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SEDS: Semantically Enhanced Dual-Stream Encoder
for Sign Language Retrieval

Anonymous Author(s)

ABSTRACT
Sign language retrieval, as an emerging visual-language task, has
received widespread attention. Different from traditional video re-
trieval, it is more biased towards understanding the semantic infor-
mation of human actions contained in video clips. Previous works
typically only encode RGB videos to obtain high-level semantic fea-
tures, resulting in local action details drowned in a large amount of
visual information redundancy. Furthermore, existing RGB-based
sign retrieval works suffer from the huge memory cost of dense
visual data embedding in end-to-end training, and adopt offline
RGB encoder instead, leading to suboptimal feature representation.
To address these issues, we propose a novel sign language repre-
sentation framework called Semantically Enhanced Dual-Stream
Encoder (SEDS), which integrates Pose and RGB modalities to rep-
resent the local and global information of sign language videos.
Specifically, the Pose encoder embeds the coordinates of keypoints
corresponding to human joints, effectively capturing detailed action
features. For better context-aware fusion of two video modalities,
we propose a Cross Gloss Attention Fusion (CGAF) module to
aggregate the adjacent clip features with similar semantic informa-
tion from intra-modality and inter-modality. Moreover, a Pose-RGB
Fine-grained Matching Objective is developed to enhance the ag-
gregated fusion feature by contextual matching of fine-grained
dual-stream features. Besides the offline RGB encoder, the whole
framework only contains learnable lightweight networks, which
can be trained end-to-end. Extensive experiments demonstrate that
our framework significantly outperforms state-of-the-art methods
on How2Sign, PHOENIX-2014T, and CSL-Daily datasets.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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Sign language retrieval, Multimodal alignment, Feature fusion
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a childopen box a white bird in pink watch

a child in pink watches a white bird in an open box

Frames as Unit  &  Object Descriptive Information

(a) Traditional text-to-video retrieval

better at itlook it up online I amsomeone

Look it up online maybe someone else is better at it than I am

Clips as Unit  &  Action Semantic Information 

(b) Sign language text-to-video retrieval

Figure 1: The difference in properties of video information
between (a) traditional text-to-video retrieval and (b) sign
language text-to-video retrieval. The former describes the
content in video frames, while the latter corresponds to the
semantics of the actions in video clips.

1 INTRODUCTION
Sign language is the primary means of communication for people
with hearing impairments. Sign language understanding is an im-
portant research field dedicated to overcoming communication bar-
riers between hard-of-hearing individuals and non-signers. The clas-
sic sign language comprehension task [11, 12, 18, 21, 26, 27, 48, 57–
59, 64] includes sign language recognition and translation, intend-
ing to identify the gloss sequence in sign language videos and
further translate it into natural language. In this paper, we focus
on the emerging sign language retrieval task [10, 15]. Unlike sign
language recognition and translation, sign language retrieval task
is targeted at retrieving videos or texts that are most similar to the
query from a video or text database.

As a special case of traditional text-video retrieval (TVR) tasks [14,
17, 19, 30, 39–41, 43, 55, 63], sign language retrieval comprises two
sub-tasks, i.e., text-to-sign-video (T2V) retrieval and sign-video-to-
text (V2T) retrieval. Unlike traditional TVR tasks, sign TVR focuses
on the semantic information of human actions that correspond to
natural language words contained in video clips (Fig. 1(b)), rather
than descriptive information of objects in video frames (Fig. 1(a)).
Sign language retrieval task is more similar to translating a language
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expressed through video clips, and then conducting cross-language
retrieval [10]. Therefore, in sign language videos, a video clip con-
taining a single action is the smallest unit of complete information,
which can be defined as a sign visual word. This requires the pres-
ence of a sign encoder in the model to extract action semantic
information from video clips.

Recently, as a common practice for text-to-video retrieval models,
contrastive loss [22] is involved in training, which significantly
improves performance by utilizing visual prior knowledge from the
pre-trained CLIP vision transformer [51]. In contrastive learning,
multiple negative samples are required in a single batch. However,
previous sign language retrieval works, such as SPOT-ALIGN [15]
and CiCo [10], use RGB-based sign encoders that embed dense
visual data. The massive memory cost results in two-stage training
instead of end-to-end training, which potentially reduces the quality
of the feature representation. Meanwhile, sign language usually
utilizes two types of signals, i.e., global visual signals including body
position and facial expressions, and local action signals including
hand actions and palm movements. Therefore, the sign encoder
needs to pay attention to both the semantics of the global visual
information and the local action information. In contrast, RGB
encoders always embed global visual signals to obtain high-level
semantic features, leading to local action details drowned in a large
amount of visual information redundancy. Apart from the lack of
local information, such bias also results in potential robustness
issues, affecting the performance of model due to the difference in
video backgrounds or signers between the training and test sets.

In order to alleviate the above issues, inspired by previous sign
language tasks [18, 24, 29, 35], we introduce Pose modal knowl-
edge to sign language retrieval task and propose a new framework
called Semantically Enhanced Dual-Stream Encoder (SEDS), which
includes an online Pose encoder and an offline RGB encoder ex-
tracting features from two different perspectives. Compared to the
offline RGB encoder, the remaining modules within the framework
such as Pose encoder, fusion module and interaction transformers,
are lightweight enough to be trained end-to-end, which effectively
improves the feature quality of sign language videos. The introduc-
tion of Pose keypoints of both hand parts and entire body skeleton
not only enables the Pose encoder to supplement the details of local
action movement, but also effectively mitigates the bias for similar
visual scenes introduced by the RGBmodality. For the process of fus-
ing RGB and Pose modalities, inspired by recent work GASLT [60],
we propose the Cross Gloss Attention Fusion (CGAF) module. This
module keeps its attention on video clips locally, aggregating ad-
jacent clips with similar semantic information from intra-modal
and inter-modal. This enhances the semantic representation of sign
visual words in video clips.

