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1 OVERVIEW
In this supplementary material, we provide additional experimental
explanations and details of USR organized as follows:

• In Section 2, we present more implementation details, corre-
sponding to the Implementation details of Section 4.1;

• In Section 3, we introduce the datasets that the comparative
experiments are based on, corresponding to the Testing
Datasets of Section 4.1;

• In Section 4, we offer more visual qualitative comparisons,
corresponding to the Qualitative Comparisons of Section
4.2.

2 IMPLEMENTATION DETAILS
Real-ESRGAN workflow parameters. The classic degradation
models cannot simulate some complex degradation issues, partic-
ularly unknown noise and complex artifacts, because the synthe-
sized low-resolution images still have a significant gap from the
real degraded images. Therefore, Real-ESRGAN [6] extends the
classic degradation models to higher-order processes to simulate
more realistic degradation. The so-called higher-order degradation
model, in layman’s terms, involves arranging and combining classic
degradation algorithms. Real-ESRGAN categorizes the degradation
algorithms into four types: Blur, Resize, Noise, and JPEG Compres-
sion. Below are the specific parameters used in the tests in our work
:

blur_kernel_size: 13

kernel_list: ['iso', 'aniso ',

'generalized_iso ', 'generalized_aniso ',

'plateau_iso ', 'plateau_aniso ']

kernel_prob: [0.60, 0.40, 0.0, 0.0, 0.0, 0.0]

sinc_prob: 0.1

blur_sigma: [0.2, 0.8]

betag_range: [1.0, 1.5]

betap_range: [1, 1.2]

blur_kernel_size2: 7

kernel_list2: ['iso', 'aniso ',

'generalized_iso ', 'generalized_aniso ',

'plateau_iso ', 'plateau_aniso ']

kernel_prob2: [0.60, 0.4, 0.0, 0.0, 0.0, 0.0]

sinc_prob2: 0.0

blur_sigma2: [0.2, 0.5]

betag_range2: [0.5, 0.8]

betap_range2: [1, 1.2]

final_sinc_prob: 0.2

gt_size: 768

crop_pad_size: 300

use_hflip: False

use_rot: False

rescale_gt: True

degradation:

sf: 4

# the first degradation process

resize_prob: [0.2, 0.7, 0.1] # up, down , keep

resize_range: [0.5, 1.5]

gaussian_noise_prob: 0.5

noise_range: [1, 15]

poisson_scale_range: [0.05, 0.5]

gray_noise_prob: 0.4

jpeg_range: [65, 95]

# the second degradation process

second_order_prob: 0.0

second_blur_prob: 0.2

resize_prob2: [0.3, 0.4, 0.3] # up, down , keep

resize_range2: [0.8, 1.2]

gaussian_noise_prob2: 0.5

noise_range2: [1, 10]

poisson_scale_range2: [0.05, 0.2]

gray_noise_prob2: 0.4

jpeg_range2: [75, 100]

Our work is implemented based on [7] and will be made open
source upon acceptance of the paper.

3 DATASETS
DIV2K dataset [1] is a popular benchmarking dataset used pri-
marily for tasks related to single image super-resolution (SISR).
This dataset was first introduced in the NTIRE challenge at CVPR
2017, focusing on the problem of image upsampling, where the
goal is to enhance the resolution of a low-resolution image. DIV2K
subdivided into four distinct subsets: a training set (800 images),
a validation set (100 images), a test set (100 images), and a chal-
lenge set (1,000 images). These images feature multiple resolutions,
enabling researchers to experiment and evaluate super-resolution
algorithms at different resolutions. The DIV2K dataset was designed
to advance the technology of super-resolution image reconstruction.
Due to its high quality and diversity, it has become the preferred
dataset for many research projects and competitions.
BSDS [2] is a dataset widely used for image segmentation and edge
detection research, developed by researchers at the University of
California, Berkeley. It includes natural images of various scenes,
such as landscapes, animals, and buildings, reflecting the diversity
of the real world. The BSDS dataset is used not only for evaluating
edge detection and image segmentation algorithms but also widely
in other studies in computer vision and image processing, such as
image recognition and super-resolution. Due to its high-quality
images and annotations, and standardized evaluation methods, the
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Figure 1: Visual comparisons of several representative methods on examples of the BSDS dataset. The image above is a case of
airplane, while the image below depicts a case of zebra.

BSDS dataset has become an important benchmark in the field of
image processing.
Urban100 [3] dataset is specifically used for image super-resolution
research, focusing particularly on images in urban environments.
It aims to provide a collection of urban scene images with com-
plex structures and rich details for evaluating and improving im-
age super-resolution algorithms. The dataset includes 100 high-
resolution images of urban scenes, featuring buildings, streets, ve-
hicles, windows, billboards, and other urban characteristics, with
high structural complexity and rich textural details. Its focus on
urban environments and high-quality images make Urban100 one
of the frequently used datasets in super-resolution research, espe-
cially in assessing algorithms’ effectiveness in handling complex
structures and details.
T91 [10] dataset plays a significant role in the development and
evaluation of super-resolution algorithms in image super-resolution
research. Composed of 91 diverse images, it is used for training and
testing super-resolution algorithms. Despite the limited number of
images, the dataset includes various types of images, such as natural
landscapes. This diversity makes the dataset suitable for evaluating

