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ABSTRACT

Semi-supervised learning (SSL) is a powerful paradigm for leveraging unlabeled
data and has been proven to be successful across various tasks. Conventional SSL
studies typically assume close environment scenarios where labeled and unlabeled
examples are independently sampled from the same distribution. However, real-
world tasks often involve open environment scenarios where the data distribution,
label space, and feature space could differ between labeled and unlabeled data.
This inconsistency introduces robustness challenges for SSL algorithms. In this
paper, we first propose several robustness metrics for SSL based on the Robustness
Analysis Curve (RAC), secondly, we establish a theoretical framework for studying
the generalization performance and robustness of SSL algorithms in open environ-
ments, thirdly, we re-implement widely adopted SSL algorithms within a unified
SSL toolkit and evaluate their performance on proposed open environment SSL
benchmarks, including both image, text, and tabular datasets. By investigating the
empirical and theoretical results, insightful discussions on enhancing the robustness
of SSL algorithms in open environments are presented. The re-implementation
and benchmark datasets are all publicly available. More details can be found at
https://ygzwqzd.github.io/Robust-SSL-Benchmark.

1 INTRODUCTION

Semi-supervised learning (SSL) aims to leverage unlabeled data to improve learning performance
when labels are limited or expensive to obtain (Chapelle et al., 2006). SSL algorithms have been
repeatedly reported to achieve highly competitive performance to purely supervised learning and save
a lot of labeling costs, by exploring the structure of unlabeled data.

All of the positive results, however, are based on the close environment assumption where labeled
and unlabeled data are sampled from the same distribution independently. However, many practical
applications involve open environments (Zhou, 2022) where the data distribution, feature space, and
label space could be inconsistent between labeled and unlabeled data. SSL methods suffer severe
robustness problems in open environments and could be even worse than a simple supervised learning
model without exploiting more unlabeled data (Guo & Li, 2018; Oliver et al., 2018; Guo et al., 2020a;
Li et al., 2021). Such phenomena undoubtedly go against the expectations of SSL and limit its
effectiveness in more practical tasks.

The robustness of SSL in open environments has attracted great attention in recent years and various
robust SSL algorithms have been proposed from different perspectives, such as inconsistent label
space (Guo et al., 2020a; Chen et al., 2020; Yu et al., 2020; Saito et al., 2021; Guo & Li, 2022;
Wei et al., 2022), inconsistent data distribution (Guo et al., 2020b; Zhou et al., 2021; Huang et al.,
2021; Jia et al., 2023a). However, these algorithms primarily focus on robustness from a singular
perspective and overlook the utilization of practical metrics for robustness analysis. Consequently, it
remains challenging to ascertain the suitability of SSL algorithms in real-world open environments.

†Corresponding Authors: Lan-Zhe Guo and Yu-Feng Li.
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In this paper, we first propose several metrics considering different aspects of performance in open
environments to achieve a fair and comprehensive evaluation of SSL algorithms. Then, we establish a
theoretical framework for studying the generalization performance and robustness of SSL algorithms,
and the results show that the generalization error in SSL consists of five components: bias caused
by the learner, variance caused by data sampling, and three types of inconsistencies caused by open
environments. Finally, we re-implement widely adopted SSL algorithms within a unified SSL toolkit
and evaluate their performance on proposed open environment SSL benchmarks, including both
image, text, and tabular datasets. Some interesting findings include:

• Inconsistency between the feature and label space has a more detrimental impact compared
to cases where there is inconsistency in data distribution.

• Traditional statistical SSL algorithms can often outperform deep SSL algorithms in terms of
both performance and robustness when applied to tabular datasets. Thus, more advanced
SSL algorithms on tabular datasets should be studied.

• Certain robust SSL algorithms currently proposed do not consistently exhibit enhanced
robustness and may not surpass ordinary deep SSL algorithms in most scenarios. We argue
that the robustness of SSL algorithms should be evaluated under more reasonable metrics.

• Inconsistency between labeled and unlabeled data does not invariably result in negative
effects. On the contrary, leveraging inconsistent unlabeled examples may improve perfor-
mance in some cases. Thus, it is important to study how to exploit helpful information from
inconsistent unlabeled data.

2 ROBUST SSL IN OPEN ENVIRONMENTS

2.1 NOTATIONS

SSL algorithms leverage both labeled and unlabeled data for the learning process. In the close
environments, all data generated from a consistent distribution P (x, y), x ∈ X , y ∈ Y on consistent
data space X × Y ⊆ Rd × {1, · · · , k} where d and k respectively represent the number of features
and classes. In SSL, we are given nl labeled examples DL = {(xi, yi)|(xi, yi) ∼ P (x, y)}nl

i=1
and nu unlabeled examples DU = {xi|xi ∼ P (x)}nu

i=1 where P (x) is the marginal distribution of
P (x, y). The purpose is to learn a predictor with the smallest generalization error on P (x, y).

In the open environments, we assume that all examples originate from a global data space X ∗×Y∗ ⊆
Rd∗ × {1, . . . , k∗} where d∗ and k∗ respectively represent the number of features and classes that
appear throughout the entire learning process. There exists an invariant data distribution P (y∗|x∗)
for x∗ ∈ X ∗ and y∗ ∈ Y∗. We denote the degree of inconsistency of data distribution, feature
space, or label space between unlabeled and labeled data as t ∈ [0, 1]. A higher t indicates a greater
inconsistency. For any t, there is an inconsistent distribution denoted as Pt(x

∗, y∗). However, we can
only obtain a projected distribution Pt(xt, yt) in a subspace Xt × Yt, where Xt ⊂ X ∗ and Yt ⊂ Y∗.

We denote θ(t) as the function describing the ratio of inconsistent examples in the unlabeled dataset
to t. For robust SSL with any t, we are given nl labeled examples from P0(x, y), (1 − θ(t)) · nu

consistent unlabeled examples from P0(x) and θ(t) · nu inconsistent unlabeled examples from Pt(x).

2.2 PERFORMANCE METRICS

To achieve a fair and comprehensive evaluation, we introduce a set of performance metrics tailored
for robust SSL in open environments. These metrics begin by defining a function Acc(t), which
quantifies the change in model accuracy as a function of the inconsistency level t. This function is
used to construct the Robustness Analysis Curve (RAC) that maps the inconsistency level t to the
corresponding accuracy Acc(t). Unlike traditional SSL evaluations that focus solely on Acc(0)or
robust SSL evaluations that consider only a specific Acc(t), our proposed metrics are derived from
the RAC and provide a more comprehensive evaluation of SSL algorithms. These metrics include
Area Under the RAC Curve (AUC) which captures the overall robustness of the SSL algorithm;
Expected Accuracy (EA) which describes the average performance across all inconsistency levels;
Worst-Case Accuracy (WA) which identifies the lowest accuracy level, representing the worst-
case scenario; Expected Variation Magnitude (EVM) which captures the average magnitude of
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Table 1: Performance Metrics for Robust Semi-Supervised Learning in Open Environments. Acc(t)
describe the change in model accuracy with the inconsistency extent t, PT (t) is the distribution for t,
Acc′(·) indicate the first derivative.

Area Under the Curve (AUC) AUC(Acc) =
∫ 1

0
Acc(t)dt

Expected Accuracy (EA) EA(PT , Acc) = ⟨PT , Acc⟩ =
∫ 1

0
PT (t)Acc(t)dt

Worst-Case Accuracy (WA) WA(Acc) = mint∈[0,1] Acc(t)

Expected Variation Magnitude (EVM) EVM(Acc) =
∫ 1

0
|Acc′(t)|dt

Variation Stability (VS) VS(Acc) =
∫ 1

0
[Acc′(t)− (

∫ 1

0
Acc′(t)dt)]2dt

Robust Correlation Coefficient (RCC) RCC(Acc) =
∫ 1
0
Acc(t)·tdt−

∫ 1
0
Acc(t)dt√∫ 1

0
t2dt−1·

√∫ 1
0
Acc2(t)dt−(

∫ 1
0
Acc(t)dt)2

performance variation; Variation Stability (VS) which quantifies the stability of the performance
variation; Robust Correlation Coefficient (RCC) which captures the overall trend of performance
variation. The detailed formulation of these metrics is presented in Table 1. By considering these
diverse metrics, we can provide a comprehensive evaluation of the robustness of SSL algorithms,
capturing different aspects of their performance. Moreover, these metrics are not limited to accuracy
and can be extended to other performance measures by replacing the function Acc(t).

2.3 DEFINITION OF ROBUSTNESS SSL IN OPEN-ENVIRONMENTS

Based on the proposed metrics, we propose a formal definition of the robust SSL in open environments,
including the expected robustness and worst-case robustness.
Definition 1. An SSL algorithm A returns a model ft ∈ F using labeled data DL and unlabeled data
Dt

U for any inconsistency level t where F is the hypothesis space of A. Let Acc(t) denote the accuracy
of ft on the test data. When the inconsistency t follows a distribution PT (t), if there exists σE such
that |Acc(0) − EA(PT , Acc)| ≤ σE , we say that A exhibits σE-expected algorithmic robustness.
If there exists σW such that |Acc(0) − WA(Acc)| ≤ σW , we say that A exhibits σW -worst-case
algorithmic robustness.

In open environments, the SSL algorithm is employed to generate models with different inconsistency
ratios t. If the algorithm can consistently deliver satisfactory performance across a range of t, we deem
it to exhibit expected algorithmic robustness. If the algorithm can maintain acceptable performance
levels in the worst case, we consider it to demonstrate worst-case algorithmic robustness.

3 THEORETICAL STUDIES ON ROBUST SSL

To analyze how to improve the robustness of algorithms in open environments, we establish a
theoretical framework for studying the generalization performance and robustness of SSL algorithms
in open environments.

Specifically, we first define the projection operations ΠX and ΠY to project data distributions
originating from different features and label spaces onto the same spaces with labeled data. Secondly,
we formally define two types of inconsistencies: feature space inconsistency DiscF and label space
inconsistency DiscL, both of which represent additional generalization errors caused during the
space projection process. Combined with the distribution inconsistency within the same data space
DiscD defined in (Jia et al., 2023a), these constitute three types of inconsistencies in total. Finally, we
analyze the SSL process in an open environment and ultimately conclude that the generalization error
in SSL consists of five components: bias caused by the learner, variance caused by data sampling,
and three types of inconsistencies caused by open environments.
Theorem 3.1. For any target predictor f ∈ F , pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1,
0 ≤ δ2 ≤ 1 and 0 ≤ δ3 ≤ 1, with the probability of at least (1− δ1)(1− δ2)(1− δ3):

E(f, P0(x, y)|h,w,mapXt→X0
, DL, DUt

)

≤ nl

nl + nw
u t

Ê(f,DL) +
nw
u t

nl + nw
u t

Ê(f, D̃w
Ut
) + var(F , nl + nw

u t, k0, δ1)
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+
nw
u t

nl + nw
u t

(θw(t)DiscL(P
w
t (x∗),Y0)

+θw(t)DiscF (ΠY0
[Pw

t (x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, f)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), f))

+
nw
u t

nl + nw
u t

(Ê(h,DL) + var(H, nl, k, δ2) + var(H, nw
u t, k0, δ3)

+θw(t)DiscL(P
w
t (x∗),Y0) + θw(t)DiscF (ΠY0

[Pt(x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, h)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), h)) (1)

where Ê(f, D̃w
Ut
) is the weighted disagreement rate between the noisy pseudo-labels and the predic-

tion results of f on the weighted unlabeled dataset D̃w
Ut

.

