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Suppressing Uncertainties in Degradation Estimation for Blind
Super-Resolution
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ABSTRACT
The problem of blind image super-resolution aims to recover high-
resolution (HR) images from low-resolution (LR) images with un-
known degradation modes. Most existing methods model the image
degradation process using blur kernels. However, this explicit mod-
eling approach struggles to cover the complex and varied degrada-
tion processes encountered in the real world, such as high-order
combinations of JPEG compression, blur, and noise. Implicit model-
ing for the degradation process can effectively overcome this issue,
but a key challenge of implicit modeling is the lack of accurate
ground truth labels for the degradation process to conduct super-
vised training. To overcome this limitations inherent in implicit
modeling, we propose an Uncertainty-based degradation represen-
tation for blind Super-Resolution framework (USR). By suppressing
the uncertainty of local degradation representations in images, USR
facilitated self-supervised learning of degradation representations.
The USR consists of two components: Adaptive Uncertainty-Aware
Degradation Extraction (AUDE) and a feature extraction network
composed of Variable Depth Dynamic Convolution (VDDC) blocks.
To extract Uncertainty-based Degradation Representation from LR
images, the AUDE utilizes the Self-supervised Uncertainty Contrast
module with Uncertainty Suppression Loss to suppress the inher-
ent model uncertainty of the Degradation Extractor. Furthermore,
VDDC block integrates degradation information through dynamic
convolution. Rhe VDDC also employs an Adaptive Intensity Scaling
operation that adaptively adjusts the degradation representation ac-
cording to the network hierarchy, thereby facilitating the effective
integration of degradation information. Quantitative and qualitative
experiments affirm the superiority of our approach.

CCS CONCEPTS
• Computing methodologies→ Image processing.

KEYWORDS
Blind Super-Resolution, Learning with Uncertainty, Uncertainty-
based Degradation Representation

1 INTRODUCTION
Image super-resolution (SR), a highly regarded task within the
domain of low-level computer vision, seeks to reconstruct high-
resolution (HR) images from their low-resolution (LR) counterparts
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Figure 1: Comparison on degradation estimation stability.
We randomly select different patches from the same image to
compare the mean and variance of the degradation represen-
tations obtained by DASR, KDSR and USR. These methods
exhibit varying degrees of instability, rooted in the inher-
ent uncertainties of the model. USR (ours) demonstrates the
most stable performance among them.

by augmenting the pixel count. This process involves deducing
and restoring high-frequency details from a limited array of pixel
information, thereby yielding images of enhanced clarity and detail.
Conversely, image degradation represents the reverse procedure,
wherein LR images are generated from their HR analogs. The degra-
dation process is often unknown and complex, rendering the issue of
blind super-resolution a formidable challenge. Modeling the image
degradation process aids in reducing the complexity encountered
by image SR models.

Traditional super-resolution techniques typically rely on interpo-
lation methods [15, 43]. However, with the advent of deep learning,
methods based on neural networks have significantly outpaced
traditional approaches. These methods fall into two categories:
model-based methods and learning-based methods. Model-based
approaches simulate the image degradation process, estimating
the degradation mode of LR images before reconstructing the HR
images. These methods range from simple to complex, including
those based on blur kernel estimation [13], spatially variant blur
kernels [27, 66], and implicit modeling [21, 32, 47, 53] of the degra-
dation process. They estimate the degradation mode for each LR
image individually, hence are inclined to better generalize across
unknown degradations. On the other hand, learning-based meth-
ods aim to train a unified super-resolution network using a vast
corpus of LR/HR image pairs synthesized based on presumed degra-
dation models [37, 64, 68]. Yet, these learning-based approaches are
heavily dependent on the training data and may suffer significant
performance drops when there is a domain discrepancy between
the training and testing data [49]. Some efforts attempt to simulate
real-world degradation patterns with more complex training sam-
ples, notable among which are BSRGAN [63] and Real-ESRGAN
[48], employing advanced degradation models that incorporate blur,
noise, resizing, and JPEG compression to generate training samples.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Researchers widely regard the challenge of addressing such com-
plex degradation processes as blind super-resolution [42, 52, 53].

Model-based approaches predominantly rely on blur kernels.
However, these methods possess limited representational capacity
and can only cover blur-related degradation, falling short in the
face of noise, JPEG compression, and other complex degradation
processes. To address the nearly infinite degradation modes in
blind super-resolution tasks, recent works have proposed using
implicit modeling to characterize degradation patterns. DASR [47]
employs contrastive learning to distance or draw closer feature
representations of different degradation modes, whereas KDSR [53]
uses knowledge distillation to enable a student network to learn
the degradation representation from a teacher network.