To ensure optimal retrieval performance through fusion fea-
tures, we propose an explicitly supervised Pose-RGB fine-grained
matching objective. This objective performs contextual matching
on fine-grained dual-stream features, matching the corresponding
clip features in the two modalities. Therefore, it ensures that the
same clips in both modalities have a higher chance of matching the
same word feature with more similar semantics. The distribution of
the fine-grained similarity matrices of Pose-Text and RGB-Text are
implicitly aligned, allowing the CGAF module to fully consider the
representations from both modalities during the fusion process.

The main contributions of our work are summarized as follows:
• To address the limitation of previous sign language retrieval
works, we propose a framework called Semantically En-
hanced Dual-Stream Encoder (SEDS) that first introduces
Pose modality knowledge into sign language retrieval task.

• A Cross Gloss Attention Fusion (CGAF) module is applied
to the fusion of Pose and RGB modalities, which fuses local
information from intra-modal and inter-modal to enhance
the representation ability of fusion clip features.

• To further improve the representational ability of the fu-
sion features, a supervised Pose-RGB fine-grainedmatching
objective is designed for training to implicitly align the fine-
grained similarity matrix of Pose-Text and RGB-Text.

• The extensive experiments and evaluations demonstrate
that our framework significantly outperforms state-of-the-
art methods on How2Sign, PHOENIX-2014T, and CSL-Daily
sign language retrieval datasets.

2 RELATEDWORK
2.1 Sign Language Understanding
Sign language understanding aims to fully understand the semantic
information in sign videos and connect it with natural language.
The current mainstream sign language understanding tasks include
isolated sign language recognition [25, 33–35, 61, 68], continuous
sign language recognition [11, 12, 21, 26, 27, 48], sign language
translation [18, 57–59, 64, 66], sign language spotting [1, 20, 46],
and our focused sign language retrieval [10, 15] task.

As the foundation of sign language understanding, sign language
recognition task aims to convert an input sign language video into
a gloss sequence, which corresponds to the sign visual words in nat-
ural language. The encoder used for extracting sign language video
features is mainly based on the CNN [32] architecture, including
3D-CNN [8, 36, 49] and 2D+1D CNN [13, 66]. The sign language
spotting task [1, 20, 46] is a variant of the sign language recognition
task, aimed at locating and recognizing sign word instances in an
untrimmed video. The spotting features can be used as features of
sign visual words, matching with the sign language annotation text
at a fine-grained level. Therefore, we leverage the I3D [6] network
pre-trained on BSL-1K [20] for sign spotting as offline RGB encoder.

For sign language understanding tasks, there are two types of
methods: gloss-based [5, 8, 9, 53, 65, 66] and gloss-free [2, 36, 44, 60,
62] methods. The difference between them is whether or not to use
gloss annotations as auxiliary supervision. Recently, GASLT [60] ar-
gues that gloss plays a role in restricting attention to local sequences
in sign language tasks, which is more consistent with logicality of
sign language videos. Inspired by it, we propose Cross Gloss Atten-
tion Fusion (CGAF) module, which aggregates local information
with similar semantics from intra-modal and inter-modal.

2.2 The Role of Pose in Sign Language Tasks
Pose is an important modal information in the process of sign lan-
guage video understanding, which is generally extracted offline by
the Pose extraction model [28, 52, 56]. Compared to RGB data, Pose
has less redundant information and is more targeted towards the
position and motion information of human movements. There are
many methods using Pose information. Works like [47, 66] crop
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be used as a warm up 
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Features
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… …
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CL

𝒇𝑟 𝒇𝑝

𝒇𝑣

CL
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Learning
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CL

𝒇𝑤

𝑬𝑟 𝑬𝒑𝑬𝒗

𝑽𝑺𝑟2𝑝 𝑺𝑝2𝑟

Figure 2: The overview of our Semantically Enhanced Dual-Stream Encoder framework, which consists of three parts: 1) Pose
and RGB Feature Extraction Module. 2) Cross Gloss Attention Fusion (CGAF) Module. 3) Pose-RGB Fine-grained Matching
Objective. The network is jointly optimized by: 1) three text-video alignment losses between Pose, RGB, Fusion features and
Text features. 2) an RGB-Pose fine-grained alignment loss between Pose modality and RGB modality.

RGB videos and feature maps into different parts based on Pose
keypoints. Some other works [9, 67] use Pose heatmap to supple-
ment the human skeleton information in RGB, while sharing the
architecture with the RGB encoder. However, due to their strong
correlation with RGB, these methods still cost excessive memory.
Following previous work [4, 24, 29], we use Graph Convolutional
Networks (GCN) to model Pose keypoints into a graph, defining
edges based on the connections between human skeleton joints.
This allows us to extract features that represent precise local posi-
tion and motion information of the human body. Furthermore, the
sparse input of Pose keypoints enables end-to-end training.

