
A Omitted results from Section 2

A λ-auction is an incentive-compatible parameterized generalization of the VCG auction where the
mechanism designer may specify additive boosts to specific allocations. λ-auctions were introduced
by Jehiel et al. [22]. The class of λ-auctions is a rich class of auctions and has been studied towards
designing high-revenue combinatorial auctions [3, 38]. We use the notation W (α) =

∑n
i=1 vi(α),

and W (S) = maxαW (α). Formally, a λ-auction run among n buyers is specified by a vector
λ ∈ R(n+1)m indexed by the (n+ 1)m possible allocations. The overall allocation chosen is

α∗ = argmax
α

W (α) + λ(α)

and bidder i is charged a payment of

max
α

(W−i(α) + λ(α))− (W−i(α
∗) + λ(α∗)).

An affine-maximizer auction [33] is a generalization of a λ-auction with multiplicative bidder-specific
weights. We do not define them here, but all subsequent discussions on λ-auctions apply to affine
maximizers as well.

The following proposition shows that λ-auctions are rich enough (and hence so are affine maximizers)
to extract the entire social surplus as revenue if the bidders’ valuations are known beforehand.
Proposition A.1. For any set of bidders S, there exists a λ-auction, in the full-information setting
with no incentive-compatibility constraints, with revenue equal to W (S).

Proof. Let α denote the efficient allocation among bidders in S and let α−i denote the efficient
allocation among bidders in S \ {i}. We show that the λ-auction with λ(α) = 0, λ(α−i) =
W (α)−W−i(α−i), and λ(β) = −∞ for all other allocations β collects a payment of vi(α) from
each bidder, and thus extracts a revenue of W (S). First, note that α is the overall allocation used
since W (α) + λ(α) ≥W (α−i) + λ(α−i) for each i. To show that α−i is the allocation used when
bidder i is absent, observe that

W−i(α−i) + λ(α−i) = W (α)

≥W (α)− vi(α)

= W−i(α) + λ(α)

and

W−i(α−i) + λ(α−i) = W (α)

≥W (α)− vi(α−j)
= W (α) + vj(α−j)− vi(α−j)
= W−i(α−j) +W (α)−W−j(α−j)
= W−i(α−j) + λ(α−j)

for any j 6= i. (We use the fact that if α allocates nothing to i, then vi(α) = 0.)

Thus the allocations used by this λ-auction are precisely the VCG allocations. The payment of bidder
i is therefore (W−i(α−i) +λ(α−i))− (W−i(α) +λ(α)) = W (α)− (W (α)− vi(α)) = vi(α), and
so the total revenue is W (α).

As a consequence of the above proof, λ-auctions and affine-maximizer auctions both satisfy the
global-VCG-like property discussed in Section 2.

Since a variable group of bidders of variable size can participate in the λ-auctions we run, it is
important to formalize how to distinguish between allocations since the λ-auction adds “boosts” to
allocations specifically. We assume that the mechanism designer knows the valuations of the bidders
in S to begin with. So, each bidder can be thought of having an identity (for example, “the bidder who
values apples at x and oranges at y”, or “the bidder with valuation function v4”), and the mechanism
designer knows the identities/valuations v1, . . . , vn of all bidders in S. An allocation, formally, is a
mapping from items to bidder identities. Traditionally λ-auctions assume that the number of bidders
is fixed, so allocations are usually interpreted as mappings from items to the position/index of a given
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bidder. So, we, too, will consider λ-auctions run among all bidders, so an auction is parameterized
by a (n+ 1)m-dimensional vector that specifies boosts for allocations among all n identities in S.
However, our auctions also have to be well defined in the case of a shrinking market that has only
a subset of the bidders. We address that as follows. If a λ-auction is run among a subset of bidder
identities S0 and chooses an allocation that allocates an item to a bidder identity not in S0, we assume
that the seller keeps that item.

B Omitted proof from Section 3

When bidder valuations can depend on what items the other bidders receive, we can construct a
simple example where a random fraction of bidders participating incurs a much more significant
revenue loss than the (1− p2) fraction in our example for the combinatorial setting. Suppose there
is a distinguished set of k bidders (who can be viewed as unwealthy bidders) with negligibly low
valuations for each bundle. All other bidders’ (who can be viewed as wealthy bidders) valuation
functions are defined to be above some threshold only on allocations that give a nonempty bundle to
each of the k distinguished bidders (and zero otherwise). In other words, while the wealthy bidders
would like to receive items, they are not willing to participate unless unwealthy bidders are also
guaranteed items. Then, for any nontrivial fraction of the revenue to be preserved, all distinguished
bidders must participate in the auction, which occurs with probability pk. Thus, any auction can
preserve revenue at most pk ·W (S). The number of distinguished bidders k can be taken to be
as large as, for example, m/2. We now give a formal construction of the described example. Our
construction satisfies the property that even the vanilla VCG auction extracts revenue nearly equal to
the entire social surplus on the full set S of bidders.
Theorem B.1. For any ε > 0 there exists a set S of bidders with allocational valuations such that

sup
M∈M

E
S0∼pS

[RevM (S0)] ≤ pm/2 · (RevV CG(S) + 2ε) + ε

for any auction classM.