As illustrated in Figure 1, DASR and KDSR exhibit instability in
estimating degradation representations, meaning they fail to obtain
consistent degradation representations for the same LR image. Such
instability and inaccuracies in degradation representation adversely
affect subsequent super-resolution processes. This instability is a
manifestation of model uncertainty [11]. The root causes of the
instability and unreliability in the degradation features of these
methods are: (1) Due to the absence of ground truth, these methods
provide only coarse constraints on the estimation process. (2) They
overlook the uncertainty present in estimating implicit degradation
representations, failing to offer confidence or uncertainty estimates
for the generated outcomes.

To address this issue, we introduce an Uncertainty-based degra-
dation representation for blind Super-Resolution (USR) framework.
To quantify and mitigate the uncertainty in Uncertainty-based
Degradation Representation (UDR) estimation, we constrain UDR
with Self-supervised Uncertainty Contrast which suppress the un-
certainty of local degradation representations in images. Further-
more, to ensure effective guidance of UDR, we have designed Vari-
able Depth Dynamic Convolution (VDDC) Block. Thorough ex-
perimentation validates the efficacy of our proposed modules. In
summary, our contributions are as follows:
• We introduce the framework named Uncertainty-based degra-
dation representation for blind Super-Resolution (USR). USR
initially obtains Uncertainty-based Degradation Representation
(UDR) from LR images through implicit modeling. To fully lever-
age the UDR, we propose the Variable Depth Dynamic Convo-
lution (VDDC) Block. With dynamic convolution and Adaptive
Intensity Scaling (AIS) of UDR, VDDC effectively integrates im-
age degradation information.

• We introduce the Adaptive Uncertainty-Aware Degradation Ex-
traction (AUDE).Within AUDE, our proposed Self-supervised Un-
certainty Contrast module employs USLoss to self-supervisedly
constrain and mitigate the uncertainty inherent in the UDR esti-
mation process. This approach not only addresses the challenge
of implicit representations lacking true values but also enhances
the model’s ability to adeptly handle various degradation modes.
To our knowledge, we are the first to propose uncertainty mod-
eling of the implicit representation for the image degradation
process.

• Extensive experiments conducted on multiple representative
datasets have demonstrated the performance of USR. A compre-
hensive suite of qualitative experiments, quantitative analyses,

and ablation studies underscores the efficacy of our proposed
modules.

2 RELATEDWORK
2.1 Blind Super-Resolution
Contrary to the traditional Single Image Super-Resolution (SISR)
task, the objective of blind super-resolution is to reconstruct HR
images from their LR equivalents without prior knowledge of the
degradation process [33, 44, 60]. Blind super-resolution methods
can generally be categorized into the following two types.
Model-based SR. This category of SR models the image degra-
dation process. Most methods employ explicit modeling based on
Equation (1), where 𝑘 represents the blur kernel, and 𝑠 denotes
the downsampling factor. Within the realm of methods based on
blur kernel estimation, IKC [13] introduced an iterative estima-
tion technique and designed a correction function to accurately
estimate the blur kernel or degradation features. Utilizing the prin-
ciple of internal cross-scale recurrence, KernelGAN [5] interprets
the maximization of patches within a single image as a problem
of data distribution learning and trains a Generative Adversarial
Network (GAN) across patches. MANet [27], a method based on
the estimation of spatially variant blur kernels, estimates blur ker-
nels with a network designed to have an optimally sized receptive
field. However, these approaches struggle to address degradation
modes beyond blur. In the domain of methods based on implicit
degradation modeling, DASR[47] and KDSR [53] characterize the
image degradation process using contrastive learning and knowl-
edge distillation, respectively. However, due to the lack of effective
constraints, DASR and KDSR are unstable and cannot fully extract
discriminative degradation representations to guide blind super-
resolution.

𝐿𝑅 = (𝐻𝑅 ⊗ 𝑘) ↓𝑠 +𝑛 (1)

Learning-based SR. Learning-based methods endeavor to directly
learn degradation patterns from training data in the form of high-
level semantics, foregoing modeling the degradation process [28].
SwinIR [26], by adopting the Swin Transformer for image restora-
tion tasks, has achieved breakthrough performance. Works such
as Restormer [61], HAT [8], and DAT [9] further demonstrate the
potential of Vision Transformers in low-level visual tasks. Addition-
ally, some researchers have focused on diffusion models [38, 45, 50,
59], which transform complex and unstable generative processes
into several independent and stable reverse processes through
Markov chain modeling. However, due to the inherent random-
ness of probabilistic models, images generated from the sampling
space by diffusion models diverge from real images. Nonetheless,
these efforts typically excel only within data distributions identical
to their training sets, displaying limited generalizability.