The conclusions drawn from theoretical analysis are as follows: inconsistencies in data distribution,
feature space, and label space can all harm the generalization performance of the model. To alleviate
the issue of data distribution inconsistency, it is primarily dependent on aligning the distributions
based on the existing predictor, thereby optimizing the term DiscD. To alleviate the issue of feature
space inconsistency, it is primarily dependent on the feature mapping function, which requires the
learning algorithm to accurately infer unobserved features based on the observed features, thereby
optimizing the term DiscF . To alleviate the issue of label space inconsistency, it primarily relies on
sample selection and weighting functions, which require robust SSL algorithms to accurately detect
and mitigate the negative impact of unfavorable examples, thereby optimizing the term DiscL. The
detailed theoretical analysis and proof are shown in appendix A.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our experiments, we evaluate both statistical SSL and deep SSL algorithms. For statistical
SSL, we select 6 classical algorithms including the Semi-supervised Gaussian Mixture Model
(SSGMM) (Shahshahani & Landgrebe, 1994) from the generative SSL algorithms, TSVM (Joachims
et al., 1999) from the semi-supervised support vector machine algorithms, Label Propagation (Zhu &
Ghahramani, 2003) and Label Spreading (Zhou et al., 2003) from the graph-based SSL algorithms,
Tri-Training (Zhou & Li, 2005) from the disagreement-based SSL algorithms and Assemble (Bennett
et al., 2002) from the ensemble-based SSL algorithms. For deep SSL, we select 10 representative
algorithms: Pseudo Label (Lee, 2013), Pi-Model (Laine & Aila, 2017), Mean Teacher (Tarvainen
& Valpola, 2017), ICT (Verma et al., 2022), VAT (Miyato et al., 2018), UDA (Xie et al., 2020),
FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021), FreeMatch (Wang et al., 2022b) and
SoftMatch (Chen et al., 2023). We also considered 4 robust SSL algorithms: UASD (Chen et al.,
2020), CAFA (Huang et al., 2021), MTCF (Yu et al., 2020), and Fix-A-Step (Huang et al., 2023).

We conduct experiments on various types of datasets, including 3 tabular datasets: iris, wine, letter;
3 image datasets: Image-CLEF (Caputo et al., 2014), CIFAR-10, and CIFAR-100; 3 text datasets:
Amazon reviews (McAuley & Leskovec, 2013), IMDB movie reviews (Maas et al., 2011), and
agnews (Zhang et al., 2015).

For all the experiments, we use mainstream supervised learning algorithms as baselines. For tabular
data, we use XGBoost (Chen & Guestrin, 2016) as the benchmark for statistical learning algorithms
and adopt FT-Transformer (Wang et al., 2022a) as the baseline and backbone for deep learning
algorithms. For visual data, we use ResNet50 (He et al., 2016) as the baseline and backbone. For
text data, we use the RoBERTa (Liu et al., 2019) model as the benchmark and backbone. All SSL
algorithms are re-implemented based on the LAMDA-SSL toolkit (Jia et al., 2023b).

We plotted the RAC and performed statistical analysis on various evaluation metrics for different
methods. For the plotting of the RAC curve, we sampled six t values [0, 0.2, 0.4, 0.6, 0.8, 1] for
all open environments. To ensure reliability, we conducted three experiments for each sampling
point with seed values of 0 ∼ 2. The average of these experiments was used to plot the curve.
Linear interpolation was performed between adjacent sampling points. More detailed settings of the
experiments are presented in appendix A.5.
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Table 2: Evaluation of SSL algorithms using letter dataset under inconsistent data distributions
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.643 0.643 0.643 - - -
TSVM 0.624 0.650 0.607 0.012 0.012 -0.733

SSGMM 0.276 0.334 0.245 0.022 0.029 -0.740
Label Propagation 0.524 0.629 0.486 0.029 0.037 -0.833
Label Spreading 0.588 0.653 0.563 0.020 0.025 -0.780

Tri-Training 0.625 0.689 0.600 0.018 0.024 -0.851
Assemble 0.644 0.646 0.641 0.003 0.003 0.037

FT-Transformer 0.660 0.660 0.660 - - -
Pseudo Label 0.658 0.667 0.652 0.003 0.002 -0.977

Pi-Model 0.683 0.698 0.673 0.005 0.003 -0.961
Mean Teacher 0.687 0.687 0.687 0.000 0.000 -

VAT 0.702 0.725 0.686 0.008 0.005 -0.969
ICT 0.677 0.677 0.677 0.000 0.000 -

UDA 0.693 0.693 0.693 0.000 0.000 -
FixMatch 0.644 0.739 0.588 0.032 0.022 -0.947
FlexMatch 0.649 0.687 0.618 0.014 0.010 -0.973
FreeMatch 0.474 0.629 0.406 0.050 0.053 -0.813
SoftMatch 0.584 0.654 0.564 0.020 0.032 -0.664

UASD 0.701 0.702 0.700 0.001 0.002 0.008
CAFA 0.658 0.659 0.657 0.001 0.001 -0.266
MTCF 0.365 0.612 0.270 0.081 0.102 -0.702

Fix-A-Step 0.682 0.739 0.642 0.019 0.013 -0.976

Table 3: Evaluation of deep SSL methods using ImageNet/Caltech dataset.
Dataset Model AUC Acc(0) WA EVM VS RCC

ImageNet/Caltech

Supervised 0.909 0.909 0.909 - - -
Pseudo Label 0.907 0.908 0.907 0.001 0.001 -0.621

Pi-Model 0.909 0.907 0.907 0.001 0.001 0.655
Mean Teacher 0.903 0.904 0.900 0.003 0.003 0.169

VAT 0.888 0.881 0.881 0.002 0.002 0.928
ICT 0.907 0.909 0.903 0.003 0.004 -0.359

UDA 0.896 0.904 0.891 0.006 0.007 -0.512
FixMatch 0.902 0.905 0.887 0.005 0.007 -0.726
FlexMatch 0.906 0.921 0.893 0.008 0.010 -0.861
FreeMatch 0.864 0.916 0.832 0.031 0.028 -0.786
SoftMatch 0.904 0.908 0.891 0.007 0.007 -0.805

UASD 0.897 0.897 0.897 0.000 0.000 -
CAFA 0.893 0.892 0.889 0.002 0.002 0.820
MTCF 0.880 0.904 0.855 0.016 0.015 -0.841

Fix-A-Step 0.869 0.876 0.856 0.007 0.011 -0.347

Table 4: Evaluation on IMDB/Amazon dataset with 100 labels under inconsistent data distributions
Dataset Model AUC Acc(0) WA EVM VS RCC

IMDB/Amazon

Supervised 0.571 0.571 0.571 - - -
Pseudo Label 0.634 0.545 0.545 0.084 0.092 0.296

Pi-Model 0.597 0.615 0.535 0.051 0.056 0.504
Mean Teacher 0.601 0.570 0.538 0.096 0.101 -0.012

UDA 0.599 0.523 0.523 0.071 0.080 0.484
FixMatch 0.530 0.540 0.500 0.027 0.031 -0.604
FlexMatch 0.545 0.502 0.502 0.064 0.071 0.169
FreeMatch 0.537 0.591 0.502 0.036 0.035 -0.615
SoftMatch 0.532 0.553 0.513 0.019 0.020 -0.347

UASD 0.593 0.541 0.541 0.046 0.055 0.580
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Table 5: Evaluation of SSL algorithms using letter dataset under inconsistent feature space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.694 0.694 0.694 - - -
TSVM 0.683 0.721 0.635 0.017 0.005 -0.991

SSGMM 0.412 0.503 0.309 0.039 0.008 -0.996
Label Propagation 0.589 0.642 0.542 0.020 0.012 -0.978
Label Spreading 0.668 0.695 0.598 0.019 0.022 -0.857

Tri-Training 0.696 0.716 0.664 0.010 0.008 -0.945
Assemble 0.675 0.675 0.671 0.004 0.005 0.341

FT-Transformer 0.490 0.490 0.490 - - -
Pseudo Label 0.534 0.538 0.532 0.002 0.002 -0.401

Pi-Model 0.541 0.552 0.537 0.003 0.004 -0.761
Mean Teacher 0.517 0.517 0.517 0.000 0.000 -

VAT 0.541 0.561 0.535 0.007 0.008 -0.720
ICT 0.540 0.540 0.540 0.000 0.000 -

UDA 0.537 0.537 0.537 0.000 0.000 -
FixMatch 0.499 0.548 0.470 0.022 0.035 -0.237
FlexMatch 0.435 0.470 0.406 0.020 0.029 -0.015
FreeMatch 0.447 0.409 0.409 0.014 0.008 0.977
SoftMatch 0.501 0.536 0.475 0.020 0.022 -0.231

UASD 0.552 0.553 0.549 0.001 0.002 -0.530
CAFA 0.511 0.511 0.510 0.001 0.001 -0.358
MTCF 0.415 0.278 0.278 0.042 0.034 0.932

Fix-A-Step 0.511 0.561 0.490 0.020 0.032 -0.311

4.2 SSL UNDER INCONSISTENT DATA DISTRIBUTIONS

We report the performance of SSL algorithms on letter, Image-CLEF, and IMDA/Amazon datasets in
Table 2, Table 3, and Table 4, respectively. Results on more datasets are reported in appendix A.5. For
tabular datasets, we calculate the centroids of each class and use the distance between examples and
class centroids to filter examples, thus constructing an environment with inconsistent data distribution.
For image and text datasets, we adopt the natural distribution shift to simulate the inconsistent
distribution between labeled and unlabeled datasets.

4.3 SSL UNDER INCONSISTENT FEATURE SPACES

To simulate the inconsistent feature space, we randomly mask features for tabular data and each
masked portion is filled with the mean value of the labeled data. For image datasets, we adopt the
CIFAR-10 and CIFAR100 datasets and convert the images to grayscale, resulting in the loss of two
color channels. For text data, we adopt the agnews (Zhang et al., 2015) dataset and employ text
truncation. Truncated portions are filled with “< pad >” to simulate inconsistent feature spaces. The
experimental results are reported in Table 5, Table 6, and Table 7.

4.4 SSL UNDER INCONSISTENT LABEL SPACES

The inconsistent label space between labeled and unlabeled data is the most widely studied problem
in robust SSL. Following previous studies (Guo et al., 2020a; Oliver et al., 2018), we construct
inconsistent labeled space by randomly selecting some classes and discarding the labeled data
belonging to these classes for both tabular, image, and text datasets. The experimental results are
reported in Table 8, Table 9, and Table 10.