2.3 Sign Language Text-video Retrieval
Traditional text-video retrieval [14, 17, 19, 30, 39–41, 55, 63] is
a fundamental vision-language task, which primarily focuses on
videos of more general daily life scenarios. Early works [14, 17,
39, 40, 55] mainly align the features of text and video by training
text and video encoders from scratch. Due to the great success
of the large-scale image-text pre-training model CLIP [50], many
CLIP-based text-video retrieval works [19, 30, 41, 63] have achieved
significant performance improvements.

Sign language text-video retrieval can be seen as a special case
of text-video retrieval. CLIP-based text-video retrieval [43] mainly
involves sparse frame sampling of the original video, but sign lan-
guage videos often require multiple frames to express a sign visual
word. Therefore, before sending it to the vision transformer, a
sign encoder is needed to extract clip features. Lots of CLIP-based

works [37, 38, 45, 54] have proposed multi-grained modal align-
ment methods, including both supervised coarse-grained and fine-
grained feature alignment, fine-grained aggregation feature align-
ment, etc. However, our proposed Pose-RGB fine-grained matching
objective is different from these methods. It matches the contextual
features of two video modalities at a fine-grained level, implic-
itly aligning the distribution of fine-grained similarity matrices
between Pose, RGB and Text. This allows for a full consideration
of the characteristics of both modalities during the fusion process.

3 METHOD
In this section, we introduce our Semantically Enhanced Dual-
Stream Encoder (SEDS) framework (Fig. 2), which is composed of
three parts: 1) Pose and RGB Feature Extraction Module, which
extracts local action information and global visual information.
2) Cross Gloss Attention Fusion (CGAF) Module, which fuses the
adjacent clip information from both inter-modal and intra-modal
perspectives. 3) Pose-RGB Fine-grained Matching Objective, ensur-
ing the contextual alignment of fine-grained dual-stream features.

3.1 Pose and RGB Feature Extraction Module
Sampling Clips in Sign Video. Sign language videos and natu-
ral language serve as two distinct modalities of expression with
different word orders, yet they convey the same semantics. The
fundamental sign visual words depicted in sign language videos
should correspond with words in natural language. For a single
video, we begin by filtering out low-quality video frames, such as

3
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those with unclear or missing hand gestures and incomplete signers.
Subsequently, we utilize a sliding window approach with a window
size of 16 and a sliding interval of 1 to generate a number of video
clips, and then select 𝑇 clips at equal intervals in time dimension.
Each video clip is then fed into online Pose and offline RGB sign
encoders, resulting in Pose features 𝒇𝑝′ ∈ R𝑇×𝐷 and RGB features
𝒇𝑟 ′ ∈ R𝑇×𝐷 for this sign video. Next, we feed these two sequence
features separately into two Transformer encoders for interaction
in their respective modalities, finally obtaining features 𝒇𝑝 ∈ R𝑇×𝐷

and 𝒇𝑟 ∈ R𝑇×𝐷 for the further fusion.
Online Pose Encoder. In order to obtain the Pose data in the

video, we use the open-source RTMPose [28] to extract the Pose
data from the original RGB sign language video. To better utilize
the motion information of different skeletal parts of the human
body, we divide the extracted Pose keypoints into three groups: 21
keypoints 𝐺𝐿 for left hand, 21 keypoints 𝐺𝑅 for right hand, and
7 keypoints 𝐺𝐵 for body. We use two GCN network modules for
feature extraction of Pose data and one 1D convolutional fusion
module for information fusion in the time dimension in Pose en-
coder. We share the same GCN network for both hands. In the
GCN module, we use edges to represent the connections of the
human skeleton in hand and body group, further constructing the
group-specific adjacency matrix 𝑨𝐺 . The single-layer convolution
operation for a specific group of keypoint features is as follows:

𝒇𝐿𝑠 = 𝜎

(
𝚲

− 1
2

𝐺
(𝑨𝐺 + 𝑰 ) 𝚲− 1

2
𝐺

𝒇𝐿−1𝑠 𝑾𝐿−1
𝐺

)
, (1)

where 𝒇𝐿𝑠 denotes the 𝐿-layer feature vector of the corresponding 𝑠
frame, and the feature vector is the original coordinates of keypoints
when 𝐿 = 0.𝑾𝐿−1

𝐺
is the 𝐿 − 1-layer weight matrix for performing

feature linear transformation, and 𝜎 is a nonlinear transformation.
𝐼 represents the self-connection of points. 𝚲𝑖𝑖

𝐺
is the normalized

diagonal matrix
∑

𝑗 (𝑨
𝑖 𝑗

𝐺
+ 𝑰 𝑖 𝑗 ).

After extracting spatial features from all frames of a single video,
we obtain three groups of features 𝒇𝑠

𝐿
, 𝒇𝑠

𝑅
, 𝒇𝑠

𝐵
∈ R𝐹×𝐷 , where

𝐹 represents the number of frames. Then we concatenate them
into feature 𝒇𝑠 ∈ R𝐹×3𝐷 . Next, based on the pre-defined video
clip boundaries, we sample these frame features into many sets of
clip features 𝒇𝑠′ ∈ R𝑇×16×3𝐷 containing 16 frame features. In the
temporal dimension, we use a 1D convolutional fusion module to
aggregate information within clips. After information aggregation,
the features 𝒇𝑝′ ∈ R𝑇×𝐷 will be ultimately fed to a Transformer
encoder for intra-modal information interaction.