2.2 Modeling Uncertainty for Super-Resolution
Uncertainty in Deep Learning. As deep learning continues to
evolve, neural networks have permeated nearly every scientific
domain, becoming integral to a myriad of real-world applications
[10, 17, 20, 29, 57]. Researchers have devoted significant effort to
understanding and quantifying the uncertainty in neural network
predictions to enhance the performance and robustness of deep
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networks [35, 55, 58, 62]. In the field of computer vision, uncer-
tainty modeling plays a pivotal role in critical tasks such as image
classification [40, 46], object detection [16], semantic segmentation
[4], face recognition [65, 67], action recognition [41, 62], and im-
age generation [39]. The uncertainty in deep learning can broadly
be categorized into two types: data uncertainty (also known as
aleatoric uncertainty), which describes the intrinsic noise within
the data, and model uncertainty (also known as epistemic uncer-
tainty), which reflects the uncertainty inherent in the model itself
due to inadequate training, insufficient training data, and other
factors.

As shown on Equation (2) , given a parameterized model 𝑓 (𝜃 ),
model uncertainty is formalized as a probability distribution over
the model parameters 𝜃 , while data uncertainty is formatted as a
probability distribution over the model output 𝑦∗. The term 𝑝 (𝜃 |𝐷)
is referred to as the posterior distribution of model parameters.
𝐷 indicates the training dataset [11]. Our work focuses on model
uncertainty within image degradation representation.

𝑝 (𝑦∗ |𝑥∗, 𝐷) =
∫

𝑝 (𝑦∗ |𝑥∗, 𝜃 )︸       ︷︷       ︸
Data

𝑝 (𝜃 |𝐷)︸  ︷︷  ︸
Model

𝑑𝜃 (2)

Unvertainty-based SR. To date, only a limited number of studies
have explored the potential of uncertainty modeling in the task
of super-resolution. SOSR [2] investigated the issue of source-free
domain adaptation within super-resolution tasks through uncer-
tainty modeling. DDL [30] utilized Bayesian methods to assess the
reliability of high-frequency inference from a frequency domain per-
spective. [36] introduced an uncertainty-driven loss function that
incorporates per-pixel uncertainty into super-resolution, giving
priority to pixels with greater certainty, such as those representing
texture and edges. Another study employed batch normalization un-
certainty to analyze super-resolution uncertainty, thereby enhanc-
ing network robustness against adversarial attacks [22]. GRAM [25]
focused neural network attention on challenging images through
Gradient Rescaling Attention. However, none of these efforts ad-
dressed the blind super-resolution challenge associated with com-
plex degradation processes.

3 METHOD
3.1 Overview
As previously mentioned, implicit modeling of complex and vari-
able degradation processes represents a promising approach to
addressing the issue of image blind super-resolution, with the lack
of ground truth posing a significant challenge. To tackle this chal-
lenge, we employs an Uncertainty-based Degradation Representa-
tion (UDR) to model various degradation processes, adapting to
complex and varied degradation scenarios.

As illustrated in Figure 2 (b), we implement Adaptive Uncertainty-
Aware Degradation Extraction (AUDE) on LR images. In detail, we
obtain the UDR from LR images using the Degradation Extractor
(DE). To facilitate self-supervised training of UDR, we have devised
the USLoss and an Self-supervised Uncertainty Contrast module.
As depicted in Figure 2 (c), to effectively harness the information
encapsulated within the UDR, we have designed a Variable Depth

Dynamic Convolution (VDDC) Block, which facilitates the modula-
tion of UDR intensity in accordance with the depth of the network.

Overall, we utilize the DE to derive the UDR from LR images.
Concurrently, the LR image undergoes initial shallow feature extrac-
tion via a convolutional layer, followed by deep feature extraction
through 𝑁 VDDCs.

3.2 Adaptive Uncertainty-Aware Degradation
Extraction

Within AUDE, DE is taskedwith extracting UDR from LR images. To
suppress the uncertainty in the DE network, we employed USLoss
within the Self-supervised Uncertainty Contrast to conduct self-
supervised training of DE.
Degradation Extractor. Acknowledging the limitations of blur
kernel modeling, which is confined to addressing solely blur-related
degradation processes, we have adopted a more potent approach
of implicit modeling for a comprehensive characterization of the
degradation process. As depicted in Figure 2 (b), the DE extract
degradation representations from LR images adaptively.