4.5 EXPERIMENTAL RESULTS ANALYSIS

Based on the experimental results, we further conduct a comprehensive analysis from the perspectives
of environments, algorithms, and performance metrics.
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Table 6: Evaluation on CIFAR10 dataset under inconsistent feature spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

CIFAR10

Supervised 0.473 0.473 0.473 - - -
Pseudo Label 0.519 0.524 0.515 0.002 0.003 -0.874

Pi-Model 0.500 0.511 0.485 0.007 0.007 -0.882
Mean Teacher 0.470 0.486 0.457 0.006 0.005 -0.962

VAT 0.501 0.550 0.466 0.020 0.018 -0.880
ICT 0.468 0.476 0.456 0.005 0.005 -0.929

UDA 0.498 0.505 0.438 0.019 0.025 -0.707
FixMatch 0.517 0.551 0.430 0.037 0.042 -0.661
FlexMatch 0.552 0.607 0.431 0.041 0.039 -0.921
FreeMatch 0.555 0.645 0.423 0.045 0.029 -0.962
SoftMatch 0.559 0.661 0.453 0.042 0.009 -0.998

UASD 0.481 0.486 0.479 0.003 0.003 -0.625
CAFA 0.484 0.502 0.469 0.007 0.003 -0.988
MTCF 0.496 0.625 0.316 0.107 0.130 -0.604

Fix-A-Step 0.516 0.551 0.424 0.025 0.032 -0.832

Table 7: Evaluation on Agnews under inconsistent feature spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

Agnews

Supervised 0.844 0.844 0.844 - - -
Pseudo Label 0.849 0.847 0.844 0.005 0.006 0.480

Pi-Model 0.865 0.870 0.859 0.003 0.003 -0.874
Mean Teacher 0.851 0.856 0.841 0.004 0.004 -0.890

UDA 0.844 0.862 0.802 0.022 0.029 -0.686
FixMatch 0.870 0.880 0.858 0.005 0.005 -0.944
FlexMatch 0.848 0.877 0.810 0.021 0.021 -0.829
FreeMatch 0.876 0.872 0.868 0.008 0.009 -0.131
SoftMatch 0.875 0.880 0.865 0.005 0.005 -0.815

UASD 0.849 0.854 0.837 0.010 0.012 -0.007

Table 8: Evaluation of SSL algorithms using letter dataset under inconsistent label space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.694 0.694 0.694 - - -
TSVM 0.683 0.721 0.635 0.017 0.005 -0.991

SSGMM 0.412 0.503 0.309 0.039 0.008 -0.996
Label Propagation 0.589 0.642 0.542 0.02 0.012 -0.978
Label Spreading 0.668 0.695 0.598 0.019 0.022 -0.857

Tri-Training 0.696 0.716 0.664 0.010 0.008 -0.945
Assemble 0.675 0.675 0.671 0.004 0.005 0.341

FT-Transformer 0.628 0.628 0.628 - - -
Pseudo Label 0.628 0.634 0.620 0.003 0.002 -0.970

Pi-Model 0.649 0.653 0.639 0.005 0.007 -0.673
Mean Teacher 0.635 0.635 0.635 0.000 0.000 -

VAT 0.640 0.656 0.622 0.007 0.004 -0.984
ICT 0.607 0.607 0.607 0.000 0.000 -

UDA 0.606 0.605 0.605 0.001 0.001 0.657
FixMatch 0.602 0.663 0.556 0.021 0.012 -0.983
FlexMatch 0.644 0.662 0.621 0.008 0.006 -0.975
FreeMatch 0.528 0.634 0.447 0.042 0.041 -0.937
SoftMatch 0.638 0.657 0.613 0.009 0.008 -0.946

UASD 0.638 0.640 0.628 0.005 0.007 0.138
CAFA 0.620 0.622 0.615 0.002 0.002 -0.918
MTCF 0.547 0.668 0.417 0.050 0.027 -0.984

Fix-A-Step 0.648 0.668 0.614 0.013 0.008 -0.966
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Table 9: Evaluation on CIFAR10 under inconsistent label spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

CIFAR10

Supervised 0.643 0.643 0.643 - - -
Pseudo Label 0.692 0.708 0.676 0.006 0.004 -0.973

Pi-Model 0.672 0.703 0.654 0.01 0.009 -0.937
Mean Teacher 0.639 0.647 0.634 0.003 0.005 -0.333

VAT 0.697 0.734 0.661 0.015 0.011 -0.974
ICT 0.643 0.647 0.642 0.002 0.002 -0.819

UDA 0.676 0.73 0.594 0.027 0.015 -0.963
FixMatch 0.608 0.705 0.479 0.047 0.036 -0.933
FlexMatch 0.731 0.806 0.614 0.038 0.02 -0.965
FreeMatch 0.733 0.815 0.640 0.035 0.012 -0.994
SoftMatch 0.723 0.806 0.601 0.041 0.021 -0.968

UASD 0.644 0.641 0.641 0.002 0.002 0.404
CAFA 0.675 0.674 0.672 0.005 0.006 0.093
MTCF 0.747 0.798 0.681 0.024 0.008 -0.989

Fix-A-Step 0.681 0.757 0.517 0.048 0.048 -0.908

Table 10: Evaluation on Agnews under inconsistent label spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

Agnews

Supervised 0.961 0.961 0.961 - - -
Pseudo Label 0.960 0.956 0.956 0.007 0.006 0.307

Pi-Model 0.962 0.968 0.950 0.006 0.006 -0.785
Mean Teacher 0.965 0.964 0.961 0.004 0.004 0.261

UDA 0.956 0.965 0.938 0.010 0.009 -0.816
FixMatch 0.957 0.974 0.927 0.012 0.009 -0.902
FlexMatch 0.937 0.973 0.889 0.011 0.017 -0.975
FreeMatch 0.936 0.972 0.811 0.036 0.056 -0.752
SoftMatch 0.961 0.974 0.939 0.012 0.012 -0.862

UASD 0.954 0.948 0.944 0.013 0.014 0.112

Environments. We calculate the average expected robustness (under the uniform distribution of
PT ) and the average worst-case robustness of SSL algorithms under different inconsistency settings.
The results are reported in Table 11. According to the definition, lower values of σE and σW imply
stronger robustness. The results show that the robustness of SSL algorithms is much lower in cases
where there is inconsistency between the feature space and the label space, compared to cases when
there is inconsistency in data distribution. Actually, inconsistencies between the feature and label
spaces can both be considered as a greater degree of inconsistency in data distribution. The former
can be viewed as a distribution shift where all missing features are assumed to take default values,
while the latter can be seen as a distribution shift where the probability of all missing classes for
examples is 0. These tell us that more attention needs to be paid to feature and label inconsistency
between labeled and unlabeled data.

Algorithms. We compare the robustness of different algorithms in various environments and report
the results in Table 12. We found that SSGMM (Shahshahani & Landgrebe, 1994) shows the poorest
robustness among all algorithms, the main reason is it relies on the assumption of data distribution. For
other statistical SSL algorithms, Assemble (Bennett et al., 2002) demonstrates the best performance
and remarkable robustness, showcasing the advantage of using ensemble learning. For deep SSL
algorithms, we find that the reported SOTA methods such as FixMatch, FlexMatch, SoftMatch, and
FreeMatch, suffer severe robustness problems. One possible reason is that these methods adopt a
threshold to select pseudo-labels for unlabeled data, which might overly centralize the distribution of
unlabeled data. In comparison, UDA (Xie et al., 2020) sets thresholds for both labeled and unlabeled
data, mitigating the inconsistency induced by sample selection to a large extent and significantly
improving the robustness over FixMatch. For robust deep SSL algorithms, we find that UASD and
CAFA achieve good robustness, but for other methods, they achieve lower robustness compared with
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Table 11: Average Robustness of SSL Algorithms in Different Environments
Environments Excepted Robustness (σ̄E) Worst-case Robustness (σ̄W )

Inconsistent Data Distributions 0.015 0.028
Inconsistent Feature Spaces 0.019 0.039
Inconsistent Label Spaces 0.020 0.044

Table 12: Average Robustness of SSL Algorithms
Algorithms Excepted Robustness (σ̄E) Worst-case Robustness (σ̄W )

SSGMM 0.062 0.120
TSVM 0.017 0.040

Label Propagation 0.030 0.053
Label Spreading 0.021 0.045

Tri-Training 0.024 0.041
Assemble 0.009 0.017

Pseudo Label 0.008 0.014
Pi-Model 0.012 0.021

Mean Teacher 0.014 0.027
VAT 0.034 0.065
ICT 0.009 0.022

UDA 0.020 0.066
FixMatch 0.065 0.164
FlexMatch 0.055 0.143
FreeMatch 0.066 0.157
SoftMatch 0.067 0.154

UASD 0.003 0.002
CAFA 0.010 0.022
MTCF 0.077 0.118

Fix-A-Step 0.062 0.197

ordinary SSL algorithms. Therefore, when designing a robust SSL algorithm, we need to consider
more comprehensive environments and evaluation metrics.

Performance Metrics. We also analyze the performance of different SSL algorithms under different
metrics. First, we find that Acc(0) is not consistent with other metrics, SSL algorithms that have
a high Acc(0) may perform even worse than supervised learning under the proposed robustness
metrics. Second, we find that the EVM and VS metrics exhibit a high level of consistency, despite
their different definitions. This indicates that for a robust SSL algorithm, its performance is less
sensitive to changes in inconsistency level, and the direction of performance change is more stable
and predictable. On the other hand, for a non-robust SSL algorithm, not only does it exhibit
larger variations in performance, but the performance changes are also more unstable, showing
greater randomness. Using such an algorithm in an open environment is extremely unsafe, as we
cannot estimate its worst-case performance. Moreover, we find that the non-identically distributed
unlabeled data is not always harmful, in some cases, exploiting more unlabeled data from inconsistent
distributions may improve the performance. This inspires us to study SSL algorithms that fully
exploit helpful information from inconsistent unlabeled data.

5 CONCLUSION

The research on robust SSL is an essential step toward the practical application of SSL. This paper
provides a reshaped perspective on problem definition, performance metrics, theoretical frameworks,
and evaluation of benchmark datasets. Our results provide evidence that SSL is still not robust in
open environments, especially when the feature and labeled space are inconsistent between labeled
and unlabeled data. These problems are often overlooked in previous studies and more efforts need to
be devoted. The subsequent details about this work will be continuously supplemented and improved.
We hope that our work can help push the successes of SSL towards the real world.
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A APPENDIX

A.1 LIMITATIONS

Although this paper has modeled and constructed complex open environments, it should be noted
that the complexity of the real world may exceed the dataset we have constructed, and it may be
difficult to evaluate, analyze, and explain with limited evaluation metrics and theoretical frameworks.
For example, when multiple inconsistencies coexist and their degrees vary simultaneously, a high-
dimensional vector t rather than a one-dimensional variable t is required to represent the combination
of multiple inconsistencies. While the evaluation methods and metrics we employed can be readily
extended to high-dimensional cases, this leads to an exponential increase in computational resource
consumption, specifically on the order of Θ(sdim(t)), where s represents the number of examples
taken for each dimension. Finding ways to reduce the evaluation complexity in scenarios involving
high-dimensional inconsistencies is an urgent and unresolved issue.

A.2 THEORETICAL FRAMEWORK ON ROBUST SSL

Natarajan dimension(Natarajan, 1989) is an extension of Vapnik-Chervonen dimension Vapnik &
Chervonenkis (1971) in multi-classification problems. We denote Ndim(H) the Natarajan dimension
of a hypothesis space H. To simplify the expression, we denote the variance term associated with the
hypothesis space complexity in the generalization error with the number of examples n, the number
of classes k, and the probability δ:

var(H, n, k, δ) =

√
16Ndim(H) ln

√
2nk + 8 ln 2

δ

n
(2)

In an open environment, we assume that all data originates from a global space X ∗ × Y∗ ⊆
Rd∗ × {0, . . . , k∗ − 1}. There exists an invariant data distribution P (y∗|x∗) for x∗ ∈ X ∗ and
y∗ ∈ Y∗. For any t, there is an inconsistent distribution denoted as Pt(x

∗, y∗). According to the total
probability theorem, Pt(x

∗) =
∑

yi∈Y∗ [Pt(yi)Pt(x
∗|yi)] for all x∗ ∈ X ∗.

