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1. Introduction 
Regime maps are handy tools in various fields of 

natural science, including fluid dynamics, plasma 
physics, and material science. For example, the 
Hertzsprung-Russell diagram in astrophysics is used 
for stellar classification [1], while two-phase flow 
regime maps are commonly employed in oil and gas 
pipeline design [2]. In material science, regime maps 
such as phase diagrams [3] and deformation 
mechanism maps [4] play a crucial role in material 
design, analysis, and optimization. Regime maps 
provide an intuitive representation of complex 
systems by identifying and classifying similar 
behavior classes and relating those classes to input 
variables. Once a regime map is created, scientists and 
engineers can use it for system prediction, process 
optimization, or simply as a visualization tool for 
further analysis of the underlying system. These maps 
are foundational for advancements in science and 
engineering. 

 
Despite the numerous advantages of regime maps, 

their application in studying chemical/material 
systems is still somewhat limited due to two main 
challenges. First, creating a regime map requires 
grouping the output variables of a system into classes 
of similar behavior, which can be difficult when 
dealing with continuous and high-dimensional output 
variables. Typically, regime maps are based on 
discrete classes of behavior (such as phase states in 
phase diagrams or different deformation modes in 
deformation mechanism maps), which are easily 
identifiable and classifiable. However, in many cases, 
such discrete behavior classes are not available for the 
systems being studied, making it challenging to create 
a regime map. Secondly, regime maps generally focus 
on a limited number of input variables (typically two) 
because of the large volume of data points needed to 
create an accurate regime map in high dimensions. 
This issue is known as the "curse of dimensionality"; it 
restricts regime map implementation in various 
systems, as multiple input variables or parameters 
influence most systems. Although some regime plots, 
particularly in fluid dynamics, reduce the number of 
input variables by using dimensionless numbers, this 
approach requires prior knowledge that may not be 
easily accessible in many systems under investigation.  

 
To address these challenges, we utilized the power 

of machine learning to develop a generalizable regime 
identification framework that enables the creation of 
regime maps based on continuous output variables 
within a multidimensional input space. Our approach 
combines unsupervised learning with active learning 
to 1) identify the natural behavior classes in the 
system under investigation and 2) perform efficient 
data sampling within the input space to create a 
reasonably accurate multidimensional regime map. 
We tested our framework experimentally on a silver 

nanoparticle (AgNP) synthesis platform and 
successfully created a regime map using four input 
variables without requiring prior knowledge of the 
system.  

 
2. Regime identification framework 

The proposed framework consists of three main 
components: initial sampling, clustering, and active 
learning with neural network ensembles, in that order. 
The final product is an ensemble of neural networks 
that encodes the relationships between the identified 
regimes and the input variables under investigation. 
 
2.1 Initial sampling 

For a system under investigation, let x ∈ X = ℝⁿ and 
y ∈ Y ⊆ ℝᵐ be the input and output vectors, 
respectively, where X and Y are Euclidean spaces. In 
the initial sampling step, we aim to sample enough x 
within X to provide sufficient coverage for the range of 
y in Y. To achieve this, we first employ a sequential 
space-filling design [5] coupled with a local outlier 
measurement metric [6] to select the initial dataset for 
the framework. 
 

2.2 Clustering 
     Once the initial sampling process has been 
completed, we utilize spectral clustering coupled with 
a membership function to group the output vectors (y) 
into similar behavior classes, where each class 
represents a regime. A soft clustering algorithm is 
chosen as the regimes typically do not have sharp 
boundaries; hence, such an approach can highlight the 
transitional regions between the regimes within X.  
 
2.3 Active learning with neural network ensembles 
     With the regime identified, an ensemble of neural 
networks is then used as a surrogate function to relate 
the input space X to the identified regime. However, as 
the number of points used to train the ensemble is 
insufficient, an active learning loop is employed to 
sample additional points efficiently from the system 
by targeting locations within the input space where 
the information gain is predicted to be high. 
 