Initially, DE subjects the image to a preliminary feature extrac-
tion phase involving a 3× 3 convolutional layer followed by a ReLU
layer. This is succeeded by the application of multiple convolu-
tional blocks tasked with the extraction of deeper features. Each
convolutional block is systematically composed of a 3 × 3 convolu-
tional layer, a ReLU layer, and another 3 × 3 convolutional layer,
arranged in sequence. The final stage of this process involves the
refinement of the degradation representation vector through an
average pooling layer and a Multilayer Perceptron (MLP).

Within the process of AUDE, during the training phase, two
distinct patches are obtained from a LR image. The DE is employed
to extract the corresponding UDR from these patches. By applying
USLoss to suppress the uncertainty associated with these two UDRs,
we guide the DE towards more stable degradation estimations.
During inference, DE directly extracts a global UDR from the entire
LR image.
Self-supervised Uncertainty Contrast. While different parts of
the same image undergo nearly identical degradation, as illustrated
in Figure 2 (b), the DE estimates significantly varied degradation
representations from different patches of a LR image. This discrep-
ancy reveals that without meticulous constraints, the UDR derived
by DE is inconsistent and unstable, thus incapable of furnishing pre-
cise degradation information for subsequent SR networks. Ideally,
however, the UDR obtained from different patches or the entire im-
age should exhibit consistency. Our objective is for DE to estimate
a unified and accurate degradation representation, both locally and
globally. To address this challenge, we have designed a USLoss and
an Self-supervised Uncertainty Contrast module to mitigate this
uncertainty, enabling DE to estimate degradation representations
more stably and accurately.

Let𝑢1 and𝑢2 represent the degradation representations obtained
from two different patches 𝑥1 and 𝑥2 within a LR image. From
probabilistic perspective, our training objective aims to maximize
the joint distribution probability in Equation (3):

𝑃 (𝑢1 |𝑥1;𝑊,𝑢2 |𝑥2;𝑊 ) = 𝑃 (𝑢1 |𝑥1;𝑊 ) · 𝑃 (𝑢2 |𝑥2;𝑊 ) (3)
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Figure 2: The proposed framework Uncertainty-based degradation representation for blind Super-Resolution (USR). (a) Illustra-
tion of the main process of USR. USR extracts Uncertainty-based Degradation Representation (UDR) from the LR image, which
is then integrated with the super-resolution process through the VDDC. Reconstruction refers to the process of upsampling
features. (b) Depiction of the Adaptive Uncertainty-Aware Degradation Extraction (AUDE). AUDE trains the Degradation
Extractor (DE) in a self-supervised manner. (c) Depiction of the Variable Depth Dynamic Convolution (VDDC) Block. VDDC
integrates UDR while extracting deep features from the LR image.

where𝑊 represents the parameters of the model. To maximize the
aforementioned objective, we should aim to minimize the negative
log likelihood of the joint distribution probability, where the ran-
dom variables are 𝑢1 and 𝑢2. Therefore, the optimization objective
transforms into Equation (4):

𝐸𝑢1,𝑢2∼𝑃 (𝑢1 |𝑥1;𝑊 ),𝑃 (𝑢2 |𝑥2;𝑊 ) [𝑃 (𝑢1, 𝑢2)] (4)

To address this probability distribution, we model 𝑃 (𝑢 |𝑥 ;𝑊 )
as a multivariate normal distribution, drawing upon the Central
Limit Theorem (CLT) [24] and non-local means [7]. When there
are sufficiently many random variables, their sum or average tends
toward a normal distribution. This leads to Equation (5):

𝑃 (𝑢 |𝑥 ;𝑊 ) ∼ 𝑁

(
𝜇 (𝑥 ;𝑊 ) ; Σ (𝑥 ;𝑊 )

)
(5)

The mean 𝑁 and covariance Σ, outputs of the network parameter-
ized by𝑊 , form the crux of our approach. However, the expectation
in Equation (4) necessitates sampling 𝑢 from 𝑃 (𝑢1, 𝑢2), an opera-
tion intrinsically non-differentiable. To facilitate backpropagation
through 𝑢, we employ reparameterization [23] to transfer the sam-
pling process to the stochastic variable 𝑧 ∼ 𝑁 (0, 1), culminating in
Equation (6):

𝐸𝑧1,𝑧2∼𝑁 (0,1) [𝑃 (𝜇1 + 𝜎1𝑧1 |𝜇2 + 𝜎2𝑧2)] (6)
In accordance with the conditional model delineated by the Gibbs

distribution [6, 12], we arrive at Equation (7):

𝑃 (𝑢1, 𝑢2) ∝
ℎ×𝑤∏
𝑖

exp
(
− |𝑢1 − 𝑢2 |

𝑘𝑇

)
(7)