However, we can only obtain a projected distribution Pt(xt, yt) in a subspace Xt × Yt from the
global distribution Pt(x

∗, y∗) in the global space X ∗ × Y∗, where Xt ⊂ X ∗ and Yt ⊂ Y∗. We
denote X̄t = X ∗/Xt as the unobserved features and Ȳt = Y∗/Yt as the unobserved classes when
the inconsistency rate is t. In this case, the observed inconsistent data follows the distribution

Pt(x) =
∑

yi∈Yt
(Pt(yi)Pt(x

∗|yi))

pt(x̄|x) , where x ∈ Xt ⊆ Rdt and x̄ ∈ X̄t ⊆ Rd∗−dt , according to
∀yi ∈ Ȳt, Pt(yi) = 0 and Pt(x

∗) = Pt(x̄, x) = Pt(x)Pt(x̄|x).
In SSL, labeled data are used to train a pseudo-label predictor h ∈ H : X0 → Y0 where H is the
hypothesis space of pseudo label predictor to obtain unlabeled dataset with pseudo-labels, denoted
as D̃U = {(XU

1 , ỹU1 ), (X
U
2 , ỹU2 ), . . . , (X

U
nu

, ỹUnu
)}. There is also a function w : X0 → R used for

sample weighting or selection. We denote the weighted unlabeled dataset without pseudo-labels as
Dw

U = w(DU ) and the weighted unlabeled dataset with noisy pseudo-labels as D̃w
U = w(D̃U ). We

denote the sum of weights of all unlabeled examples as nw
u =

∑
(x,y)∈DU

w(x). We additionally
denote the proportion of inconsistent examples in the unlabeled dataset after sample weighting as

θw(t) =
∑nu

i=(1−θ(t))nu+1
w(xi)∑nu

i=1 w(xi)
. We define a weighted distribution as the inner product of a distribution

function and a weighting function, such as Pw(x) = w(x)P (x) and Pw(x, y) = w(x)P (x, y).

SSL algorithms use both DL and D̃w
U for training a target predictor f ∈ F where F is the hypothesis

space of the target predictor. Due to different feature spaces, feature mapping functions mapXt→X0
:

Xt → X0 is also required to map the input into the domain of definition of the model.

For the distribution Pt(x
∗), we define its projection onto any target label space Y ′ as ΠY′ [Pt(x

∗)] =∑
yi∈Yt

I(yi ∈ Y ′)Pt(yi)Pt(x
∗|yi). The joint distribution after projecting onto the label space Y ′ is

ΠY′ [Pt(x
∗, y)] = (

∑
yi∈Yt

I(yi ∈ Y ′)Pt(yi)Pt(x
∗|yi))P (y|x∗).

For the distribution Pt(x
∗), we define its projection onto any feature space X ′ as ΠX ′ [Pt(x

∗)] =
Pt(mapX∗→X ′(x∗)), x∗ ∼ Pt(x

∗). The joint distribution after projecting onto the feature space X ′

is ΠX ′ [Pt(x
∗, y)] = Pt(mapX∗→X ′(x∗), y), (x∗, y) ∼ Pt(x

∗, y).
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We define the discrepancy between the distribution Pt(x
∗) and the label space Y ′ as:

DiscL(Pt(x
∗),Y ′) = 1−

∫
x∗∼Pt(x∗)

ΠY′ [Pt(x
∗)]dx∗. (3)

For the data distribution Pt(x
∗) and the observed data Pt(x), we define their discrepancy on an

arbitrary feature space X ′ with respect to the feature mapping function mapXt→X ′ and the model
function f defined on the domain of X ′ as

DiscF (Pt(x), Pt(x
∗),mapXt→X ′ , f) = |P(x∗,y)∈Pt(x∗,y)(f(mapX∗→X ′(x)) ̸= y)

− P(x,y)∈Pt(x,y)(f(mapXt→X ′(x)) ̸= y)|. (4)

For two data distributions P ′(x, y) and P ′′(x, y) defined on the same feature space and label space,
their distributional difference to the model function f can be defined by the following discrepancy:

DiscD(P ′(x, y), P ′′(x, y), f) = |P(x,y)∼P ′(x,y)(f(x) ̸= y)− P(x,y)∼P ′′(x,y)(f(x) ̸= y)| (5)

As a result, we can obtain the error rate of pseudo-labeling in the weighted or filtered unlabeled
dataset obtained through robust SSL.
Theorem A.1. For any pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1, with the
probability of at least (1− δ1)(1− δ2):

Ê(h,w,mapXt→X0
, DUt

)

≤Ê(h,DL) + var(H, nl, k0, δ1) + var(H, nw
u t, k0, δ2) + θw(t)DiscL(P

w
t (x∗),Y0)

+θw(t)DiscF (ΠY0
[Pw

t (x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, h)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), h) (6)

where Ê(h,DL) is the empirical error of h on DL and Ê(h,w,mapXt→X0
, DUt

) is the empirical
error of h on DU with ground truth labels.

Based on the above label noise rate bound of the unlabeled dataset, we can estimate the generalization
error bound of the robust SSL algorithm trained with the labeled dataset and this unlabeled dataset.
Theorem A.2. For any target predictor f ∈ F , pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1,
0 ≤ δ2 ≤ 1 and 0 ≤ δ3 ≤ 1, with the probability of at least (1− δ1)(1− δ2)(1− δ3):

E(f, P0(x, y)|h,w,mapXt→X0 , DL, DUt)

≤ nl

nl + nw
u t

Ê(f,DL) +
nw
u t

nl + nw
u t

Ê(f, D̃w
Ut
) + var(F , nl + nw

u t, k0, δ1)

+
nw
u t

nl + nw
u t

(θw(t)DiscL(P
w
t (x∗),Y0)

+θw(t)DiscF (ΠY0
[Pw

t (x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, f)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), f))

+
nw
u t

nl + nw
u t

(Ê(h,DL) + var(H, nl, k, δ2) + var(H, nw
u t, k0, δ3)

+θw(t)DiscL(P
w
t (x∗),Y0) + θw(t)DiscF (ΠY0

[Pt(x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, h)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), h)) (7)

where Ê(f, D̃w
Ut
) is the weighted disagreement rate between the noisy pseudo-labels and the predic-

tion results of f on the weighted unlabeled dataset D̃w
Ut

.

A.3 FORMULA DERIVATION AND THEORETICAL PROOF

A.3.1 DERIVATION OF EVALUATION METRICS

Since the formulas for the metrics AUC, EA, WA, and EVM can be directly obtained through
definitions, we primarily focus on deriving the formulas for the metrics VS and RCC.
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1. VS: According to the definition, the metric VS is used to measure the stability of model per-
formance changes, that is whether the derivative of Acc(t), Acc′(t), fluctuates significantly.
We describe the magnitude of fluctuations using the variance, and thus, VS is defined as the
variance of Acc′(t). We denote the expectation of the variable x as E(x) and the standard
deviation of the variable x as σ(X).

V S(Acc)

=σ2(Acc′)

=

∫ 1

0

[Acc′(t)− E(Acc′)]2dt

=

∫ 1

0

[Acc′(t)− (

∫ 1

0

Acc′(t)dt)]2dt (8)

2. RCC: According to the definition, the metric RCC is used to measure the correlation between
model performance and the inconsistency factor t. The Pearson correlation coefficient
effectively quantifies the correlation between two variables. We denote the covariance
between the variables x and Y as COV (x) and the Pearson correlation coefficient between
the variables x and Y as ρ(X,Y ).

ρ(X,Y )

=
COV (X,Y )

σ(X)σ(Y )

=
E(XY )− E(X)E(Y )√

E(X2)− E2(X)
√
E(Y 2)− E2(Y )

(9)

We can directly apply the formula for the Pearson correlation coefficient.

RCC(Acc)

=ρ(Acc, t)

=
E(Acc · t)− E(Acc)E(t)√

E(Acc2)− E2(Acc)
√

E(t2)− E2(t)

=

∫ 1

0
Acc(t) · tdt−

∫ 1

0
Acc(t)dt

∫ 1

0
tdt√∫ 1

0
Acc2(t)dt− (

∫ 1

0
Acc(t)dt)2 ·

√∫ 1

0
t2dt− (

∫ 1

0
tdt)2

=

∫ 1

0
Acc(t) · tdt−

∫ 1

0
Acc(t)dt√∫ 1

0
Acc2(t)dt− (

∫ 1

0
Acc(t)dt)2 ·

√∫ 1

0
t2dt− 1

(10)

A.3.2 PROOF OF THEORETICAL RESULTS

Proof of Theorem 1

In the case of using only nl labeled examples for supervised learning, for any h ∈ H and 0 ≤ δ1 ≤ 1,
with the probability of at least 1− δ1:

E(h, P0(x, y)) ≤ Ê(h,DL) + var(H, nl, k, δ1) (11)

where Ê(h,DL) is the empirical error of h on the dataset DL and E(f, P0(x, y)) is the generalization
error of f on the distribution of labeled data P0(x, y).

In SSL, when all examples are from the same distribution, for any t, dataset DUt with nu examples
are from the same distribution Pt(x, y) = P0(x, y). For any h ∈ H and 0 ≤ δ2 ≤ 1, with the
probability of at least 1− δ2:

Ê(h,Dt
U ) ≤ E(h, Pt(x, y)) + var(H, nu, k, δ2)

= E(h, P0(x, y)) + var(H, nu, k, δ2) (12)
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According to eqs. (11) and (12), for any pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1,
with the probability of at least (1− δ1)(1− δ2):

Ê(h,DUt
) ≤ Ê(h,DL) + var(H, nl, k, δ1) + var(H, nu, k, δ2) (13)

When labeled data and unlabeled data are from different distributions, for any h ∈ H:

E(h, Pt(x, y))

≤E(h, P0(x, y)) + |Px,y∼P0(x,y)(h(x) ̸= y)− Px,y∼Pt(x,y)(h(x) ̸= y)|
=E(h, P0(x, y)) +Disc(h, P0(x, y), Pt(x, y)) (14)

According to eqs. (11), (12) and (14), for any pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1 and
0 ≤ δ2 ≤ 1, with the probability of at least (1− δ1)(1− δ2):

Ê(h, Pt(x, y))

≤E(h, P0(x, y)) +DiscD(P0(x, y), Pt(x, y), h)

≤Ê(h,DL) + var(H, nl, k, δ1) + var(H, nu, k, δ2) +DiscD(P0(x, y), Pt(x, y), h) (15)

Taking into account that in SSL, a weighting function w is often used to either weigh or filter
unlabeled examples, it’s the weighted unlabeled data that truly plays a role in the learning process.

Ê(h,DUt
, w)

≤E(h, P0(x, y)) +DiscD(P0(x, y), w(Pt(x, y)), h)

≤Ê(h,DL) + var(H, nl, k, δ1) + var(H, nw
u t, k, δ2) +DiscD(P0(x, y), P

w
t (x, y), h) (16)

Now considering that labeled and unlabeled data are not only from inconsistent data distributions but
also inconsistent data spaces, we need an extra feature mapping function to complete the features and
an extra weighting function to filter out examples from new classes. Both the mapping function and
the weighting function aim to project unlabeled data to the same space as labeled data.