3. Application on AgNP synthesis platform 
     The proposed framework is applied to an AgNP 
synthesis platform. The platform synthesizes AgNP 
through a flow-based milifluidic device, creating 
aqueous reactant mixture droplets in silicone oil. The 
reactants used to synthesize the AgNP were ascorbic 
acid (AA), silver nitrate (AgNO3), trisodium citrate 
(TSC), and polyvinyl alcohol (PVA). The concentration 
of the reactants within each droplet is controlled by 
the flow rate of the individual reactants (QAA, QAgNO3, 
QTSC, and QPVA). The droplets generated were subjected 
to a hyperspectral imaging system [7] to obtain the 
absorbance map of the synthesis process. The 
absorbance map shows the evolution of the 
absorbance spectrum of the reactant mixture droplet 
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throughout the AgNP synthesis process.  An example 
of the absorbance map for a specific set of a specific 
flowrate combination is shown in Fig 1.  
 

 
Fig 1: Example of an absorbance map. 

 
3.2 Result 
     The four input variables investigated for the AgNP 
synthesis platform were the four reactants (QAA, 
QAgNO3, QTSC, and QPVA). The output vectors were 
derived from the absorbance map, where important 
features such as the induction time and the peak 
wavelength were extracted and concatenated.  
Through the application of the regime identification 
framework, six regimes were identified. A 
representative absorbance map for each regime is 
shown in Fig 2.  
 

Fig 2. Representative absorbance map for each regime 

 
The distinction between each representative 
absorbance map can be visually verified. To further 
quantify the distinction between each regime, the 
representative features - induction time (tind), 
maximum absorbance growth rate (Gmax) and the peak 
wavelength (λmax) for the absorbance map in each 
regime is presented in Table 1. 
 
Table 1: Representative features of the absorbance maps in 

each regime 

Regime tind (s) Gmax (a.u./s) λmax (nm) 
1 26.0 0.0294 456 
2 24.4 0.0176 528 
3 20.37 0.0356 557 
4 43.9 0.0128 447 
5 31.0 0.0246 426 
6 29.5 0.0158 468 

 
From Fig 2 and Table 1, some inferences regarding the 
growth profile can be generated. The λmax values 
indicate that regime 5 exhibits the smallest final AgNP 
size, followed by regimes 4, 1, 6, 2, and 3, in increasing 
order. The tind, indicating the duration of slow and 
sustained nucleation, reveals that regime 4 had the 
most extended nucleation period, while regime 3 had 
the shortest.  Based on the absorbance map and the 
feature extracted, we posit that the AgNP within 

regimes 4 and 5 undergoes diffusion growth due to 
their small final AgNP size. In contrast, the AgNP in 
regime 3 mainly undergoes agglomerative growth due 
to the large λmax and large width of absorbance 
spectrum at the final time point. The other regimes 
mainly exhibit a mixture of both these growth profiles. 
Final confirmation of the growth profiles can be 
ascertained through TEM imaging of the final AgNP, 
which is still a work in progress.  
 
     Once the absorbance map regime has been 
established, the active learning loop is employed to 
perform cartography on the input space. After just one 
iteration of the active learning loop, the neural 
network ensemble achieves a 0.9 F1 score. In Fig 3, a 
3D plot for each of the regimes within the input space 
is presented for different values of QPVA. The color for 
each regime is 1—red, 2—yellow, 3—green, 4—blue, 
5—cyan, and 6—purple.   
 

 
 

Fig 3: 3D regime map for different values of QPVA. 
 
The 3D regime map illustrates the relationship 
between input flow rates and the observed AgNP 
synthesis regimes. A key observation is that increasing 
the flow rates of stabilizers (TSC and PVA) leads to a 
clear transition from agglomeration-dominated to 
growth-dominated regimes. Additionally, the flow rate 
of AA demonstrably affects the tind and Gmax of the 
AgNP synthesis process. By analyzing these regime 
plots, we can draw a series of inferences based on the 
relationships defined by the regime transitions. 
 
4. Conclusion 

     We proposed a regime identification framework 
that can identify the regimes available within the input 
space of a system under investigation. The regime map 
created by the framework can serve as a valuable tool 
for data analysis or as a groundwork for future 
research endeavors. 
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