ende <- read.table("results_ende.tsv", sep = '\t', header = TRUE)
head(ende)
MuCoW EN–DE
model = lm(formula = min.precision ~ newstest19 + is_student, data = ende)
summary(model)
Call:
lm(formula = min.precision ~ newstest19 + is_student, data = ende)
Residuals:
Min 1Q Median 3Q Max
-5.4074 -1.9125 0.3702 1.7782 5.4800
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9228 4.8948 0.393 0.698
newstest19 1.7783 0.1357 13.102 3.24e-13 ***
is_studentyes -6.4706 1.0064 -6.430 6.87e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.663 on 27 degrees of freedom
Multiple R-squared: 0.8758, Adjusted R-squared: 0.8666
F-statistic: 95.2 on 2 and 27 DF, p-value: 5.891e-13
WinoMT EN–DE
model = lm(formula = min.accuracy ~ newstest19 + is_student, data = ende)
summary(model)
Call:
lm(formula = min.accuracy ~ newstest19 + is_student, data = ende)
Residuals:
Min 1Q Median 3Q Max
-14.396 -5.516 1.487 5.760 14.768
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -151.3212 15.5601 -9.725 2.57e-10 ***
newstest19 4.9964 0.4315 11.580 5.58e-12 ***
is_studentyes -7.5567 3.1992 -2.362 0.0256 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8.467 on 27 degrees of freedom
Multiple R-squared: 0.8326, Adjusted R-squared: 0.8202
F-statistic: 67.16 on 2 and 27 DF, p-value: 3.31e-11
enru <- read.table("results_enru.tsv", sep = '\t', header = TRUE)
head(enru)
MuCoW EN–RU
model = lm(formula = min.precision ~ newstest19 + is_student, data = enru)
summary(model)
Call:
lm(formula = min.precision ~ newstest19 + is_student, data = enru)
Residuals:
Min 1Q Median 3Q Max
-5.8919 -0.9278 0.5528 1.1199 5.1239
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.1290 3.6510 11.265 6.51e-12 ***
newstest19 1.3881 0.1349 10.286 5.14e-11 ***
is_studentyes -2.1393 0.8926 -2.397 0.0235 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.446 on 28 degrees of freedom
Multiple R-squared: 0.8053, Adjusted R-squared: 0.7914
F-statistic: 57.92 on 2 and 28 DF, p-value: 1.121e-10
WinoMT EN–RU
model = lm(formula = min.accuracy ~ newstest19 + is_student, data = enru)
summary(model)
Call:
lm(formula = min.accuracy ~ newstest19 + is_student, data = enru)
Residuals:
Min 1Q Median 3Q Max
-12.2914 -2.7848 0.7399 3.4056 8.4861
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -45.9883 8.5200 -5.398 9.36e-06 ***
newstest19 2.5210 0.3149 8.005 1.02e-08 ***
is_studentyes -5.2117 2.0831 -2.502 0.0185 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.707 on 28 degrees of freedom
Multiple R-squared: 0.7247, Adjusted R-squared: 0.7051
F-statistic: 36.86 on 2 and 28 DF, p-value: 1.434e-08
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmVuZGUgPC0gcmVhZC50YWJsZSgicmVzdWx0c19lbmRlLnRzdiIsIHNlcCA9ICdcdCcsIGhlYWRlciA9IFRSVUUpCmhlYWQoZW5kZSkKYGBgCgpNdUNvVyBFTuKAk0RFCj09PT09PT09PT09CmBgYHtyfQptb2RlbCA9IGxtKGZvcm11bGEgPSBtaW4ucHJlY2lzaW9uIH4gbmV3c3Rlc3QxOSArIGlzX3N0dWRlbnQsIGRhdGEgPSBlbmRlKQpzdW1tYXJ5KG1vZGVsKQpgYGAKV2lub01UIEVO4oCTREUKPT09PT09PT09PT0KYGBge3J9Cm1vZGVsID0gbG0oZm9ybXVsYSA9IG1pbi5hY2N1cmFjeSB+IG5ld3N0ZXN0MTkgKyBpc19zdHVkZW50LCBkYXRhID0gZW5kZSkKc3VtbWFyeShtb2RlbCkKYGBgCgpgYGB7cn0KZW5ydSA8LSByZWFkLnRhYmxlKCJyZXN1bHRzX2VucnUudHN2Iiwgc2VwID0gJ1x0JywgaGVhZGVyID0gVFJVRSkKaGVhZChlbnJ1KQpgYGAKCk11Q29XIEVO4oCTUlUKPT09PT09PT09PT0KYGBge3J9Cm1vZGVsID0gbG0oZm9ybXVsYSA9IG1pbi5wcmVjaXNpb24gfiBuZXdzdGVzdDE5ICsgaXNfc3R1ZGVudCwgZGF0YSA9IGVucnUpCnN1bW1hcnkobW9kZWwpCmBgYAoKV2lub01UIEVO4oCTUlUKPT09PT09PT09PT0KYGBge3J9Cm1vZGVsID0gbG0oZm9ybXVsYSA9IG1pbi5hY2N1cmFjeSB+IG5ld3N0ZXN0MTkgKyBpc19zdHVkZW50LCBkYXRhID0gZW5ydSkKc3VtbWFyeShtb2RlbCkKYGBg