According to eqs. (3), (4) and (16), for any pseudo-label predictor h ∈ H, 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1,
with the probability of at least (1− δ1)(1− δ2):

Ê(h,w,mapXt→X0
, DUt

)

≤Ê(h,DL) + var(H, nl, k0, δ1) + var(H, nw
u t, k0, δ2) + θw(t)DiscL(P

w
t (x∗),Y0)

+θw(t)DiscF (ΠY0
[Pw

t (x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, h)

+θw(t)DiscD(P0(x, y),ΠX0
[ΠY0

[Pw
t (x∗, y)]], h) (17)

where Ê(h,DL) is the empirical error of h on DL and Ê(h,w,mapXt→X0
, DUt

) is the empirical
error of h on DUt with ground truth labels.

Proof of Theorem 2

We denote the mixture of two distributions D1 and D2 with proportion α as:

Mixα(D1,D2) = αD1 + (1− α)D2 (18)

In SSL with inconsistent distributions, the target predictor is trained with both labeled dataset DL

and weighted unlabeled dataset with noisy pseudo-labels D̃Ut . DL and D̃Ut can be considered as a
mixed dataset with nl + nut examples from the mixed distribution Mix nl

nl+nut

(P0(x, y), Pt(x, y))

whose noisy rate is nut

nl+nut
Ê(h,DUt).

So, for any target predictor f ∈ F , pseudo-label predictor h ∈ H, 0 ≤ δ3 ≤ 1, with the probability
of at least 1− δ3:

E(f,Mix nl
nl+nut

(P0(x, y), Pt(x, y))|h,DL, DU )

≤ nl

nl + nut

Ê(f,DL) +
nut

nl + nut

Ê(f, D̃U ) + var(F , nl + nut t, k, δ3) +
nut

nl + nut

Ê(h,DU )

(19)
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where E(f,Mix nl
nl+nut

(P0(x, y), Pt(x, y))|h,DL, DU ) is the generalization error of f on the dis-

tribution Mix nl
nl+nut

(P0(x, y), Pt(x, y) corresponding to pseudo-label predictor h.

When labeled data and unlabeled data are from different distributions, for any f ∈ F :

E(f, P0(x, y)|h,DL, DUt)

≤E(f,Mix nl
nl+nut

(P0(x, y), Pt(x, y))|h,DL, DUt
)

+|px,y∼P0(x,y)(h(x) ̸= y)− px,y∼Mix nl
nl+nut

(P0(x,y),Pt(x,y)(h(x) ̸= y)|

=E(f,Mix nl
nl+nut

(P0(x, y), Pt(x, y))|h,DL, DUt
)

+DiscD(f, P0(x, y),Mix nl
nl+nut

(P0(x, y), Pt(x, y)) (20)

According to eqs. (16), (19) and (20), for any target predictor f ∈ F , pseudo-label predictor h ∈ H,
0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1 and 0 ≤ δ3 ≤ 1, with the probability of at least (1− δ1)(1− δ2)(1− δ3):

E(f, P0(x, y)|h,DL, DUt
)

≤E(f,Mix nl
nl+nut

(P0(x, y), Pt(x, y))|h,DL, DUt
)

+DiscD(f, P0(x, y),Mix nl
nl+nut

(P0(x, y), Pt(x, y)))

≤ nl

nl + nut

Ê(f,DL) +
nut

nl + nut

Ê(f, D̃Ut) + var(F , nl + nut , k, δ3)

+
nut

nl + nut

Ê(h,DUt) +DiscD(f, P0(x, y),Mix nl
nl+nut

(P0(x, y), Pt(x, y)))

≤ nl

nl + nut

Ê(f,DL) +
nut

nl + nut

Ê(f, D̃Ut
) + var(F , nl + nut

, k, δ1)

+DiscD(f, P0(x, y),Mix nl
nl+nut

(P0(x, y), Pt(x, y)))

+
nut

nl + nut

(Ê(h,DL) + var(H, nl, k, δ2) + var(H, nut , k, δ3) +DiscD(h, P0(x, y), Pt(x, y)))

(21)

where Ê(f, D̃Ut
) is the weighted empirical inconsistency rate between the noisy pseudo-labels and

the prediction results of f on the unlabeled dataset D̃Ut .

Taking into account inconsistent label spaces and weighting function w:

E(f, P0(x, y)|h,DL, DUt
, w)

≤ nl

nl + nw
ut

Ê(f,DL) +
nw
ut

nl + nw
ut

Ê(f, D̃w
Ut
) + var(F , nl + nw

ut
, k, δ1)

+DiscD(f, P0(x, y),Mix nl
nl+nw

ut

(P0(x, y), P
w
t (x, y)))

+
nw
ut

nl + nw
ut

(Ê(h,DL) + var(H, nl, k, δ2) + var(H, nw
ut
, k, δ3)

+DiscD(h, P0(x, y), P
w
t (x, y))) (22)

Taking into account inconsistent feature spaces and mapping function mapXt→X0
, the final error

bound can be obtained.

According to eqs. (3), (4), (17), (21) and (22), for any target predictor f ∈ F , pseudo-label predictor
h ∈ H, 0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1 and 0 ≤ δ3 ≤ 1, with the probability of at least (1 − δ1)(1 −
δ2)(1− δ3):

E(f, P0(x, y)|h,w,mapXt→X0 , DL, D
t
U )
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≤ nl

nl + nw
ut

Ê(f,DL) +
nw
ut

nl + nw
ut

Ê(f, D̃w
Ut
)) + var(F , nl + nw

ut
, k0, δ1)

+
nw
ut

nl + nw
ut

(θw(t)DiscL(P
w
t (x∗),Y0) + θw(t)DiscF (ΠY0

[Pw
t (x)],ΠY0

[Pw
t (x∗)],mapXt→X0

, f)

+θw(t)DiscD(ΠX0
[ΠY0

[Pw
t (x∗, y)]], P0(x, y), f))

+
nw
ut

nl + nw
ut

(Ê(h,DL) + var(H, nl, k, δ2) + var(H, nw
ut
, k0, δ3)

+θw(t)DiscL(P
w
t (x∗),Y0) + θw(t)DiscF (ΠY0

[Pt(x)],ΠY0
[Pw

t (x∗)],mapXt→X0
, h)

+θw(t)DiscD(ΠX0 [ΠY0 [P
w
t (x∗, y)]], P0(x, y), h)) (23)

where Ê(f, D̃w
Ut
) is the weighted disagreement rate between the noisy pseudo-labels and the predic-

tion results of f on the weighted unlabeled dataset D̃w
Ut

.

A.4 SSL ALGORITHMS EVALUATED IN THE BENCHMARK

A.4.1 STATISTICAL SSL ALGORITHMS

1. SSGMM (Shahshahani & Landgrebe, 1994) assumes that data is generated by a Gaussian
mixture model, that is, the marginal distribution of examples can be expressed as the result
of mixing several Gaussian distributions, and each distribution is given a weight.

2. TSVM (Joachims et al., 1999) infers labels of unlabeled examples and finds dividing
hyperplanes that maximize the distance from support vectors. It continuously finds pairs of
unlabeled heterogeneous examples and exchanges their labels until no more pairs can be
found.

3. Label Propagation (Zhu & Ghahramani, 2003) uses examples as nodes, and the relationship
between the examples as edges. The purpose of the Label Propagation algorithm is to
propagate the labels from labeled data to unlabeled data through the graph.

4. Label Spreading (Zhou et al., 2003) penalizes misclassified labeled examples rather than
banning misclassification completely which is different from Label Propagation fixing labels
of labeled examples during the spreading process.

5. Tri-Training (Zhou & Li, 2005) is a representative disagreement-based SSL algorithm. It uses
three learners with divergence and makes divergence by data sampling. The disagreement
between learners is utilized for optimizing interactively.

6. Assemble (Bennett et al., 2002) extents AdaBoost to the field of SSL by giving pseudo-labels
to unlabeled data. It pays more attention to the examples with poor learning effects of the
current ensemble learner in each round and continuously improves the robustness using new
base learners.

A.4.2 DEEP SSL ALGORITHMS

1. Pseudo Label (Lee, 2013) takes the label with the highest confidence as the pseudo-label
and uses cross-entropy obtained from the pseudo-label as the unsupervised loss.

2. Pi-Model (Laine & Aila, 2017) augments the data twice randomly and uses the results of
the two augmentations as inputs of the neural network respectively. The inconsistency of
the prediction results is used as the unsupervised loss.

3. Mean Teacher (Tarvainen & Valpola, 2017) relies on the idea of knowledge distillation,
where the prediction results of the teacher model are used as pseudo-labels to train the
student model to ensure the consistency of the prediction results. It uses EMA for the
student model’s parameters as the teacher model.

4. VAT (Miyato et al., 2018) adds adversarial noise rather than random noise to the data so that
the worst performance of the model can be better when the data is affected by noise within
a certain range, which corresponds to the zero-sum game in game theory and Min-Max
problem in optimization.

5. ICT (Verma et al., 2022) linearly interpolates data and prediction results by Mixup. The
unsupervised loss is obtained by the interpolation consistency.
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6. UDA (Xie et al., 2020) performs data augmentation on the unlabeled examples and then
compares the prediction results before and after the augmentation. The thresholds are used
for sample selection for both labeled and unlabeled data respectively.

7. FixMatch (Sohn et al., 2020) uses both strong and weak data augmentation and the inconsis-
tency of prediction results between them is used as the unsupervised loss. A fixed threshold
is used for sample selection.

8. FlexMatch (Zhang et al., 2021) uses a dynamic threshold based on FixMatch. It sets a lower
confidence threshold for the classes that are more difficult to learn.

9. FreeMatch (Wang et al., 2022b) employs a more precise dynamic threshold, where the
threshold setting takes into account both the model’s training phase and the disparities be-
tween categories. It also incorporates a regularization term to facilitate equitable predictions
between categories.

10. SoftMatch (Chen et al., 2023) no longer adheres to the paradigm of filtering examples
through confidence threshold, and instead replaces sample selection with sample weighting.
The sample weights are utilized to achieve a better balance between the quantity and quality
of pseudo-labeled data.

A.4.3 ROBUST DEEP SSL ALGORITHMS

1. UASD (Chen et al., 2020) ensembles model predictions to produce probability predictions
for unlabeled examples, and uses threshold based on confidence to filter out OOD examples.

2. CAFA (Huang et al., 2021) takes into account both the inconsistency in labeling spaces and
data distributions. It employs a scoring mechanism to filter out examples from new classes
and then utilizes unsupervised domain adaptation to alleviate distribution inconsistency, thus
obtaining higher-quality pseudo-labels.

3. MTCF (Yu et al., 2020) leverages the concept of curriculum learning. It uses a joint optimiza-
tion framework, which updates the network parameters and the OOD score alternately to
detect the OOD examples and achieve high performance on the classification simultaneously.

4. Fix-A-Step (Huang et al., 2023) views all OOD unlabeled examples as potentially helpful. It
modifies gradient descent updates to prevent optimizing a multi-task SSL loss from hurting
labeled-set accuracy.