The corresponding Gibbs energy is expressed in the form |𝑢1 − 𝑢2 |,
with 𝑘𝑇 denoting the constant partition function [14]. Hence, we
derive Equation (8):

min
𝐸𝑧1,𝑧2

[
1
𝑘𝑇

ℎ×𝑤∑︁
𝑖

| (𝜇𝑖1 − 𝜇𝑖2) + (𝜎𝑖1𝑧1 − 𝜎𝑖2𝑧2) |
]

(8)

Equation (8) impartially treats patches from different regions of
an image. However, due to the inherent model uncertainty present
in the feature extraction process of DE, the degradation represen-
tations extracted from different patches are not stable [10, 11, 48].
Aiming to direct DE towards a representation of degradation with
diminished uncertainty, we have conceptualized the Self-supervised
Uncertainty Contrast module. Within this module, a sequence of a
linear layer and a Sigmoid layer is employed to deduce a learnable
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variable, the Uncertainty Aware weight 𝛼 . This weight is then mul-
tiplied by the degradation representation to adaptively modulate its
expressive intensity. Furthermore, we refine Equation (8), orienting
it towards a suppression of the uncertainty estimated by DE in the
direction of lower uncertainty, yielding Equation (9):

𝐿𝑈 = 𝐸𝑧1,𝑧2

[
1
𝑘𝑇

ℎ×𝑤∑︁
𝑖

|𝛼1 (𝜇𝑖1 + 𝜎𝑖1𝑧1) − 𝛼2 (𝜇𝑖2 + 𝜎𝑖2𝑧2) |
]

(9)

To prevent the DE from degrading to a local optimum during the
training process, we incorporate a regularization term based on the
Uncertainty Aware weight 𝛼 . This compels the Self-supervised Un-
certainty Contrast module to discriminate the uncertainty among
different patches, as indicated in Equation (10):

𝐿𝑈𝑅 = |𝛼1 − 𝛼2 | (10)

In summary, the final USLoss is encapsulated in Equation (11),
where 𝜆 represents scaling weight.

𝑈𝑆𝐿𝑜𝑠𝑠 = 𝐿𝑈 − 𝜆𝐿𝑈𝑅 (11)

Through Equation (11), we have mitigated the uncertainty in-
herent in the DE estimation process of degradation representation,
which we term as Uncertainty-based Degradation Representation
(UDR).

3.3 Variable Depth Dynamic Convolution Block
Through uncertainty modeling, we acquire the UDR via the Degra-
dation Extractor (DE). To leverage UDR to its fullest extent, we
have crafted the Variable Depth Dynamic Convolution (VDDC)
Block, which adjusts the intensity of UDR based on the depth of the
network and efficiently mines the feature information of images.

In the feature extraction segment, we adopt the design fromHAB
[8], wherein the channel attention within HAB and the design of
the window-based multi-head self-attention [31] have been proven
to effectively extract features. Each VDDC, in addition to 𝑡 HABs,
also includes a residual group composed of a layer normalization,
a W-MSA layer [31], another layer normalization and an MLP, as
well as a 3 × 3 convolutional layer for fine-tuning the features.

As illustrated in Figure 2 (c) and inspired by KDSR [53] and
UDVD [54], we integrate UDR using dynamic convolution. We
first reshape UDR to the dimensions of 𝑐 × ℎ ×𝑤 , and let 𝐹 denote
a feature map with dimensions 𝐶 × 𝐻 ×𝑊 . For each channel 𝑖 ,
the convolution output 𝑂𝑖 at position (𝑥,𝑦) can be described by
Equation (12).

𝑂𝑖 (𝑥,𝑦) =
ℎ∑︁

𝑚=0

𝑤∑︁
𝑛=0

𝐹𝑖 (𝑥 +𝑚,𝑦 + 𝑛) · 𝑢𝑖 (𝑚,𝑛) (12)

where𝑢 represents the dynamic convolutionweights, and𝑂 denotes
the output features with dimensions 𝐶 × 𝐻 ×𝑊 . However, in such
a feature fusion approach, the UDR introduced at different depths
of the network remains constant. A more rational approach would
involve adaptively adjusting the intensity of the UDR input based
on the network hierarchy. Thus, inspired by the concept of [46],
we perform an Adaptive Intensity Scaling operation (AIS) on UDR
before the dynamic convolution, as illustrated in Equation (13).

𝑈𝐷𝑅𝑖 = 𝛾𝑖 ×𝑈𝐷𝑅 (13)
The adaptive scaling parameter 𝛾 is derived as Equation (14).