Offline RGB Encoder. Meanwhile, there have been significant
advances in pre-trained sign spotting [20, 46] research. When ap-
plied to downstream tasks, these RGB-based models [20] greatly
enhance the understanding capabilities of convolutional neural
networks for sign language videos. Therefore, we employ an I3D
network pre-trained on BSL-1K [1] as the offline RGB encoder to
extract 𝒇𝑟 ′ ∈ R𝑇×𝐷 features. If the RGB encoder performs end-to-
end learning simultaneously with the Pose encoder, the semantics
of specific sign language video can be better captured. However,
in the actual training process, extracting features from such con-
trastive video samples consumes a considerable amount of memory.
Consequently, we freeze the pre-trained I3D network and extract
features from each sign language video clip offline.
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Figure 3: The structure of two-stream Cross Gloss Attention
Fusion (CGAF) module.

3.2 Cross Gloss Attention Fusion Module
For the process of fusing Pose and RGB modalities, there are some
naive fusion methods such as concatenation or cross-attention.
However, those naive methods ignore the logic and coherence of
sign language videos. Specifically, the semantic relevance of ad-
jacent clips in sign language videos is significantly higher than
distant clips. Inspired by a new attention mechanism called gloss at-
tention [60] in recent sign language translation tasks, we propose a
Cross Gloss Attention Fusion (CGAF) module. Compared to simple
addition or concatenation, our module emphasizes the attention in-
teraction between local information rather than global information
including irrelevant distant features, allowing for context-aware
integration of features from inter-modal and inter-modal.

The CGAF Module combines the Pose modality and RGB modal-
ity features of sign language videos in two main stages. The first
stage aggregates local information between the two modalities,
while the second stage merges the features obtained after aggre-
gation. In the first stage, we start by obtaining the Pose vectors
𝒒𝑝 , 𝒌𝑝 , 𝒗𝑝 ∈ R𝑇×𝐷 and RGB vectors 𝒒𝑟 , 𝒌𝑟 , 𝒗𝑟 ∈ R𝑇×𝐷 , which are
computed as linear projections of the Pose modality feature𝒇𝑝 and
RGB modality features 𝒇𝑟 . Similar to traditional cross attention
modules, we divide these two groups of vectors into two groups
{𝒒𝑝 , 𝒌𝑟 , 𝒗𝑟 } and {𝒒𝑟 , 𝒌𝑝 , 𝒗𝑝 }. Taking group {𝒒𝑝 , 𝒌𝑟 , 𝒗𝑟 } as an exam-
ple, we first obtain 𝑇 × 𝑁 constant attention positions 𝑷𝑝 ∈ R𝑇×𝑁

for each query in 𝒒𝑝 . Then we compute 𝑁 dynamical offset through
𝑶𝑝 = 𝑾

𝑝
𝑜 𝒒

𝑝 ∈ R𝑇×𝑁 , where 𝑾𝑝
𝑜 ∈ R𝐷×𝑁 . Due to the adjusted

attention position 𝑷𝑝 = (𝑷𝑝 +𝑶𝑝 )%𝑇 is a floating-point number, we
use linear interpolation sampling on 𝒌𝑟 , 𝒗𝑟 ∈ R𝑇×𝐷 to obtain the
new �̂�𝑟 , 𝒗𝑟 ∈ R𝑇×𝑁×𝐷 . The final calculation equation is as follows:

𝒉
𝑝
𝑡 =

𝑁∑︁
𝑖=1

𝒗𝑟𝑡,𝑖 ·
exp(𝒒𝑝𝑡 · �̂�𝑟

𝑡,𝑖
)∑𝑁

𝑗=1 exp(𝒒
𝑝
𝑡 · �̂�𝑟

𝑡, 𝑗
)
, (2)

where 𝒉𝑝 ∈ R𝑇×𝐷 is the attention vector obtained after cross gloss
attention calculation. The method for calculating attention vectors
for group {𝒒𝑟 , 𝒌𝑝 , 𝒗𝑝 } is also the same. In the first stage, we use two
layers of cross gloss attention to obtain the final output features
𝒇𝑝 ,𝒇𝑟 ∈ R𝑇×𝐷 , as shown in Fig. 3.

In the second stage, the dual stream features 𝒇𝑝 and 𝒇𝑟 are
concatenated and fed into a Multi-layer Perceptron (MLP) for inter-
action. Then these three features are added together to obtain the
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Figure 4: The illustration of Pose-RGB fine-grainedmatching
objective. The red box represents the softmax operation on
the corresponding element.

final feature 𝒇 𝑣 . The entire operation is as follows:

𝒇 𝑣 = 𝑀𝐿𝑃 ( [𝒇𝑝 ,𝒇𝑟 ]) + 𝒇𝑝 + 𝒇𝑟 , (3)

where [· , ·] represents the concatenation operation,𝒇 𝑣 is the feature
obtained after fusion.

3.3 The Learning Process of Our Framework
Text-Video Cross-Modal Alignment. For each sign language
video, we have obtained three sets of features: Pose features 𝒇𝑝 ,
RGB features 𝒇𝑟 , and Fusion features 𝒇 𝑣 from the CGAF Module.
For annotation of length 𝐿, we use a Text encoder initialized with
CLIP for feature extraction, resulting in word features 𝒇𝑤 ∈ R𝐿×𝐷 .

