1

16
∆ĥl
∗
− β2∆̂l−1

ĥl
∗

+ ∆h + Corruption Term

≤
(

1

16
(∆̂l−1

h + εl) +
1

16
∆h + ∆h

)
+

(
1

16
∆̂ĥl
∗

+
3

32
∆̂l−1

ĥl
∗
− β2∆̂l−1

ĥl
∗

)
+

3

32
(εl−1 + 2gl−1) + Corruption Term

≤
(

1

16
(∆̂l−1

h + εl) +
1

16
∆h + ∆h

)
+

3

32
(εl−1 + 2gl−1) + Corruption Term

=
1

16
∆̂l−1
h +

(
1 +

1

16

)
∆h +

1

4
εl + 4R∗

Cl
Nl

+
3

16
gl−1

≤ 2(∆h + εl + gl)
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Here the first inequality comes from the definition of h∗, the second inequality comes from
Lemma E.5, the third inequality comes from the the assumption (1) and the penultimate inequality
comes from the fact that β2 ≥ 5

32 . Finally, the last inequality comes from assumption (2).

Lemma E.7 (Lower bound of the estimated gap). On event Egap, for any fixed epoch l, suppose the
following holds, for all h ∈ H,

∆̂l−1
h ≤ 2 (∆h + εl−1 + gl−1) , (4)

then we have,

∆h ≤
3

2
∆̂l
h +

3

2
εl + 3gl

Proof.

∆̂l
h ≥ RD̂l

(h)−
(
RD̂l

(h∗) + β2∆̂h∗

)
=
(

(RD̂l
(h)−RD̂l

(h∗))− (R∗(h)−R∗)
)

+ ∆h − β2∆̂l−1
h∗

≥ − 1

16
(∆̂l−1

h + εl)−
1

16
∆h −

1

16
∆̂l−1
h∗ −

1

16
∆h∗ − β2∆̂l−1

h∗ + ∆h

−
(

4R∗
Cl
Nl

1

{
2Cl
Nl
≤ 1

16

}
+
Cl
Nl

1

{
2Cl
Nl

>
1

16

})
︸ ︷︷ ︸

Corruption Term

= − 1

16
(∆̂l−1

h + εl)−
1

16
∆h −

1

16
∆̂h∗ − β2∆̂l−1

h∗ + ∆h − Corruption Term

≥ − 1

16
(2∆h + 2εl−1 + 2gl−1 + εl) + ∆h − (

1

16
+ β2)(2εl−1 + 2gl−1)− Corruption Term

≥ 13

16
∆h −

38

32
εl −

18

32
gl−1 − 4R∗

Cl
Nl
− Corruption Term

≥ 13

16
∆h −

38

32
εl −

18

8
gl

Here the first inequality comes from the definition of ĥl∗, the second inequality comes from Lemma E.5.
and the third inequality comes from the upper bound of the estimated gap in Lemma E.6.

Now we are ready to prove the final key lemma, which shows that such upper bound and lower
bound for ∆̂l

h holds for all l and h.
Lemma E.8 (Upper bound and lower bound for all estimation). On event Egap, for any epoch l, for
all h ∈ H,

∆̂l
h ≤ 2 (∆h + εl + gl) (5)

∆h ≤
3

2
∆̂l
h +

3

2
εl + 3gl (6)

Proof. We prove this by induction.

For the base case where l = 1. we can easily have the following

∆̂1
h ≤ 1 ≤ 2∆h + 2ε1 + 2gl

and also, by using Lemma E.7 and the fact that ∆̂0
h ≤ 2(∆h + ε0 + g0), it is easy to get

∆h ≤
3

2
∆̂1
h +

3

2
ε1 + 3g1

So the target inequality holds for l = 1.

Suppose the target inequality holds for l′ − 1 where l′ ≥ 2, then by Lemma E.6, we show that the
first target inequality holds for l′. Also by Lemma E.7, we show that the second target inequality
holds for l′. Therefore, we finish the proof.
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E.5 Auxiliary lemmas

Lemma E.9. For any epoch l and layer j, we have

max
h∈V j

l

ρ∗(h, h
∗) ≤ 2R∗ + 3εj + 3gl−1

Proof.

max
h∈V j

l

ρ∗(h, h
∗) ≤ 2R∗ + max

h∈V j
l

∆h

≤ 2R∗ + max
h∈V j

l

(
3

2
∆̂l−1
h +

3

2
εl−1 + 3gl−1

)
≤ 2R∗ + 3εj + 3gl−1

The first inequality comes from the fact the ρ∗(h, h∗) ≤ R∗(h) + R∗ = 2R∗ + ∆h, the second
inequality comes form the lower bound in Lemma E.8 and the last inequality is by the definition of
V jl .

E.6 Main proof for Theorem 5.1

Here we assume log4( nβ1
) /∈ N and there are no corruptions in the last unfinished epoch dlog4( nβ1

)e.
This will not effect the result but will make the proof easier. Given that events Egap, Edis1 and Edis2,
then we have the following proofs.

First we deal with the sample complexity.