𝛾𝑖 = 𝜎𝑖

(
𝑊𝑇𝑢 + 𝑏

)
(14)

where 𝜎 refers to activation function,𝑊 represents the transforma-
tion matrix and 𝑏 represents the linear bias.

4 EXPERIMENT
4.1 Experiment Setup
Implementation details. In the DE, the number of convolutional
blocks is set to 5; the MLP consists of three linear layers and three
LeakyReLU layers in alternation. The scaling weight 𝜆 in USLoss is
set to 0.1. USR incorporates 7 VDDC blocks, each containing 6HABs.
For the activation function in Equation (14), we have chosen the
Sigmoid. The MLP within the VDDC adheres to the configuration
specified in [31]. The final Reconstruction segment comprises a
convolutional layer, a pixel shuffle layer, and another convolutional
layer to upsample the feature map into an image.

USR is trained on amixed dataset comprisingDIV2K and Flickr2K.
The training process is divided into three stages: (1) We train the
VDDC to extract image features using MSE Loss; (2) Subsequently,
by leveraging USLoss to suppress model uncertainty, we undertake
self-supervised training of the DE; (3) Finally, the network is fine-
tuned using L1 Loss. More Implementation details will be offered
in the supplementary materials.
Testing datasets.We conducted comparisons between USR and
several representative methods across six widely used datasets:
DIV2K [1], BSDS [3], Urban100 [18], T91 [56], DPED [19] and
DRealSR [51]. Synthetic data were generated following the work-
flow proposed by Real-ESRGAN [48].

4.2 Comparison With Existing Methods
Compared Methods. To evaluate the effectiveness and perfor-
mance of our method, we compared USR with current state-of-the-
art and representative blind super-resolution approaches, including
DAN [34], DCLS [33], DASR [47], MANet [27], KDSR [53], SwinIR
[26], HAT [8], Real-ESRGAN [48], and ResShift [59]. We tested
these methods using their officially available codes.
Quantitative Comparisons. Quantitative results from the Ta-
ble 1 reveal USR’s significant advantages across multiple datasets,
particularly in the image super-resolution domain. At a ×4 magni-
fication factor, USR achieved the highest PSNR and SSIM on nearly
all datasets.

On the DIV2K validation set, USR reached a PSNR of 23.96 dB,
surpassing other methods, and led in SSIM with a score of 0.78,
demonstrating its exceptional capability in restoring high-quality
images. Similarly, on the BSDS100 and Urban100 datasets, USR not
only led in PSNR with scores of 29.89 dB and 22.53 dB, respectively,
but also achieved the highest SSIM scores of 0.92 and 0.77, further
proving its robust performance across different types of images.

Notably, on the DRealSR dataset, even when facing complex real-
world scenes, USR maintained a high level of performance with a
PSNR of 31.02 dB, slightly higher than other methods. This result is
particularly significant considering the test’s closer alignment with
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Table 1: Quantitive results on DIV2K, BSDS100, Urban100, T91, DPED and DRealSR datasets for scaling factor ×4. Bold indicates
the best performance.

Datasets
Method DAN DCLS DASR MANet KDSR SwinIR HAT RealESRGAN ResShift USR (Ours)

PSNR 22.17 22.41 21.45 18.95 22.79 22.08 22.01 22.23 22.38 23.96DIV2K [1] SSIM 0.72 0.74 0.67 0.60 0.75 0.73 0.72 0.73 0.72 0.78

PSNR 27.95 28.03 28.79 22.79 27.50 26.08 28.04 26.62 26.40 29.89BSDS100 [3] SSIM 0.87 0.89 0.89 0.77 0.88 0.84 0.87 0.85 0.81 0.92

PSNR 20.26 21.18 21.36 17.05 21.28 20.37 19.56 20.61 21.71 22.53Urban100 [18] SSIM 0.69 0.72 0.73 0.54 0.74 0.71 0.67 0.72 0.74 0.77

PSNR 33.14 33.82 33.64 27.24 30.30 29.41 33.49 29.82 27.93 31.21T91 [56] SSIM 0.93 0.93 0.94 0.90 0.94 0.92 0.93 0.93 0.85 0.95

PSNR 22.96 23.38 23.54 20.22 22.92 22.04 22.75 21.89 22.49 24.20DPED-blackberry [19] SSIM 0.74 0.76 0.76 0.64 0.75 0.72 0.74 0.72 0.71 0.78

PSNR 25.52 26.05 26.00 21.08 24.88 23.79 25.43 23.71 24.37 26.77DPED-iphone [19] SSIM 0.82 0.84 0.84 0.71 0.82 0.80 0.82 0.79 0.79 0.86