According to the CiCo [10] approach for text-video cross-modal
alignment, we start the matching process by choosing clip features
𝒇𝑘
𝑖
and word features 𝒇𝑤

𝑗
, and computing a fine-grained similarity

matrix 𝑬𝑘 (𝑖, 𝑗) = 𝒇𝑘
𝑖
· [𝒇𝑤

𝑗
]T ∈ R𝑇×𝐿 , where 𝑘 ∈ {𝑝, 𝑟, 𝑣} indicat-

ing three types of video features. Subsequently, we normalize the
columns and rows of 𝑬𝑘 (𝑖, 𝑗) using the softmax function to ob-
tain 𝑬𝑘

𝑐𝑜𝑙
(𝑖, 𝑗), 𝑬𝑘𝑟𝑜𝑤 (𝑖, 𝑗), and derive 𝑬𝑡2𝑘 (𝑖, 𝑗) = 𝑬𝑘 (𝑖, 𝑗) ·𝑬𝑘

𝑐𝑜𝑙
(𝑖, 𝑗)

and 𝑬𝑘2𝑡 (𝑖, 𝑗) = 𝑬𝑘 (𝑖, 𝑗) · 𝑬𝑘𝑟𝑜𝑤 (𝑖, 𝑗). Finally, summing the elements
across columns and rows yields 𝑬 ′

𝑡2𝑘 (𝑖, 𝑗) ∈ R
𝐿 and 𝑬 ′

𝑘2𝑡 (𝑖, 𝑗) ∈ R
𝑇 ,

whose averages are used as the similarity scores between text and
video, 𝑴𝑡2𝑘 (𝑖, 𝑗) and 𝑴𝑘2𝑡 (𝑖, 𝑗).

For a set of 𝐵 text-video pairs, this method efficiently generates
a pair of matrices that capture the text-video and video-text simi-
larities, denoted as 𝑴𝑡2𝑘 , 𝑴𝑘2𝑡 ∈ R𝐵×𝐵 . We employ the InfoNCE
loss [23] as text-video cross-modal alignment training objective,
which is as follows:

L𝑡2𝑘 = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp

(
𝜏 ·𝑴𝑖𝑖

𝑡2𝑘

)
∑𝐵

𝑗=1 exp
(
𝜏 ·𝑴𝑖 𝑗

𝑡2𝑘

) ,
L𝑘2𝑡 = − 1

𝐵

𝐵∑︁
𝑖=1

log
exp

(
𝜏 ·𝑴𝑖𝑖

𝑘2𝑡

)
∑𝐵

𝑗=1 exp
(
𝜏 ·𝑴 𝑗𝑖

𝑘2𝑡

) ,
L𝑡−𝑘 =

1
2
(L𝑡2𝑘 + L𝑘2𝑡 ) ,

where 𝜏 is a learnable temperature parameter. For the three groups
of the similarity matrices, we calculate the InfoNCE loss function

separately and then sum them:

L𝑡𝑣𝑎 = L𝑡−𝑣 + 𝛼
(
L𝑡−𝑝 + L𝑡−𝑟

)
, (4)

where 𝛼 is used to balance the proportion of auxiliary loss in text-
video alignment. During the actual inference process, we only use
the fusion features to match the text.

Pose-RGBFine-grainedMatchingObjective.The Posemodal-
ity branch and RGB modality branch are essentially learned in-
dependently. This leads to the significant difference between the
distributions of Pose-Text and RGB-Text fine-grained matching ma-
trices, which results in poor fusion performance due to the same
clips between modalities may match with different word features.
To address the issue, explicit supervision on fine-grained matching
is required. However, the absence of clear labels in fine-grained clip-
word matching is a problem. Therefore, we utilize the two video
modality features for auxiliary supervision. The video clips are
represented by Pose and RGB features from two different encoders,
allowing for fine-grained video matching with explicit supervision
at clip-clip level, which implicitly aligns Pose and RGB modalities
with text at clip-word level.

Specifically, we use Pose clip feature 𝒇𝑝𝑚 and RGB clip feature
𝒇𝑟𝑛 to calculate a fine-grained similarity matrix 𝑽 (𝑚,𝑛) ∈ R𝑇×𝑇 .
Then we perform softmax on the columns and rows of 𝑽 (𝑚,𝑛) sep-
arately to obtain 𝑽 ′

𝑐𝑜𝑙
(𝑚,𝑛), 𝑽 ′

𝑟𝑜𝑤 (𝑚,𝑛), and calculate two new ma-
trices, 𝑽𝑝2𝑟 (𝑚,𝑛) = 𝑽 (𝑚,𝑛) · 𝑽 ′

𝑐𝑜𝑙
(𝑚,𝑛) and 𝑽𝑟2𝑝 (𝑚,𝑛) = 𝑽 (𝑚,𝑛) ·

𝑽 ′
𝑟𝑜𝑤 (𝑚,𝑛), weighting the similarity score of clips. Afterwards, we
sum up similarity scores on diagonal of these two matrices to obtain
Pose-RGB similarity at video-video level. The process is as follows:

𝑺𝑝2𝑟 (𝑚,𝑛) =
𝑇∑︁
𝑖=1

𝑑𝑖𝑎𝑔

𝑽
𝑖𝑖
𝑝2𝑟 (𝑚,𝑛) ·

exp
(
𝑽 𝑖𝑖
𝑝2𝑟 (𝑚,𝑛)

)
∑𝑇

𝑗=1 exp
(
𝑽 𝑖 𝑗
𝑝2𝑟 (𝑚,𝑛)

)  , (5)

𝑺𝑟2𝑝 (𝑚,𝑛) =
𝑇∑︁
𝑖=1

𝑑𝑖𝑎𝑔

𝑽
𝑖𝑖
𝑟2𝑝 (𝑚,𝑛) ·

exp
(
𝑽 𝑖𝑖
𝑟2𝑝 (𝑚,𝑛)

)
∑𝑇

𝑗=1 exp
(
𝑽 𝑗𝑖

𝑟2𝑝 (𝑚,𝑛)
)  , (6)

where 𝑺𝑝2𝑟 is the Pose-to-RGB similarity matrix, and 𝑺𝑟2𝑝 is the
RGB-to-Pose similarity matrix. 𝑑𝑖𝑎𝑔[·] represents taking only diag-
onal elements of a matrix.