For any t ∈ Il,the probability of xt being queried (Qt) is

E[Qt] =
∑
x∈X

P (xt = x)qxl

=
∑
x∈X

P (xt = x) max
(h,h′)∈Z(x)

β1ρ̂l−1(h, h′)

Nl
ε−2
k(h,h′,l)

≤ β1

Nl

∑
x∈X

P (xt = x) max
(h,h′)∈Z(x)

ρ∗(h, h
′)ε−2

k(h,h′,l)

+ 4
β1

Nl

∑
x∈X

P (xt = x)
√
ρ∗(h, h′)ε

−2
k(h,h′,l) +

4β1

Nl

≤ 5
β1

Nl

∑
x∈X

P (xt = x) max
(h,h′)∈Z(x)

ρ∗(h, h
′)ε−2

k(h,h′,l) + 8
β1

Nl

= 5
β1

Nl

∑
x∈X

P (xt = x)ρ∗(h
x
1 , h

x
2)ε−2

jx + 8
β1

Nl

≤ 5
β1

Nl

∑
x∈X

P (xt = x) max
h3,h4∈V jx

l

ρ∗(h3, h4)ε−2
jx + 8

β1

Nl

≤ 10
β1

Nl

∑
x∈X

P (xt = x) max
h∈V jx

l

ρ∗(h, h
∗)ε−2

jx + 8
β1

Nl

≤ 10
β1

Nl

∑
x∈X

P (xt = x)
(
2R∗ε−2

jx + 3ε−1
jx + 3gl−1ε

−2
jx

)
+ 8

β1

Nl

= 10
β1

Nl

l−1∑
i=1

(
2R∗ε−2

i + 3ε−1
i + 3gl−1ε

−2
i

)∑
x∈X

P (xt = x)1{jx = i}+ 8
β1

Nl

≤ 10
β1

Nl

l−1∑
i=0

(
2R∗ε−2

i + 3ε−1
i + 3gl−1ε

−2
i

)
P(x ∈ Dis(V il )) + 8

β1

Nl
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Here (hx1 , h
x
2) = arg max(h,h′)∈Z(x) ρ∗(h, h

′)ε−2
k(h,h′,l) and jx = k(hx1 , h

x
2 , l). The first inequality

comes from the event Edis2, the second inequality comes from the fact that
√
ρ∗(h, h′)ε

−2
k(h,h′,l) ≤

ρ∗(h, h
′)ε−2

k(h,h′,l) + 1 and penultimate inequality comes from the Lemma E.9.

Now we can use the standard techniques to bound P(x ∈ Dis(V il )) as follows

P(x ∈ Dis(V il )) = P
(
∃h, h′ ∈ V il : h(x) 6= h′(x)

)
≤ P

(
∃h ∈ V il : h(x) 6= h∗(x)

)
≤ P (∃h ∈ H : h(x) 6= h∗(x), ρ∗(h, h

∗) ≤ 2R∗ + 3εi + 3gl−1)

≤ θ∗(2R∗ + 3εi + gl−1) (2R∗ + 3εi + 3gl−1)

where again the first inequality comes from Lemma E.9.

Combine with the above result, we get the expected number of queries inside a complete epoch l as,

∑
t∈Il

E[Qt] = 10β1

l−1∑
i=0

θ∗(2R∗ + 3εi + gl−1)

∗
(
4(R∗)2ε−2

i + 12R∗ε−1
i + 12R∗gl−1ε

−2
i + 18gl−1ε

−1
i + 9g2

l−1ε
−2
i + 9

)
≤ 20β1θ

∗(2R∗ + 3εl−1 + gl−1)

∗
(

4(R∗)2ε−2
l + 12R∗ε−1

l +
24

β1
R∗C̄l−1 +

36

β1
C̄l−1εl−1 +

36

β2
1

C̄2
l−1ε

2
l−1 + 9

)
≤ 20β1θ

∗(2R∗ + 3εl−1 + gl−1) ∗
(

4(R∗)2ε−2
l + 12R∗ε−1

l +
132

β1
C̄l−1 + 10

)
where the second inequality comes from the fact that gl = 2

β1
ε2l C̄l and the third inequality comes

from that fact that C̄l−1 ≤
∑l−1
s=1 Cs ≤ 2β1ε

−2
l−1.

Summing over all L = d 1
2 log(n/β1)e number of epochs, we have that, for any n,

Query complexity

≤
L∑
l=1

∑
t∈Il

E[Qt]

≤ 40β1θ
∗(2R∗ + 3εL−1 + gL−1)

(
4(R∗)2ε−2

L + 12R∗ε−1
L

)
+ 40β1θ

∗(2R∗ + 3εL−1 + gL−1)L

(
132

β1
C̄total + 10

)
= 40β1θ

∗(2R∗ + 3εL−1 + gL−1)

(
4(R∗)2 n

β1
+ 12R∗

√
n

β1
+ 5 log(n/β1)

)
+ 2450θ∗(2R∗ + 3εL−1 + gL−1) log(n/β1)C̄total

= θ∗(2R∗ + 3εL−1 + gL−1)
(

160(R∗)2n+ 480R∗
√
nβ1 + 200β1 log(n/β1)

)
+ 2450θ∗(2R∗ + 3εL−1 + gL−1) log(n/β1)C̄total

≤ O

(
θ∗(R∗ + 3

√
β1

n
+
C total

n
)
(
(R∗)2n+ log(n/β1)

)
β1

)

+O

(
θ∗(R∗ + 3

√
β1

n
+
C total

n
) log(n/β1)C̄total

)
where the last inequality comes from the following lower bound,

3εL−1 + gL−1 = 3εL−1 +
2

β1
C totalε

2
L−1 ≥ 3

√
β1

n
+

2C total

n
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Now we will deal with the correctness. By Lemma E.8, we have

∆hout ≤
3

2
∆̂L−1
hout

+
3

2
εL−1 + 3gL−1

≤ 3εL−1 + 3gL−1

≤ 6

√
2β1

n
+ 3gL−1

≤ 6

√
2β1

n
+ 24

C̄total
n

where the second inequality comes from the definition of hout and V L−1
L and the third and last

inequality is just by replacing the value of εL−1 and gL−1. Finally, we can write this result in the
ε-accuracy form. Set 6

√
2β1

n := ε, we have n = 72β1

ε2 .

.
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