PSNR 20.43 20.90 21.02 18.95 20.98 20.72 20.20 20.56 20.86 23.92DPED-sony [19] SSIM 0.64 0.66 0.66 0.57 0.66 0.65 0.64 0.65 0.63 0.69

PSNR 31.00 30.97 30.98 27.42 29.89 28.45 30.96 29.94 25.77 31.02DRealSR [51] SSIM 0.92 0.92 0.92 0.90 0.91 0.89 0.93 0.92 0.71 0.91

real-world applications. Although slightly below the highest SSIM
score, USR’s performance remains impressive given the complexity
of real scenarios.

Overall, USR’s consistently high performance across various
datasets highlights its remarkable advantages in the field of image
super-resolution, especially in handling real-world images. Compar-
ing different methods shows that USR excels not only in traditional
evaluation standards but also in adapting to and managing complex
real-world scenes.
Qualitative Comparisons. As illustrated in Figure 3, due to the in-
herent challenges of the blind super-resolution task, super-resolution
models encounter issues such as distortion and artifacts. Compared
to other methods, USR excels in preserving the authenticity of
the original image and restoring details. Observing the HR image
alongside the image processed by USR, one can clearly see USR’s
significant advantage in maintaining the overall structure and color
fidelity of the image.

In the case of stained glass, USR not only faithfully preserves the
color and sheen of the glass but also demonstrates superior clarity
in edges and details compared to other methods. Particularly in the
intricate depiction of the stained glass’s central pattern, USR reveals
detail levels and color gradients close to the original, whereas other
methods exhibit some distortion in these aspects.

In urban street scene case, USR similarly showcases its strengths.
Observing the window frames and the brickwork on walls, USR’s
precision in detail restoration is evident. In contrast, other methods
are either too blurry, losing some details, or too sharp, resulting
in unnatural artifacts along edges. USR achieves a good balance in
handling these details, restoring true textures and depth, making
the image closer to the original high-resolution version.

In summary, USR not only provides a more natural and smooth
overall visual experience but also maintains a high fidelity in restor-
ing everything from subtle textures to macro structures. Its perfor-
mance surpasses other super-resolution methods in several aspects,
whether it’s in detail sharpening, color accuracy, or the naturalness
in avoiding over-processing. More Qualitative comparision results
will be offered in the supplementary materials.

4.3 Ablation Study
Effectiveness of AUDE and AIS. As shown in Table 2, we con-
ducted experiments across multiple datasets to validate the effec-
tiveness of AUDE and AIS. AUDE is a crucial component of USR,
achieving the implicit representation of the image degradation pro-
cess; AIS is a vital element of VDDC, performing adaptive intensity
adjustments to UDR based on the network hierarchy.

Evaluation results on three distinct datasets—DIV2K, BSDS100,
and Urban100—demonstrate that the simultaneous application of
AUDE and AIS yields the highest PSNR and SSIM scores. Notably,
on the DIV2K dataset, PSNR and SSIM reached 23.96 and 0.78,
respectively; on the BSDS100 dataset, scores were 29.89 and 0.92,
respectively; and on the Urban100 dataset, the scores were 22.53
and 0.77. This starkly contrasts with results obtained using AUDE
or AIS alone, where the performance with just AUDE outperforms
that with only AIS.

As shown in Table 3, we also analyzed the performance with
different numbers of VDDC blocks𝑁 . The findings reveal that an op-
timal performance is achieved with 7 VDDC blocks (our approach),
manifesting in a PSNR of 23.96 and a SSIM of 0.78 on DIV2K; a
PSNR of 29.89 and a SSIM of 0.91 on BSDS100; and a PSNR of 22.53
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Figure 3: Visual comparisons of several representative methods on examples of the DIV2K dataset. The image above is a case of
stained glass, while the image below depicts a urban street scene.

Table 2: Ablation study on the proposed Adaptive
Uncertainty-Aware Degradation Extraction (AUDE)
and Adaptive Intensity Scaling (AIS).

DIV2K BSDS100 Urban100AUDE AIS PSNR SSIM PSNR SSIM PSNR SSIM

22.85 0.67 28.71 0.82 21.55 0.67
16.88 0.52 19.35 0.64 16.69 0.51
23.96 0.78 29.89 0.92 22.53 0.77

and SSIM of 0.77 on Urban100. In contrast, configurations featur-
ing alternative quantities of VDDC blocks experience a marginal
decline in performance.
Effectiveness of USLoss. Figure 4 presents ablation experiments
on USLoss. From left to right, the images display the LR image,
HR image, and the results processed by USR under three different
configurations. In Figure 4 (a), the reconstructed image exhibits
noticeable color distortions in certain areas, particularly in the
diagonal sections of the image, where purple and blue spots and
stripes are visible, significantly differing from the original high-
resolution image’s tones. This distortion likely results from the

Table 3: Performance on DIV2K, BSDS100 and Urban100
datasets for different VDDC number 𝑁 .