The summing of the diagonals in the fine-grained similarity ma-
trix is conducted because the elements on the diagonals represent
the similarity between different modalities for the corresponding
clips. So this process can be considered as supervised learning with
clip-level labels. As a result, the corresponding clips in the Pose and
RGB modalities are matched, and their features are aligned. This
increases the likelihood of the same clips in both modalities match-
ing the same word features, implicitly aligning the distributions of
the fine-grained similarity matrices of Pose-Text and RGB-Text.

Upon acquiring video-video level similarity, the InfoNCE [23]
loss is employed. Like the loss of text-video alignment, the loss of
video-video alignment L𝑝−𝑟 consists of two parts, L𝑝2𝑟 and L𝑟2𝑝 .
These two parts correspond to 𝑺𝑝2𝑟 and 𝑺𝑟2𝑝 . The whole process of
Pose-RGB fine-grained matching objective is shown in Fig. 4.

Joint Loss Optimization for SEDS.We have established the
text-video cross-modal alignment objective and Pose-RGB fine-
grainedmatching objective, the overall loss function during training
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Model T2V V2T
R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

SA-SR [15] 18.9 32.1 36.5 62.0 11.6 27.4 32.5 69.0
SA-CM [15] 24.3 40.7 46.5 16.0 17.9 40.1 46.9 14.0

SA-COMB [15] 34.2 48.0 52.6 8.0 23.6 47.0 53.0 7.5
CiCo [10] 56.6 69.9 74.7 1.0 51.6 64.8 70.1 1.0

Ours 62.5 75.1 80.1 1.0 57.9 70.4 74.9 1.0

Table 1: Different methods on How2Sign [16] dataset.

of our framework is as follows:

L = L𝑡𝑣𝑎 + 𝛽L𝑝−𝑟 , (7)

where 𝛽 is the proportion of Pose-RGB fine-grained alignment loss.

4 EXPERIMENTS
4.1 Setups
Datasets. Based on the dataset settings of previous sign language
video retrieval work [10, 15], we evaluate ourmodel on theHow2Sign [16],
CSL-Daily [65], and PHOENIX-2014T [3] datasets. How2Sign is a
large-scale continuous American Sign Language (ASL) dataset. Af-
ter removing invalid text-video pairs, we retain 31019, 1738, and
2348 available pairs in the training, validation, and testing sets. CSL-
Daily is a Chinese sign language (CSL) dataset that mainly focuses
on people’s daily lives. It includes 18401, 1077, and 1176 available
examples in the training, validation, and testing sets. PHOENIX-
2014T is a German sign language (DGS) dataset that mainly includes
weather forecast content from TV programs. It consists of 7096, 519,
and 642 video text pairs in training, validation, and testing sets.

Evaluation Metrics. Following prior works [10, 15, 19, 41, 43],
we use standard text-video retrieval metrics to measure retrieval
performance, specifically Recall at K (R@K, higher is better) and
Median Rank (MedR, lower is better). R@K denotes the proportion
of correct results retrieved among the top K videos. We use K=1,5,10
in actual evaluation. MedR represents the median ranking of the
correct options for all queries.

Implementation Details. The offline RGB encoder is an I3D [7]
network pre-trained on BSL-1K [20]. The online Pose encoder con-
sists of two GCN modules and a temporal convolution module. The
GCN module of both hands is initialized using Signbert [24]. For
the RGB Interaction Transformer and Pose Interaction Transformer,
we set the number of layers to 12 with a hidden size of 768 and
initialize it with the image encoder of CLIP (ViT-B/32) [50], but
the input 1D convolution kernel is changed to the 1024 and 1536
channels corresponding to the RGB encoder and Pose encoder, then
the feature channel is reduced to the same 512 channel as the vi-
sion token. For the Text encoder, we use the CLIP (ViT-B/32) text
encoder for initialization. For all the datasets, we change the frame
rate of sign language videos to 24 FPS, sample a maximum of 64
clips per video, and set the maximum length of words to 32. We
use an Adam [31] optimizer with a cosine warm-up strategy [42].
During the training process, we freeze the offline RGB encoder,
set the learning rates of the online Pose encoder and Cross Gloss
Attention Fusion module to 1e-4, and set the learning rates of two
Interaction Transformers and Text encoder to 1e-5. We set the batch
size to 128 and train for 200 epochs. The hyper-parameters 𝛼 in
Eq. 4 is 0.8 and the 𝛽 in Eq. 7 is 0.4.