A.5 EXPERIMENTS

A.5.1 DATASETS PREPARATION

Inconsistent Data Distribution

1. Wine, Iris, Letter: To construct datasets with inconsistent distributions, in each class, we
calculate the center of all examples and sort these examples according to the distance
between them and the center in ascending order. The first nc ∗ 0.5 examples are used as
labeled data which can be which can be regarded as being obtained by sampling from
P0(x, y). and the rest of nc ∗ 0.5 examples are used as inconsistent unlabeled data. For each
t, the nc ∗0.5∗ (t− 1

s ) to nc ∗0.5∗ t examples are used as labeled data which can which can
be regarded as being obtained by sampling from Pt(x). θ(t) = 1 for every t. 5 examples
per class from source domain data are used as labeled data and the rest are used as test data.

2. Image-CLEF: The Image-CLEF dataset consists of 3 domains, which can be combined
into 6 source-domain to target-domain pairs. All source domain data can be regarded as
being obtained by sampling from Psource(x, y) and all target domain data can be regarded
as being obtained by sampling from Ptarget(x, y). We set P0(x, y) = Psource(x, y) and
Pt(x, y) = Ptarget(x, y) for all t ̸= 0. From the source-domain data, 100 examples are
taken as labeled data. Half of the remaining source-domain examples are used as test data,
while the other half is combined with the target-domain data to form an unlabeled dataset.
The total number of unlabeled data nu is min(0.5 ∗ (ns − 100), nt) where ns is the number
of examples in the source domain and nt is the number of examples in the target domain.
θ(t) = t for every t. For inconsistency rate t, the unlabeled dataset is combined with
nu ∗ (1− t) examples for the source domain and nu ∗ t examples from the target domain.
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3. IMDB-Amazon: The IMDB and Amazon datasets can be considered as source and target
domains respectively. All source domain data can be regarded as being obtained by sampling
from Psource(x, y) and all target domain data can be regarded as being obtained by sampling
from Ptarget(x, y). We set P0(x, y) = Psource(x, y) and Pt(x, y) = Ptarget(x, y) for all
t ̸= 0. From the source-domain data, 100 examples are taken as labeled data. Half of the
remaining source-domain examples are used as test data, while the other half is combined
with the target-domain data to form an unlabeled dataset. The total number of unlabeled
data nu is min(0.5 ∗ (ns − 100), nt) where ns is the number of examples in the source
domain and nt is the number of examples in the target domain. θ(t) = t for every t. For
inconsistency rate t, the unlabeled dataset is combined with nu ∗ (1− t) examples for the
source domain and nu ∗ t examples from the target domain.

Inconsistent Feature Space

1. Wine, Iris, Letter: 50% of all examples can be used as source domain data, and the rest are
used as target domain data. 5 examples per class of source domain data are used as labeled
data which can be regarded as being obtained by sampling from P0(x, y), and the rest are
used as test data. For every t, All target domain data randomly dropping t ∗ d features are
used as unlabeled data which can be regarded as being obtained by sampling from Pt(x, y).
θ(t) = 1 for every t.

2. CIFAR10, CIFAR100: 50% of all examples can be used as source domain data which can be
regarded as being obtained by sampling from Psource(x, y), and the rest are used as target
domain data. 20 examples per class of source domain data are used as labeled data. All target
domain data are transformed to grey images by dropping 2 channels which can be regarded
as being obtained by sampling from Ptarget(x, y). We set P0(x, y) = Psource(x, y) and
Pt(x, y) = Ptarget(x, y) for all t ̸= 0. θ(t) = t for every t. For inconsistency rate t, the
unlabeled dataset is combined with nu ∗ (1− t) examples for the source domain and nu ∗ t
examples from the target domain.

3. Agnews: 50% of all examples can be used as source domain data which can be regarded as
being obtained by sampling from Psource(x, y), and the rest are used as target domain data.
100 examples of source domain are used as labeled data and the rest are used as test data. 50%
target domain sentences are used as IID examples and the other 50% target domain sentences
that drop 50% tokens are used as OOD examples which can be regarded as being obtained by
sampling from Ptarget(x, y). We set P0(x, y) = Psource(x, y) and Pt(x, y) = Ptarget(x, y)
for all t ̸= 0. The number of unlabeled data nu is set to min(nI/(1− t), nO/t where nI

and nD are the numbers of IID and OOD examples respectively. The unlabeled dataset is
combined with nu ∗ (1− t) IID and nu ∗ t OOD examples. θ(t) = t for every t.

Inconsistent Label Space

1. Wine, Iris, Letter: 50% of all examples can be used as source domain data, and the rest are
used as target domain data. (k+1)//2 classes of source data are saved and the rest examples
are dropped which can be regarded as being obtained by sampling from Psource(x, y). 5
examples per class of saved source domain data are used as labeled data and the rest are
used as test data. The target domain examples with saved classes are used as OOD examples
which can be regarded as being obtained by sampling from Ptarget(x, y), and the target
examples with dropped classes are used as IID examples. The number of unlabeled data
nu is set to min(nI/(1 − t), nO/t) where nI and nD are the numbers of IID and OOD
examples respectively. The unlabeled dataset is combined with nu ∗ (1− t) IID and nu ∗ t
OOD examples. We set P0(x, y) = Psource(x, y) and Pt(x, y) = Ptarget(x, y) for all
t ̸= 0. θ(t) = t for every t.

2. CIFAR10, CIFAR100: (k + 1)/2 classes of all examples are used as source domain data,
and the rest are used as target domain data. 20 examples per class of the source domain
are used as labeled data. For inconsistency rate t, the unlabeled dataset is combined with
nt ∗ (1− t) examples for the source domain and nt ∗ t examples from the target domain
where nt is the number of target domain examples. We set P0(x, y) = Psource(x, y) and
Pt(x, y) = Ptarget(x, y) for all t ̸= 0. θ(t) = t for every t.
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3. Agnews: (k + 1)/2 classes of all examples are used as source domain data and the rest are
used as target domain data. 100 examples of the source domain are used as labeled data.
For inconsistency rate t, the unlabeled dataset is combined with nt ∗ (1− t) examples for
the source domain and nt ∗ t examples from the target domain where nt is the number of
target domain examples. We set P0(x, y) = Psource(x, y) and Pt(x, y) = Ptarget(x, y) for
all t ̸= 0. θ(t) = t for every t.

A.5.2 HYPER-PARAMETERS OF COMPARED ALGORITHMS

Baselines

1. XGBoost: the parameter of use label encoder is set to False, the parameter eval metric
is set to “logloss”.

2. FT-Transformers: the number of layers is set to 8, the dimension of tokens is set to 192, and
the number of heads is set to 8.

3. ResNet50: the Resnet50 pre-trained on ImageNet from torchvision.models is directly used.
4. Roberta: the pre-trained model “roberta-base” from transformers package is directly used.

Statistical SSL Algorithms

1. SSGMM: the number of iterations is set to 300.
2. TSVM: the parameter Cl is set to 15, the parameter Cu is set to 0.0001, and the method to

deal with multi-classification tasks is set to ”one vs rest”.
3. Label Propagation: the hyperparameters provided by scikit-learn in default are used.
4. Label Spreading: the hyperparameters provided by scikit-learn in default are used.
5. Tri-Training: all the base learners are set to XGBoost classifier consistent with the baseline.
6. Assemble: the number of iterations T is set to 30, and all the base learners are set to

XGBoost classifier consistent with the baseline.

Deep SSL Algorithms

1. Pseudo Label: the ratio of unsupervised loss λu is set to 1.0, and the threshold is set to 0.95.
2. Pi-Model: the ratio of unsupervised loss λu is set to 1.0, the warmup rate of unsupervised

loss wu is set to 0.4, and the ratio of unsupervised loss λu is set to max( t
T ·w , 1.0) where t

is current iteration and T is the number of iterations.
3. Mean Teacher: the EMA decay is set to 0.999, the warmup rate of unsupervised loss wu is

set to 0.4, and the ratio of unsupervised loss λu is set to max( t
T ·w , 1.0) where t is current

iteration and T is the number of iterations.
4. VAT: the ratio of unsupervised loss λu is set to 0.3, the ratio of entropy minimization loss

λentmin is set to 0.06, the number of iterations for adversarial training itvat is set to 1, the
degree of adversarial noise is set to 6.

5. ICT: the ratio of unsupervised loss λu is set to 100, and the parameter of Beta distribution in
Mixup is set to 0.5.

6. UDA: the ratio of unsupervised loss λu is set to 1.0, the threshold is set to 0.8, and the
temperature of softmax is set to 0.4.

7. FixMatch: the ratio of unsupervised loss λu is set to 1.0, the threshold is set to 0.95, and the
temperature of softmax is set to 0.5.

8. FlexMatch: the ratio of unsupervised loss λu is set to 1.0, the basic threshold is set to 0.95,
the temperature of softmax is set to 0.5, and the threshold warmup mechanism is used.

9. FreeMatch: the ratio of unsupervised loss λu is set to 1.0, the EMA decay is set to 0.999,
the threshold is set to 0.95, and the temperature of softmax is set to 0.5.

10. SoftMatch: the ratio of unsupervised loss λu is set to 1.0, the basic threshold is set to 0.95,
the temperature of softmax is set to 0.5, and the distribution alignment mechanism is used.
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Robust Deep SSL Algorithms

1. UASD: the ratio of unsupervised loss λu is set to 1.0, and the threshold is set to 0.95.
2. CAFA: the base SSL algorithm used is Pi Model, the warmup rate of unsupervised loss

wu is set to 4
15 , The perturbation magnitude ϵ is set to 0.014 and the Beta distribution

parameter α is set to 0.75, the warmup rate of adversarial loss wa is set to 8
15 , the ratio of

unsupervised loss λu is exp(−5 · (1−min( t
T ·wu

, 1.0))2) and the ratio of adversarial loss λa

is exp(−5 · (1−min( t
T ·wa

, 1.0))2) in the t-th iteration where T is the number of iterations.

3. MTCF: the ratio of unsupervised loss λu is set to 75, the temperature T is set to 0.5, and the
parameter of Beta distribution in Mixup is set to 0.75.

4. Fix-A-Step: the parameter of Beta distribution in Mixup is set to 0.75, FixMatch is set to
the base SSL method, and all the hyperparameters are the same as FixMatch.

Data Augmentation

1. Agnews and IMDB/Amazon: the weak and strong augmentations are synonyms replace-
ments with 1 and 5 words respectively.

2. wine, iris, letter: the weak and strong augmentations are Gaussian noise with 0.1 and 0.2
rates respectively.

3. CIFAR10, CIFAR100, Image-CLEF: the weak augmentation is RandomHorizontalFlip, and
the strong augmentation is RandAugment.

Others Hyper-Parameters

1. batch size: the batch size for the IMDB/Amazon dataset is 8, the batch size for the Agnews
dataset is 16, the batch size for the Image-CLEF dataset is 32, the batch size for CIFAR10
and CIFAR100 is 64, the batch size for tabular datasets is 64.

2. iteration: the iteration for Image-CLEF dataset is 2000, the iteration for the tabular dataset
is set to 1000, the iteration for ag news and IMDB/Amazon is set to 5000, the iteration for
CIFAR10 and CIFAR100 is 100000.

3. optimizer: the optimizer for all datasets is SGD with a learning rate of 5e-4 and a momentum
of 0.9.

4. scheduler: the scheduler for all datasets is CosineWarmup with num cycles 7/16.