the performance of super-resolution algorithms on different types
of images.
DPED [4] is a dataset designed specifically for research on en-
hancing the quality of mobile photography. It aims to assist in
improving and evaluating image enhancement algorithms, particu-
larly those designed to enhance the quality of photos taken with
mobile phone cameras. DPED includes images from different smart-
phone cameras, often paired with images of the same scenes taken
with high-quality reference cameras. By providing real-world image
samples and high-quality reference images, it fosters technological
advancements in this area.
DRealSR [8] is designed to enhance the development of image
super-resolution algorithms under realistic conditions. Unlike tra-
ditional datasets that generate low-resolution images through syn-
thetic methods like bicubic downscaling, DRealSR offers images cap-
tured in natural settings, providing a true test of real-world imaging
challenges. This dataset includes pairs of low and high-resolution
images, captured using different camera settings to mimic opti-
cal and sensor-based imperfections typically absent in synthetic
datasets. DRealSR covers a wide range of scenes and subjects, mak-
ing it ideal for training robust super-resolution models capable
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Figure 2: Visual comparisons of several representative methods on examples of the T91 dataset. The image above is a case of
ambulance, while the image below depicts a case of lemon tree.

of performing across diverse real-world scenarios. Its realistic ap-
proach helps bridge the gap between academic research and practi-
cal applications in fields such as digital photography, surveillance,
and medical imaging.

4 QUALITATIVE COMPARISONS
Comparison onBSDSdataset. In Figure 1, we particularly focused
on two visual cases: airplane and zebra images. The quality of detail
restoration in magnified regions is crucial for evaluating super-
resolution methods.

Firstly, examining the magnified area of the airplane image, the
superiority of USR in detail restoration is evident. The numbers
“094” on the airplane are exceptionally clear when restored using
the USR method, exhibiting well-defined edges and high contrast.
Compared to traditional super-resolution techniques, USR performs
better in maintaining the original shape and clarity of the edges,
which often suffer from excessive smoothing in other methods.
Moreover, the airplane’s color restoration is both natural and ac-
curate, demonstrating USR’s capability in color fidelity. This is

significant because many algorithms tend to introduce color dis-
tortions while enhancing image resolution, resulting in restored
images that look unnatural or overly processed.

In the zebra image, USR’s exceptional performance is evident
once more. The stripes of a zebra are a challenging feature because
their detail and high-contrast edges demand precise restoration
of sharp lines while avoiding artificial artifacts. Here, USR signifi-
cantly outperforms other methods by generating clear, sharp edges
of stripes while maintaining the natural contrast and spatial re-
lationships between them. It avoids over-smoothing or blurring
the stripes, which in some algorithms could strip the image of its
natural texture. This capability to restore zebra stripes highlights
USR’s strength in handling images with complex patterns and high-
frequency details.
Comparison on T91 dataset. In Figure 2, we observe the effects
of super-resolution reconstruction methods in two distinct scenes:
the rear of an ambulance and a close-up of a lemon tree.

In the example of the ambulance, the focus is on the vehicle’s tail
number "418". The USR (Ours) method excels in restoring the clarity
and readability of the digits, showing less blurring and distortion.
In contrast, results from other methods display softer edges and a
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Figure 3: Visual comparisons of several representative methods on examples of the Urban100 dataset.

reduction in detail clarity, particularly noticeable on the "18". The
USR method preserves the geometric shapes and sharpness of the
edges, which is crucial for information recognition in real-world
scenarios.

For the lemon tree example, the magnified view highlights the
details on the lemon surface and the contrast between the branches.
USR’s method also demonstrates its superiority in restoring these
details, especially in maintaining the texture of the lemon peel
and the varied color gradients. Compared to other methods, USR’s
results are closer to the high-resolution original, with the lemon’s
tiny pits and shadows clearly reconstructed without the issues of
excessive smoothing or loss of detail.
Comparison onUrban100 dataset. In Figure 3, we observe a com-
parison of super-resolution reconstruction effects for two urban
buildings. Initially, the high-resolution image provides exception-
ally sharp and detailed architectural features, including the clear
edges of windows and detailed textures of glass reflections. Con-
versely, the low-resolution image exhibits significant loss of detail,
with the building’s lines and patterns becoming blurred.

Themagnified area highlights the performance differences among
various methods in super-resolution reconstruction. In the compar-
ison of buildings, the USR (Ours) method demonstrates particularly

effective restoration of details and patterns, with the lines between
windows clearly visible and the patterns closely resembling those
of the high-resolution original image. Moreover, the USR method
successfully restores the geometric symmetry of the buildings, a
challenge for other methods which sometimes introduce blurring
or ripple-like artifacts at these edge areas.

In themagnified view of the windows, the USRmethodmaintains
the natural texture of glass reflections, while other algorithms tend
to overly smooth these areas, resulting in a loss of reflection and
texture authenticity. Furthermore, in the images processed by USR,
the lines of the buildings are straight and precise, and the division
lines of the windows are more accurate, with no issues of staggering
or misalignment.

When compared with other methods such as KDSR [9], MANet
[5], ResShift [11], and RealESRGAN [6], it is evident that they face
varying degrees of challenges when dealing with such complex
structures. Some methods may perform well in restoring details
but fall short in maintaining straight lines and natural textures. In
contrast, the USR method not only delivers high-quality details but
also exhibits significant advantages in overall geometric fidelity
and visual impact of the images.
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