Proof. For each item 1 ≤ i ≤ m/2 we introduce two buyers with valuations vi,1, vi,2. For each item
m/2+1 ≤ j ≤ mwe introduce a single buyer with valuation vj . For 1 ≤ i ≤ m/2 valuations vi,1 are
defined by vi,1(α) = c if bidder (i, 1) is allocated item i and bidders j = m/2+1, . . . ,m each receive
at least one item, and vi,1(α) = 0 otherwise. Valuations vi,2 are defined by vi,2(α) = c − 2ε/m
if bidder (i, 2) is allocated item i and bidders j = m/2 + 1, . . . ,m each receive at least one item,
and vi,2(α) = 0 otherwise. The only requirement on the valuations of bidders j = m/2 + 1, . . . ,m
is that vj(α) ≤ 2ε/m for all α. The VCG auction would allocate item i to bidder (i, 1) for each
i = 1, . . . ,m/2, and allocate the remainingm/2 items to bidders j = m/2+1, . . . ,m such that each
bidder j receives exactly one item. The welfare of this (efficient) allocation is at most cm/2 + ε. The
revenue obtained by VCG is at least cm/2−ε = W (S)−2ε. Let S∗ denote the set of small-valuation
bidders j = m/2 + 1, . . . ,m. If each bidder shows up independently with probability p, the expected
revenue of any auction M is

E[RevM (S0)] = E[RevM (S0) | S∗ ⊆ S0] · Pr(S∗ ⊆ S0) + E[RevM (S0) | S∗ * S0] · Pr(S∗ * S0)

≤ pm/2 · E[RevM (S0) | S∗ ⊆ S0] + E[RevM (S0) | S∗ * S0]

≤ pm/2 · E[W (S0) | S∗ ⊆ S0] +W (S∗)

≤ pm/2 ·W (S) + ε,

as desired.

C Omitted results and proofs from Section 4

C.1 More details on γ

If γ = 1, we simply replace it with

γ := max

{
ϕ(S′ \ {i})
ϕ(S′)

: i ∈ ω(S′),
ϕ(S′ \ {i})
ϕ(S′)

< 1

}
< 1
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which is the worst-case non-trivial decrease in ϕ across any two levels of the winner diagram. We are
able to enforce that γ < 1 in this way because if S′ is such that ϕ(S′) = ϕ(S′ \ {i}), then the same
mechanism achieves optimal revenue on both S′ and S′ \ {i}. So these nodes can be considered
jointly as a single node in the winner diagram, without incurring any penalty in the number of heavy
equivalence classes A randomizes over.

C.2 Allocational valuations

All of our results hold when bidders have allocational valuations. The only modification is that
we require a stronger version of winner monotonicity, which states that if i wins bundle b under
the mechanism that achieves WM(S′), then i must win a bundle b′ ⊇ b under the mechanism that
achieves WM(S′′) for any i ∈ S′′ ⊆ S′. The weaker notion of winner monotonicity implies the
stronger version when bidders have combinatorial valuations, but this is not necessarily the case when
bidders have allocational valuations.

C.3 Limiting the number of winners

Proof of Theorem 4.4. Given a set S′ ⊆ S of bidders, if a bidder in win(S′) is removed, at most one
new bidder can win a nonempty bundle per the efficient allocation, due to winner monotonicity and
the limit on the number of bidders. Thus, maxS′ |ω(S′)| ≤ 2n0. The remainder of the proof follows
from the same arguments used to prove Theorem 4.3.

C.4 Bundling constraints

A bundling is a partition of the set of items {1, . . . ,m}. An allocation α respects a bundling φ if no
two items in the same bundle according to φ are allocated to different buyers. For a set of bundlings
Φ, the class of Φ-boosted λ-auctions consists of all λ-auctions satisfying λ(α) ≥ 0 for all α that
respects a bundling in Φ and λ(α) = 0 otherwise. Let WΦ(S) denote the maximum welfare of any
allocation that respects a bundling in Φ. Proposition A.1 holds withWΦ(S) for the class of Φ-boosted
λ-auctions (the λ-auction constructed in Proposition A.1 can be shifted by a constant additive factor to
make all boosts nonnegative). In the following theorem statement, ϕ(S′) = 1

n

∑n
i=1W

Φ(S′ \ {i}).
Theorem C.1. Let Φ be a set of bundlings. Let S be a set of n ≥ 2 bidders with valuations such that
WΦ : 2S → R≥0 is submodular. Let γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) . Let m0 be the greatest number

of bundles in any bundling in Φ. LetM be the class of Φ-boosted λ-auctions. Then,

sup
λ∈M

E
S0∼pS

[Revλ(S0)] ≥ Ω

(
p2

(2m0)1+log1/γ(4/p)

)
WΦ(S).