Model T2V V2T
R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

SA-SR [15] 30.2 53.1 63.4 4.5 28.8 52.0 60.8 56.1
SA-CM [15] 48.6 76.5 84.6 2.0 50.3 78.4 84.4 1.0

SA-COMB [15] 55.8 79.6 87.2 1.0 53.1 79.4 86.1 1.0
CiCo [10] 69.5 86.6 92.1 1.0 70.2 88.0 92.8 1.0

Ours 76.8 91.7 95.3 1.0 78.7 92.5 95.2 1.0

Table 2: Different methods on PHOENIX-2014T [3] dataset.

Model T2V V2T
R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

CiCo [10] 75.3 88.2 91.9 1.0 74.7 89.4 92.2 1.0

Ours 85.8 94.4 95.6 1.0 85.4 93.8 95.8 1.0

Table 3: Different methods on CSL-Daily [65] dataset.

4.2 Comparison with State-of-the-Art Methods
We compare our framework SEDS on various datasets, including

How2Sign, PHOENIX-2014T, and CSL-Daily, with previous works
i.e. SPOT-ALIGN [15] and CiCo [10], where SPOT-ALIGN builds
the final combination (COMB) model by integrating its primary
cross-modal (CM) model and sign recognition (SR) model.

For the How2Sign dataset, Table 1 shows the performance com-
parison between SEDS and existing methods. Benefiting from the
large-scale image-text pre-training model CLIP [50], CiCo and our
method SEDS achieve significant performance improvements com-
pared to SPOT-ALIGN. These consistent performance improve-
ments demonstrate that utilizing prior visual knowledge of CLIP
and contrastive learning paradigms greatly enhances the ability of
model in visual-language alignment. Compared to current strongest
competitor CiCo, SEDS achieves 62.5(+6.3) R@1 on sign text-to-
video retrieval task, and 57.9(+6.3) R@1 on sign video-to-text re-
trieval task. The outstanding performance demonstrates the effec-
tiveness of our SEDS, which pays attention to both global visual
information and local action information, and enables the most
representative features of two modalities to fully interact and fuse.

In Tables 2 and 3, we evaluate the performance of SEDS on the
PHOENIX-2014T and CSL-Daily datasets. Our model achieves a
significant improvement of 76.8(+7.3), 85.8(+10.5) T2V R@1, and
78.7(+8.5), 85.4(+10.7) V2T R@1 on the PHOENIX-2014T and CSL-
Daily datasets, respectively. These results indicate that SEDS has
good generality and robustness in various sign language languages
from different countries and regions.

4.3 Ablation Studies
Performance of Sign Encoders with Different Modalities. In
Table 4, we report the performance of Pose encoder and RGB
encoder individually on How2Sign, PHOENIX-2014T, and CSL-
Daily datasets. We observe that Pose encoder performs better on
CSL-Daily dataset, while RGB encoder has higher performance
on PHOENIX-2014T dataset. As a professionally recorded dataset
of daily life sign language, CSL-Daily has clearer and more stan-
dardized human body details and movements, and the differences
between different sign gestures are significant, so it is more neces-
sary to pay attention to local hand movements. PHOENIX-2014T
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Structure Dataset T2V V2T
Pose RGB R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

✓ How2Sign [16] 55.9 69.6 74.9 50.9 64.7 69.3
✓ PHOENIX-2014T [3] 65.0 86.4 92.1 65.3 86.0 92.2
✓ CSL-Daily [65] 80.5 90.9 94.0 80.0 89.5 92.9

✓ How2Sign [16] 54.3 68.8 74.4 48.3 62.6 68.7
✓ PHOENIX-2014T [3] 70.4 88.6 94.4 70.1 88.8 94.5
✓ CSL-Daily [65] 75.4 88.3 92.4 73.5 87.7 92.3

Table 4: The ablation study on How2Sign to investigate the
influence of encoder architecture.

Structure T2V V2T
R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

Add-MLP 60.4 73.5 78.5 55.5 68.9 73.6
Concate-MLP 60.0 72.9 76.7 55.2 67.6 72.8
Concate-Trans 58.1 71.5 75.9 53.5 66.7 71.6
Cross-Atten 58.9 72.4 76.4 54.3 67.2 72.3

CGAF 62.5 75.1 80.1 57.9 70.4 74.9

Table 5: The ablation study on How2Sign to investigate the
influence of different fusion modules.

as a sign dataset collected from German weather forecasts TV pro-
gram, focuses more on the specific field of weather. So its sign
gestures are more similar and need to be combined with global
visual signals such as facial expressions for further semantic under-
standing. The content of these two datasets exactly corresponds to
the conditions where Pose and RGB modalities are applicable. For
How2Sign sign language dataset, the performance of Pose encoder
and RGB encoder is basically similar. As the largest sign language
dataset with a wide variety of topics, How2Sign needs to emphasize
both local action details and global visual signals. This is also in
line with the design intention of our framework SEDS, which has
demonstrated outstanding performance on all three datasets.

Different Feature Fusion Methods. To validate the effective-
ness of our introduced Cross Gloss Attention Fusion (CGAF) Mod-
ule in the fusion of Pose and RGB features, we compare it with
several other fusion methods in Table 5. Add-MLP adds the se-
quence features of two modalities at corresponding positions and
passes them to a Multi-Layer Perception (MLP), resulting in the
second-best performance. Concate-MLP method replaces the add
operation with concatenate, and its performance is slightly inferior
compared to the Add-MLP. Concate-Trans concatenates the two
sequence features and feeds them into a shallow-layer Transformer
for interaction, then separates them for addition at corresponding
positions. This method exhibits a notable decrease in performance
when compared to the first two methods, as the feature aggregation
at specific positions incorporates irrelevant distant features from
both modalities. Similarly, Cross-Atten also aggregates irrelevant
distant features from the opposite modality, leading to a certain de-
cline in performance. The CGAF Module effectively integrates only
local features with similar semantics surrounding corresponding
positions from inter-modal and intra-modal while ignoring dis-
tant features. As a result, it achieves the best performance among
various fusion methods.