A.6 RESULTS UNDER INCONSISTENT DISTRIBUTION

The experimental results can be referenced in tables 13 to 17.

A.7 RESULTS UNDER INCONSISTENT FEATURE SPACE

The experimental results can be referenced in tables 18 to 20.

A.8 RESULTS UNDER INCONSISTENT LABEL SPACE

The experimental results can be referenced in tables 21 to 23.
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Table 13: Evaluation of SSL algorithms using iris dataset under inconsistent data distributions
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.940 0.940 0.940 - - -
TSVM 0.973 0.983 0.960 0.015 0.018 -0.377

SSGMM 0.835 0.867 0.803 0.033 0.042 0.042
Label Propagation 0.978 0.973 0.970 0.011 0.012 0.412
Label Spreading 0.977 0.973 0.967 0.012 0.013 0.438

Tri-Training 0.959 0.977 0.950 0.009 0.012 -0.310
Assemble 0.973 0.947 0.947 0.011 0.016 0.787

FT-Transformer 0.980 0.980 0.980 - - -
Pseudo Label 0.988 0.987 0.987 0.001 0.002 -0.414

Pi-Model 0.981 0.987 0.973 0.009 0.010 -0.029
Mean Teacher 0.987 0.987 0.987 0.000 0.000 -

VAT 0.986 0.987 0.983 0.001 0.002 -0.393
ICT 0.987 0.987 0.987 0.000 0.000 -

UDA 0.986 0.987 0.983 0.002 0.002 -0.414
FixMatch 0.977 0.983 0.967 0.011 0.012 -0.380
FlexMatch 0.978 0.980 0.967 0.016 0.017 0.109
FreeMatch 0.978 0.970 0.967 0.010 0.011 0.603
SoftMatch 0.981 0.987 0.967 0.009 0.012 -0.441

UASD 0.984 0.980 0.977 0.008 0.009 0.217
CAFA 0.989 0.990 0.987 0.002 0.002 -0.414
MTCF 0.984 0.993 0.973 0.007 0.009 -0.605

Fix-A-Step 0.987 0.987 0.983 0.003 0.003 -0.338

Table 14: Evaluation of SSL algorithms using wine dataset under inconsistent data distributions
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.872 0.872 0.872 - - -
TSVM 0.944 0.955 0.925 0.012 0.018 -0.68

SSGMM 0.446 0.429 0.379 0.049 0.070 0.006
Label Propagation 0.928 0.944 0.909 0.017 0.016 -0.596
Label Spreading 0.927 0.939 0.899 0.020 0.024 0.037

Tri-Training 0.952 0.965 0.936 0.012 0.012 -0.765
Assemble 0.941 0.939 0.912 0.014 0.017 -0.604

FT-Transformer 0.875 0.875 0.875 - - -
Pseudo Label 0.931 0.931 0.925 0.005 0.006 -0.575

Pi-Model 0.961 0.973 0.936 0.017 0.018 -0.641
Mean Teacher 0.920 0.920 0.920 0.000 0.000 -

VAT 0.972 0.984 0.955 0.010 0.011 -0.824
ICT 0.957 0.957 0.957 0.000 0.000 -

UDA 0.940 0.952 0.904 0.027 0.032 -0.138
FixMatch 0.958 0.971 0.928 0.027 0.031 -0.362
FlexMatch 0.948 0.955 0.915 0.027 0.029 -0.326
FreeMatch 0.903 0.907 0.853 0.031 0.039 0.204
SoftMatch 0.960 0.976 0.944 0.015 0.019 -0.134

UASD 0.912 0.912 0.912 0.000 0.000 -
CAFA 0.876 0.864 0.848 0.028 0.036 0.249
MTCF 0.962 0.981 0.947 0.017 0.017 -0.493

Fix-A-Step 0.963 0.979 0.939 0.013 0.013 -0.893
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Table 15: Evaluation of deep SSL methods using ImageNet/Catch and ImageNet/Pascal datasets.
Dataset Model AUC Acc(0) WA EVM VS RCC

ImageNet/Caltech

Supervised 0.909 0.909 0.909 - - -
Pseudo Label 0.907 0.908 0.907 0.001 0.001 -0.621

Pi-Model 0.909 0.907 0.907 0.001 0.001 0.655
Mean Teacher 0.903 0.904 0.900 0.003 0.003 0.169

VAT 0.888 0.881 0.881 0.002 0.002 0.928
ICT 0.907 0.909 0.903 0.003 0.004 -0.359

UDA 0.896 0.904 0.891 0.006 0.007 -0.512
FixMatch 0.902 0.905 0.887 0.005 0.007 -0.726
FlexMatch 0.906 0.921 0.893 0.008 0.010 -0.861
FreeMatch 0.864 0.916 0.832 0.031 0.028 -0.786
SoftMatch 0.904 0.908 0.891 0.007 0.007 -0.805

UASD 0.897 0.897 0.897 0.000 0.000 -
CAFA 0.893 0.892 0.889 0.002 0.002 0.820
MTCF 0.880 0.904 0.855 0.016 0.015 -0.841

Fix-A-Step 0.869 0.876 0.856 0.007 0.011 -0.347

ImageNet/Pascal

Supervised 0.909 0.909 0.909 - - -
Pseudo Label 0.906 0.908 0.901 0.004 0.004 -0.375

Pi-Model 0.907 0.907 0.901 0.005 0.006 -0.085
Mean Teacher 0.904 0.909 0.900 0.003 0.003 -0.813

VAT 0.884 0.889 0.875 0.006 0.007 -0.781
ICT 0.906 0.909 0.903 0.004 0.004 0.000

UDA 0.894 0.904 0.883 0.013 0.017 0.173
FixMatch 0.901 0.905 0.889 0.013 0.017 -0.528
FlexMatch 0.911 0.921 0.897 0.006 0.007 -0.915
FreeMatch 0.855 0.876 0.824 0.022 0.025 -0.665
SoftMatch 0.888 0.908 0.839 0.014 0.018 -0.846

UASD 0.897 0.896 0.896 0.000 0.001 0.655
CAFA 0.890 0.897 0.887 0.003 0.003 -0.768
MTCF 0.875 0.909 0.840 0.014 0.012 -0.928

Fix-A-Step 0.877 0.885 0.867 0.009 0.010 -0.524
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Table 16: Evaluation of deep SSL methods using Caltech/ImageNet and Caltech/Pascal datasets.
Dataset Model AUC Acc(0) WA EVM VS RCC

Caltech/ImageNet

Supervised 0.945 0.945 0.945 - - -
Pseudo Label 0.953 0.949 0.949 0.001 0.002 0.655

Pi-Model 0.950 0.945 0.945 0.001 0.002 0.655
Mean Teacher 0.951 0.955 0.948 0.003 0.003 -0.714

VAT 0.953 0.959 0.945 0.005 0.005 -0.895
ICT 0.950 0.945 0.945 0.003 0.003 0.247

UDA 0.949 0.943 0.943 0.003 0.003 0.769
FixMatch 0.952 0.957 0.943 0.003 0.003 -0.928
FlexMatch 0.960 0.965 0.953 0.007 0.007 -0.498
FreeMatch 0.896 0.947 0.800 0.029 0.021 -0.947
SoftMatch 0.941 0.960 0.912 0.011 0.011 -0.91

UASD 0.962 0.963 0.961 0.000 0.001 -0.655
CAFA 0.962 0.965 0.960 0.002 0.002 -0.690
MTCF 0.946 0.947 0.939 0.007 0.007 -0.300

Fix-A-Step 0.940 0.948 0.931 0.007 0.008 -0.474

Caltech/Pascal

Supervised 0.945 0.945 0.945 - - -
Pseudo Label 0.951 0.949 0.949 0.001 0.001 0.781

Pi-Model 0.950 0.945 0.945 0.001 0.002 0.655
Mean Teacher 0.951 0.953 0.948 0.002 0.003 -0.825

VAT 0.944 0.956 0.936 0.006 0.006 -0.678
ICT 0.949 0.945 0.945 0.002 0.003 -0.222

UDA 0.946 0.943 0.939 0.006 0.007 0.030
FixMatch 0.933 0.957 0.852 0.022 0.036 -0.729
FlexMatch 0.952 0.965 0.937 0.007 0.007 -0.920
FreeMatch 0.876 0.956 0.777 0.036 0.024 -0.980
SoftMatch 0.933 0.960 0.892 0.017 0.013 -0.920

UASD 0.962 0.963 0.961 0.000 0.001 -0.655
CAFA 0.961 0.960 0.960 0.001 0.001 0.169
MTCF 0.946 0.943 0.943 0.004 0.005 0.146

Fix-A-Step 0.942 0.928 0.928 0.010 0.011 0.590
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Table 17: Evaluation of deep SSL methods using Pascal/Caltech and Pascal/ImageNet datasets.
Dataset Model AUC Acc(0) WA EVM VS RCC

Pascal/Caltech

Supervised 0.732 0.732 0.732 - - -
Pseudo Label 0.726 0.724 0.724 0.001 0.002 0.804

Pi-Model 0.723 0.724 0.723 0.000 0.001 -0.655
Mean Teacher 0.727 0.728 0.721 0.007 0.008 -0.398

VAT 0.721 0.731 0.712 0.007 0.009 -0.216
ICT 0.727 0.727 0.721 0.006 0.006 -0.241

UDA 0.731 0.728 0.725 0.003 0.003 0.916
FixMatch 0.698 0.713 0.611 0.027 0.043 -0.628
FlexMatch 0.719 0.719 0.701 0.013 0.018 -0.529
FreeMatch 0.634 0.704 0.545 0.035 0.028 -0.964
SoftMatch 0.694 0.691 0.676 0.011 0.013 -0.486

UASD 0.724 0.724 0.724 0.000 0.000 -
CAFA 0.724 0.732 0.719 0.005 0.007 -0.516
MTCF 0.69 0.708 0.661 0.016 0.016 -0.869

Fix-A-Step 0.694 0.697 0.689 0.003 0.002 -0.854

Pascal/ImageNet

Supervised 0.732 0.732 0.732 - - -
Pseudo Label 0.724 0.724 0.721 0.002 0.002 -0.414

Pi-Model 0.724 0.724 0.723 0.001 0.001 0.497
Mean Teacher 0.728 0.727 0.724 0.003 0.004 -0.549

VAT 0.715 0.721 0.707 0.007 0.007 -0.665
ICT 0.727 0.727 0.724 0.002 0.003 -0.177

UDA 0.722 0.728 0.715 0.005 0.007 0.272
FixMatch 0.717 0.713 0.713 0.004 0.004 0.425
FlexMatch 0.716 0.719 0.708 0.007 0.009 -0.128
FreeMatch 0.659 0.708 0.633 0.021 0.025 -0.629
SoftMatch 0.694 0.691 0.688 0.003 0.004 0.763

UASD 0.724 0.724 0.724 0.000 0.000 -
CAFA 0.716 0.717 0.715 0.004 0.004 0.000
MTCF 0.703 0.707 0.684 0.016 0.018 -0.617

Fix-A-Step 0.696 0.700 0.680 0.008 0.008 -0.751
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Table 18: Evaluation of SSL algorithms using iris dataset under inconsistent feature space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.920 0.920 0.920 - - -
TSVM 0.887 0.937 0.850 0.023 0.021 -0.929