DIV2K BSDS100 Urban100Number of VDDC PSNR SSIM PSNR SSIM PSNR SSIM

6 23.20 0.76 28.66 0.90 21.66 0.73
7 (Ours) 23.96 0.78 29.89 0.91 22.53 0.77

8 23.22 0.76 28.68 0.89 21.71 0.73
10 23.65 0.77 29.31 0.90 22.18 0.76

loss function’s lack of constraints on model estimation uncertainty.
In Figure 4 (b), beyond color distortion, there are also structural
distortions and geometric distortions in the image. Observing the
seams of diagonals and wall corners, it is apparent that lines have
been inaccurately reconstructed, leading to bending and twisting,
contrasting with the original image’s straight lines and sharp edges.
These structural distortions indicate that without 𝐿𝑈𝑅 , USR falls
short in maintaining image geometric integrity and edge clarity.
Lastly, Figure 4 (c) showcases the USR method employing both 𝐿𝑈
and 𝐿𝑈𝑅 (our method), where, in this scenario, PSNR significantly
increases to 22.11, and SSIM to 0.86. This demonstrates that the
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Figure 4: Visualization of ablation study on USLoss. 𝐿𝑈 and 𝐿𝑈𝑅 represent the two components of USLoss. (a) represents USR
trained without 𝐿𝑈 ; (b) depicts USR trained without 𝐿𝑈𝑅 ; (c) shows USR trained with USLoss.
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Figure 5: The t-SNE visualizations on the DIV2K datasets. Blur, noise, and JPEG compression represent common degradation
modes in real-world scenarios. We conducted cluster analysis experiments under their various combinations. USR (Ours)
effectively distinguishes between different degradation modes.

USR method, incorporating both types of loss functions, can better
restore image details, closely matching the HR image.
t-SNE visualization of degradation representation. Figure 5
uses the t-SNE visualization to demonstrate how four SR algorithms
manage various image degradations, with each dot color denoting
a different degradation cluster. USR’s plot shows tightly clustered
points for each degradation mode, highlighting its effective dif-
ferentiation, while USR without USLoss shows dispersed clusters,
underscoring USLoss’s importance. KDSR exhibits moderate clus-
tering, less distinct than USR, and DASR shows the most scattered
distribution, indicating its lower effectiveness with mixed degrada-
tions. These results underscore USLoss’s crucial role in improving
SR algorithms’ ability to discern between degradation modes.
Comparision on various degradation modes. As shown in Ta-
ble 4, experiments conducting quantitative comparisons across
various degradation modes on the DIV2K dataset demonstrate the
exceptional generalization capability of the USR algorithm. USR
achieved the highest PSNR and SSIM values across all considered
combinations of degradation modes (blur+noise+JPEG, blur+noise,
blur+JPEG). Notably, in the composite degradation scenario of blur,
noise, and JPEG compression, USR led with a PSNR of 23.96 and
an SSIM of 0.78, significantly outperforming other methods. This
underscores USR’s outstanding adaptability and robustness in han-
dling multiple degradation effects, effectively enhancing image

quality and maintaining high performance even amidst complex
interwoven degradation modes.
Table 4: Quantitative comparison of different methods under
various degradation modes on the DIV2K dataset.

blur+noise+JPEG blur+noise blur+JPEGMethod PSNR SSIM PSNR SSIM PSNR SSIM

DASR 21.45 0.67 23.04 0.75 23.07 0.75
KDSR 22.79 0.75 22.79 0.75 22.78 0.75
USR 23.96 0.78 23.19 0.76 23.24 0.76

5 CONCLUSION
In summary, our proposed Uncertainty-based Super-Resolution
(USR) framework effectively addresses the challenge of blind im-
age super-resolution by leveraging implicit modeling. Through
Adaptive Uncertainty-Aware Degradation Extraction (AUDE) and
the Self-supervised Uncertainty Contrast module, USR accurately
extracts degradation information and facilitates self-supervised
training. In future work, we aim to further investigate how to
address the complex and varied degradation processes in image
super-resolution tasks through more refined modeling approaches.
Additionally, we aspire to delve deeper into the potential of uncer-
tainty learning within low-level vision tasks.
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