Proof. At most m0 bidders can win a nonempty bundle of items, so maxS′ |ω(S′)| ≤ 2m0 by the
same reasoning used to prove Theorem 4.4. The arguments used to prove Theorem 4.3 yield the
desired bound.

C.5 General distribution over submarkets

Our proof techniques easily generalize to handle any distribution D over subsets of bidders since
the only statistic of the distribution required is the expected welfare of a random subset of bidders
ES0∼DS [WM(S0)]. When bidders participated independently with probability p, submodularity of
the welfare function was required to ensure that E[WM(S0)] ≥ pWM(S). In the following more
general guarantee, which is in terms of E[WM(S0)], we only need the more general condition of
winner monotonicity.
Theorem C.2. Let S be a set of n ≥ 2 bidders with valuations that satisfy winner monotonic-
ity. Let D be a distribution supported on 2S with ES0∼DS [WM(S0)] = µ · WM(S). Let
γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) and let k = maxS′ |ω(S′)|. We have

sup
M∈M

E
S0∼DS

[RevM (S0)] ≥ ηµ

k1+log1/γ(1/ηµ)

(
µ− 2ηµ

2(1− ηµ)

)
·WM(S)

for all 0 ≤ η ≤ 1/2.
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Proof. The proof is nearly identical to that of Theorem 4.3. The main modification is that S′ ⊂ S
is heavy if ϕ(S′) ≥ ηµ · WM(S), and A randomizes over mechanisms corresponding to sets
S′ with this property. Then, ES0∼DS [ϕ(S0)] ≥ µ

2WM(S) and so Markov’s inequality yields
Pr(S0 is heavy) ≥ µ/2−η

1−η . The remainder of the proof is identical.

Versions of Theorems 4.4 and Theorems C.1 for general distributions can be similarly obtained.

D Omitted results from Section 5

Learning a high-revenue λ-auction would require a number of samples on the order of (n+ 1)m [3].
However, for sparse λ-auctions that are restricted to boost only a constant number of allocations, we
can perform sample and computationally efficient learning while satisfying a similar guarantee to the
ones derived for the entire class.

D.1 λ auctions with limited boosting

Let Γ ⊆ {1, . . . , (n + 1)m} be a set of allocations. The class of Γ-boosted λ-auctions consists of
all λ-auctions satisfying λ(α) ≥ 0 for all α ∈ Γ and λ(α) = 0 for all α /∈ Γ (and can be specified
by vectors in R|Γ|). Γ-boosted λ-auctions were introduced by Balcan, Sandholm, and Vitercik [3].
Let WΓ(S) = maxα∈ΓW (α). We may derive a guarantee for this class of auctions analogous to
Theorem 4.3. In the following theorem statement, ϕ(S′) = 1

n

∑n
i=1W

Γ(S′ \ {i}).

Theorem D.1. Let S be a set of n ≥ 2 bidders with valuations such that WΓ : 2S → R≥0 is
submodular. Let γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) and let k be the maximum number of winners in any

allocation in Γ. The classM of Γ-boosted λ-auctions satisfies

sup
λ∈M

E
S0∼pS

[Revλ(S0)] ≥ Ω

(
p2

(2k)1+log1/γ(4/p)

)
WΓ(S).

D.2 Algorithm for learning an auction from samples

We now give an algorithm that the mechanism designer can use to compute a Γ-boosted λ-auction
that nearly achieves an expected revenue of supλ∈M ES0∼pS [Revλ(S0)]. Our algorithm leverages
practically-efficient routines for solving winner determination, which is a generalization of the
problem of computing welfare-maximizing allocations. The mechanism designer samples several
subsets of bidders according to D, and computes the Γ-boosted λ-auction that maximizes empirical
revenue over the samples.

While computing the empirical-revenue-maximizing auction is NP-hard in general, since winner
determination is NP-hard, winner determination can be efficiently solved in practice [35, 39, 40].
Furthermore, when bidders have gross-substitutes valuations, winner determination can be solved in
polynomial time [10]. The run-time of our algorithm is exponential only in |Γ| but polynomial in all
other problem parameters (including the run-time required to solve winner determination with m
items and n bidders).