SSGMM 0.756 0.92 0.677 0.049 0.054 -0.906
Label Propagation 0.797 0.820 0.780 0.011 0.011 -0.705
Label Spreading 0.832 0.843 0.817 0.007 0.008 -0.912

Tri-Training 0.861 0.893 0.843 0.020 0.025 -0.638
Assemble 0.917 0.907 0.907 0.015 0.018 -0.266

FT-Transformer 0.937 0.937 0.937 - - -
Pseudo Label 0.922 0.920 0.920 0.001 0.002 -0.293

Pi-Model 0.913 0.910 0.910 0.003 0.004 -0.293
Mean Teacher 0.917 0.917 0.917 0.000 0.000 -

VAT 0.918 0.923 0.907 0.007 0.010 -0.345
ICT 0.923 0.923 0.923 0.000 0.000 -

UDA 0.926 0.927 0.92 0.005 0.006 -0.744
FixMatch 0.933 0.940 0.927 0.007 0.008 -0.319
FlexMatch 0.909 0.893 0.857 0.024 0.028 0.825
FreeMatch 0.844 0.913 0.790 0.025 0.016 -0.976
SoftMatch 0.934 0.923 0.923 0.003 0.004 0.925

UASD 0.913 0.913 0.900 0.009 0.012 -0.026
CAFA 0.931 0.933 0.927 0.003 0.003 -0.071
MTCF 0.900 0.860 0.860 0.014 0.017 0.845

Fix-A-Step 0.898 0.877 0.877 0.014 0.017 0.339

Table 19: Evaluation of SSL algorithms using wine dataset under inconsistent feature space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.846 0.846 0.846 - - -
TSVM 0.890 0.938 0.832 0.039 0.038 -0.865

SSGMM 0.500 0.722 0.359 0.096 0.110 -0.606
Label Propagation 0.800 0.930 0.703 0.075 0.087 -0.487
Label Spreading 0.887 0.924 0.822 0.022 0.015 -0.958

Tri-Training 0.924 0.962 0.895 0.018 0.018 -0.912
Assemble 0.897 0.938 0.841 0.021 0.012 -0.977

FT-Transformer 0.938 0.938 0.938 - - -
Pseudo Label 0.888 0.911 0.868 0.012 0.010 -0.937

Pi-Model 0.932 0.943 0.916 0.005 0.006 -0.934
Mean Teacher 0.914 0.914 0.914 0.000 0.000 -

VAT 0.928 0.943 0.905 0.015 0.016 -0.789
ICT 0.916 0.916 0.916 0.000 0.000 -

UDA 0.924 0.935 0.881 0.03 0.035 0.326
FixMatch 0.912 0.959 0.881 0.022 0.025 -0.564
FlexMatch 0.910 0.932 0.851 0.048 0.056 -0.153
FreeMatch 0.888 0.922 0.835 0.031 0.036 -0.068
SoftMatch 0.887 0.957 0.816 0.050 0.069 0.000

UASD 0.962 0.962 0.962 0.000 0.000 -
CAFA 0.928 0.951 0.873 0.035 0.046 -0.228
MTCF 0.905 0.951 0.881 0.015 0.012 -0.913

Fix-A-Step 0.917 0.946 0.873 0.023 0.021 -0.923
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Table 20: Evaluation on CIFAR10 and CIFAR100 under inconsistent feature spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

CIFAR10

Supervised 0.473 0.473 0.473 - - -
Pseudo Label 0.519 0.524 0.515 0.002 0.003 -0.874

Pi-Model 0.500 0.511 0.485 0.007 0.007 -0.882
Mean Teacher 0.470 0.486 0.457 0.006 0.005 -0.962

VAT 0.501 0.550 0.466 0.020 0.018 -0.880
ICT 0.468 0.476 0.456 0.005 0.005 -0.929

UDA 0.498 0.505 0.438 0.019 0.025 -0.707
FixMatch 0.517 0.551 0.430 0.037 0.042 -0.661
FlexMatch 0.552 0.607 0.431 0.041 0.039 -0.921
FreeMatch 0.555 0.645 0.423 0.045 0.029 -0.962
SoftMatch 0.559 0.661 0.453 0.042 0.009 -0.998

UASD 0.481 0.486 0.479 0.003 0.003 -0.625
CAFA 0.484 0.502 0.469 0.007 0.003 -0.988
MTCF 0.496 0.625 0.316 0.107 0.130 -0.604

Fix-A-Step 0.516 0.551 0.424 0.025 0.032 -0.832

CIFAR100

Supervised 0.368 0.368 0.368 - - -
Pseudo Label 0.371 0.374 0.369 0.003 0.002 -0.126

Pi-Model 0.367 0.369 0.365 0.003 0.002 -0.147
Mean Teacher 0.342 0.368 0.301 0.013 0.007 -0.972

VAT 0.364 0.384 0.342 0.008 0.005 -0.985
ICT 0.343 0.367 0.306 0.006 0.012 -0.970

UDA 0.349 0.350 0.343 0.004 0.003 -0.655
FixMatch 0.378 0.401 0.336 0.011 0.013 -0.93
FlexMatch 0.376 0.397 0.331 0.019 0.016 -0.799
FreeMatch 0.382 0.420 0.327 0.019 0.012 -0.958
SoftMatch 0.373 0.406 0.316 0.014 0.018 -0.934

UASD 0.368 0.364 0.364 0.002 0.003 0.256
CAFA 0.344 0.365 0.316 0.010 0.007 -0.966
MTCF 0.273 0.170 0.170 0.052 0.066 0.629

Fix-A-Step 0.328 0.394 0.161 0.047 0.047 -0.882

28



Published as a conference paper at ICLR 2024

Table 21: Evaluation of SSL algorithms using iris dataset under inconsistent label space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.930 0.930 0.930 - - -
TSVM 0.986 1.000 0.955 0.013 0.015 -0.721

SSGMM 0.944 1.000 0.83 0.040 0.065 -0.831
Label Propagation 0.993 1.000 0.99 0.003 0.004 -0.524
Label Spreading 0.996 1.000 0.99 0.006 0.007 -0.272

Tri-Training 0.997 1.000 0.985 0.005 0.007 -0.618
Assemble 1.000 1.000 1.000 0.000 0.000 -

FT-Transformer 1.000 1.000 1.000 - -
Pseudo Label 0.994 1.000 0.990 0.003 0.004 -0.355

Pi-Model 0.995 1.000 0.985 0.003 0.004 -0.878
Mean Teacher 1.000 1.000 1.000 0.000 0.000 -

VAT 0.999 1.000 0.996 0.001 0.002 -0.655
ICT 1.000 1.000 1.000 0.000 0.000 -

UDA 0.996 1.000 0.990 0.002 0.002 -0.924
FixMatch 0.995 1.000 0.985 0.003 0.002 -0.930
FlexMatch 0.996 1.000 0.990 0.003 0.005 -0.497
FreeMatch 0.956 0.991 0.871 0.028 0.023 -0.905
SoftMatch 0.996 1.000 0.989 0.006 0.007 -0.393

UASD 0.987 0.987 0.987 0.000 0.000 -
CAFA 1.000 1.000 1.000 0.000 0.000 -
MTCF 0.995 1.000 0.985 0.007 0.007 -0.676

Fix-A-Step 0.998 1.000 0.985 0.003 0.006 -0.655

Table 22: Evaluation of SSL algorithms using wine dataset under inconsistent label space
Model AUC Acc(0) WA EVM VS RCC

XGBoost 0.846 0.846 0.846 - - -
TSVM 0.924 0.938 0.905 0.012 0.014 -0.721

SSGMM 0.643 0.722 0.560 0.035 0.025 -0.972
Label Propagation 0.889 0.93 0.833 0.023 0.027 -0.903
Label Spreading 0.883 0.924 0.833 0.028 0.033 -0.831

Tri-Training 0.879 0.962 0.829 0.038 0.043 -0.834
Assemble 0.904 0.938 0.862 0.021 0.018 -0.929

FT-Transformer 0.964 0.964 0.964 - - -
Pseudo Label 0.885 0.898 0.862 0.015 0.016 -0.815

Pi-Model 0.862 0.880 0.840 0.015 0.016 -0.611
Mean Teacher 0.920 0.920 0.920 0.000 0.000 -

VAT 0.882 0.920 0.837 0.031 0.029 -0.891
ICT 0.920 0.920 0.920 0.000 0.000 -

UDA 0.881 0.873 0.858 0.024 0.028 0.138
FixMatch 0.879 0.913 0.833 0.016 0.009 -0.978
FlexMatch 0.871 0.927 0.833 0.031 0.036 -0.648
FreeMatch 0.831 0.877 0.790 0.026 0.038 -0.601
SoftMatch 0.943 0.976 0.920 0.013 0.011 -0.911

UASD 0.923 0.923 0.923 0.000 0.000 -
CAFA 0.880 0.815 0.815 0.042 0.043 0.779
MTCF 0.908 0.971 0.825 0.041 0.045 -0.853

Fix-A-Step 0.947 0.960 0.927 0.007 0.004 -0.976
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Table 23: Evaluation on CIFAR10 and CIFAR100 under inconsistent label spaces
Dataset Method AUC Acc(0) WA EVM VS RCC

CIFAR10

Supervised 0.643 0.643 0.643 - - -
Pseudo Label 0.692 0.708 0.676 0.006 0.004 -0.973

Pi-Model 0.672 0.703 0.654 0.01 0.009 -0.937
Mean Teacher 0.639 0.647 0.634 0.003 0.005 -0.333

VAT 0.697 0.734 0.661 0.015 0.011 -0.974
ICT 0.643 0.647 0.642 0.002 0.002 -0.819

UDA 0.676 0.73 0.594 0.027 0.015 -0.963
FixMatch 0.608 0.705 0.479 0.047 0.036 -0.933
FlexMatch 0.731 0.806 0.614 0.038 0.02 -0.965
FreeMatch 0.733 0.815 0.640 0.035 0.012 -0.994
SoftMatch 0.723 0.806 0.601 0.041 0.021 -0.968

UASD 0.644 0.641 0.641 0.002 0.002 0.404
CAFA 0.675 0.674 0.672 0.005 0.006 0.093
MTCF 0.747 0.798 0.681 0.024 0.008 -0.989

Fix-A-Step 0.681 0.757 0.517 0.048 0.048 -0.908

CIFAR100

Supervised 0.444 0.444 0.444 - - -
Pseudo Label 0.453 0.459 0.448 0.002 0.002 -0.973

Pi-Model 0.438 0.441 0.437 0.002 0.002 -0.614
Mean Teacher 0.442 0.437 0.437 0.001 0.002 0.817

VAT 0.444 0.473 0.411 0.012 0.008 -0.975
ICT 0.441 0.441 0.44 0.001 0.001 0.54

UDA 0.416 0.434 0.381 0.011 0.01 -0.906
FixMatch 0.392 0.496 0.25 0.049 0.024 -0.975
FlexMatch 0.416 0.483 0.345 0.028 0.01 -0.992
FreeMatch 0.465 0.518 0.386 0.026 0.011 -0.978
SoftMatch 0.473 0.521 0.407 0.023 0.008 -0.981

UASD 0.437 0.438 0.436 0.002 0.002 -0.142
CAFA 0.441 0.442 0.44 0.001 0.001 -0.055
MTCF 0.254 0.28 0.234 0.009 0.007 -0.953

Fix-A-Step 0.414 0.486 0.299 0.037 0.024 -0.954
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