Analysis of Pose-RGB Fine-grained Matching Objective. In
our framework, the role of the Pose-RGB fine-grained matching

Pose-RGB Alignment T2V V2T
Yes No R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

✓ 60.8 74.7 79.7 55.8 68.7 74.2

✓ 62.5 75.1 80.1 57.9 70.4 74.9

Table 6: The ablation study on How2Sign to investigate the
influence of Pose-RGB alignment on CGAF.
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Figure 5: The ablation study on How2Sign to investigate the
influence of 𝛼 and 𝛽 . Where 𝛼=0.8 in (a) and 𝛽=0.4 in (b).

objective is to explicitly align the corresponding Pose and RGB clip
features before fusion, then implicitly reduce the difference between
distribution of Pose-Text and RGB-Text fine-grained matching ma-
trices. We demonstrate the effect of this objective on our CGAF
module in Table 6. CGAF module benefits significantly from Pose-
RGB fine-grained alignment. This objective not only enhances the
fusion of corresponding position features, but also leads to better
aggregation of semantically similar neighbors from two modalities
in the latent space. Consequently, the performance improvement
of the CGAF method is +1.7 T2V and +2.1 V2T R@1.

The Effect of Factors 𝛼 and Factors 𝛽. As depicted in Fig. 5,
we investigate the effect of the auxiliary loss factor 𝛼 and the Pose-
RGB matching factor 𝛽 on T2V and V2T tasks. For the auxiliary
loss factor 𝛼 , there is a significant improvement in performance
when it increases from 0 to 0.1. The performance continues to rise
steadily with the increase of 𝛼 , reaching a peak at 0.8, after which
it gradually decreases. This indicates that the existence of auxiliary
loss effectively provides supervision for both branches. However,
an overly large auxiliary loss may overly emphasize the training of
two branches. For the Pose-RGB matching factor 𝛽 , performance
consistently improves until it reaches 0.4, after which it begins to
decline gradually. A smaller value enables fine-grained alignment
between Pose and RGB clip features, while an excessively large 𝛽
will overemphasize this objective, compromising the representation
ability of Pose and RGB modalities.

4.4 Qualitative Results
Visualization of the Fine-grained Similarity Matrices. To pro-
vide a more intuitive demonstration of the effect of Pose-RGB fine-
grained matching objective, we select a pair of sign language video
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Figure 7: Top-3 TVR results on How2Sign. Left: by Pose en-
coder. Middle: by RGB encoder. Right: by our framework.
Red: correct videos. Q: query annotation.

and annotation. Then we calculate and display the fine-grained sim-
ilarity matrices between the Pose, RGB, and Fusion features with
text in the form of heat maps, both with and without this objective.
As shown in Fig. 6, the heat maps in the upper part of the figure
represent the matrices when the Pose-RGB matching objective ex-
ists, while those in the lower part represent the situation when the
objective is absent. The distribution differences between the Pose
and RGB similarity matrices are smaller in the upper part than in
the lower part. Additionally, the mean values of the distributions
are essentially the same for the upper matrices, while they differ
significantly for the lower matrices. The Fusion similarity matrix
in the upper part contains more high similarity scores compared
to the lower part, and the overall distribution has a higher mean

value. This observation suggests that the presence of the Pose-RGB
matching objective allows for the fusion of features to consider the
characteristics of both the Pose and RGB features, enabling them to
better match the corresponding words in sign language annotation.
In contrast, the focus during fusion tends to favor a single modality
with higher mean scores of fine-grained matrix when the objective
is absent, resulting in poor fusion performance.

Retrieval Results of Different Sign Encoders. The Top-3
TVR results are displayed in Fig. 7. Specifically, in the first example,
we observe that the Pose encoder focuses more on the similarity
of detailed hand movements and key joint positions, while the
RGB encoder emphasizes the overall action and expression of the
person. In the second example, which includes two different signers,
the RGB encoder shows a clear preference for matching specific
individuals, even though there are significant differences in the
details of local part movements. The Pose encoder, due to its input
modality, eliminates this potential bias. By combining the strengths
of both the Pose modality and the RGB modality, our framework
SEDS retrieves the correct results in both examples. It is capable
of focusing on both local details and the global semantics of the
videos, while also exhibiting great robustness and generalization.

5 CONCLUSION
In this paper, we propose a novel framework called Semantically
Enhanced Dual-Stream Encoder (SEDS) for the emerging Sign Lan-
guage Retrieval task. SEDS uses online Pose encoder and offline
RGB encoder to extract features from sign language videos, focusing
on local action details and global visual semantics simultaneously.
In the fusion stage, we propose a Cross Gloss Attention Fusion
(CGAF) Module to fuse local information with similar semantic
information from two modalities. We also develop a supervised
Pose-RGB fine-grained matching objective, to match the contextual
fine-grained dual-stream features. Our SEDS outperforms previous
work significantly on How2Sign, PHOENIX-2014T, and CSL-Daily
datasets. We hope that our work helps future exploration of sign
language video retrieval tasks and promotes the development of
multimodal alignment in retrieval tasks.
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