Theorem D.2. LetM be the class of Γ-boosted λ-auctions. A λ̂ ∈M such that

E
S0∼S

[Revλ̂(S0)] ≥ sup
λ∈M

E
S0∼S

[Revλ(S0)]− ε

with probability at least 1− δ can be computed in N(min{m,n}+ 1)w(m,n) + (Nn|Γ|)O(|Γ|) time,
where w(m,n) is the time required to solve winner determination for n buyers with valuations over

m items and N = O
(
|Γ| ln(n|Γ|)

ε2 ln( 1
δ )
)

.

Proof. The algorithm and proof are similar to Theorem 1.1. M is (|Γ|, O(n|Γ|2))-delineable [3]
Now, we explicitly describe how to generate the hyperplanes witnessing delineability. For each
1 ≤ t ≤ N let αt denote the efficient allocation among bidders in St. For each 1 ≤ t ≤ N and
each i ∈ win(St) let αt−i denote the efficient allocation among bidders in St \ {i}. For i /∈ win(St),
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αt−i = αt. Determining these allocations requires at most N +N ·min{m,n} calls to the winner
determination routine, since |win(St)| ≤ m. The allocation used by any Γ-boosted λ-auction on St
is in Γ ∪ {αt}, and the allocation used to determine the payment by bidder i ∈ St by any Γ-boosted
λ-auction on St is in Γ ∪ {αt−i}.

For each t and each pair of allocations α, α′ ∈ Γ ∪ {αt}, let H(t, α, α′) denote the hyperplane∑
i∈St

vi(α) + λ(α) =
∑
i∈St

vi(α
′) + λ(α′).

For each t, each i ∈ St, and each pair of allocations α, α′ ∈ Γ ∪ {αt−i}, let let H−i(t, α, α′) denote
the hyperplane ∑

j∈St\{i}

vj(α) + λ(α) =
∑

j∈St\{i}

vj(α
′) + λ(α′).

LetH denote the collection of these hyperplanes. The total number of such hyperplanes is at most
N(|Γ| + 1)2 + Nn(|Γ| + 1)2. It is a basic combinatorial fact that H partitions R|Γ| into at most
|H||Γ| ≤ (N(n+ 1)(|Γ|+ 1)2)|Γ| regions. Each region is a convex polytope that is the intersection
of at most |H| halfspaces. Representations of these regions as 0/1 constraint-vectors of length |H|
can be computed in poly(|H||Γ|) time using standard techniques [46]. Empirical revenue is linear as
a function of λ in each region, since the allocations used by λ are constant within as λ varies in a
given region. Thus, the auction maximizes empirical revenue within a given region can be found by
solving a linear program that involves |Γ| variables and at most |H| constraints, which can be done in
poly(|H|, |Γ|) time.

One special case is when all allocations in Γ are given the same boost. Then, the parameter space is R,
the number of relevant regions (subinteverals of R) is O(Nn|Γ|2), and the algorithm in Theorem 1.1
has a run-time of O(N min{m,n}w(m,n) + Nn|Γ|2). Mixed bundling auctions [22, 44] are an
instance of this with |Γ| = n.

D.3 Structural revenue maximization

Let Γ1 ⊂ Γ2 be collections of allocations, and letM1 andM2 denote the classes of Γ1-boosted
λ-auctions and Γ2-boosted λ-auctions, respectively. Suppose the mechanism designer has drawn
some number of samples N , and observes that the empirical-revenue-maximizing auction λ2 over
M2 yields slightly higher revenue than the empirical-revenue-maximizing auction λ1 overM1, but
λ2 assigns nonzero boosts to significantly more allocations than λ1 and is much more complex to
describe. M2 is a richer auction class thanM1, so it always yields higher empirical revenue, but
there is the risk that it overfits to the samples. Structural revenue maximization allows the mechanism
designer to precisely choose between such auctions by quantifying the tradeoff between empirical
revenue maximization and overfitting [2, 3]. Instead of choosing λ2 by default, the mechanism
designer should choose λk, k ∈ {1, 2} that maximizes empirical revenue minus a regularization term
εMk

(N, δ). The correct regularization term is precisely the error term

εMk
(N, δ) = O

(
|Γk| ln(n|Γk|)

ε2
ln

(
1

δ

))
in the generalization guarantee for Γ-boosted λ-auctions obtained by Balcan, Sandholm, and Viter-
cik [3], which is fine-tuned to the intrinsic complexity of the auction class. Structural revenue
maximization can be especially useful to the mechanism designer when there is a limit on the number
of samples he can draw (due to a run-time constraint, for example). In this case, he may run the exact
same geometric algorithm given in Theorem 1.1 with the modified objective of empirical revenue
minus the regularizer described above. In particular, the algorithm may be run over the entire class of
λ-auctions, and the mechanism designer effectively learns the best set Γ of allocations to boost in
order to guarantee high expected revenue while also generalizing well with high confidence.
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