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A INTRODUCTION
This supplementary material provides further details and additional
experiments not included in the main paper. It begins by introduc-
ing the process of keypoints extraction and selection (B.1), and the
architecture of Pose encoder (B.2). Then, we compare the efficiency
between different modules in the SEDS framework to demonstrate
the significant difference in computational requirements between
the two modal encoders (C). After that, we present ablation stud-
ies on the effect of Signbert Initialization (D.1), number of cross
gloss attention layers (D.2), using keypoints from different parts
(D.3). Furthermore, we study the influence of fine-tuning hyper-
parameters on performance, such as batch size (D.4) and learning
rate (D.5). Finally, we show more visualization of Top-3 TVR results
(E.1) and the fine-grained similarity matrices (E.2). All ablation stud-
ies and qualitative experiments are conducted on the How2Sign [3]
dataset.

B ADDITIONAL IMPLEMENTATION DETAILS
B.1 Keypoints Extraction and Selection
For Pose estimation, we choose RTMPose[5] trained on COCO-
WholeBody[7] as the estimator. We adopt the implementation by
MMPose[2] and extract 133 2D keypoints. As mentioned in the
main paper, we select 49 keypoints and divide them into three
groups: 7 keypoints for the body, 21 keypoints for the left hand, and
21 keypoints for the right hand as Pose input. In the next section,
we investigate the impact of leveraging keypoints from different
parts, such as the mouth and face, as Pose input. We visualize these
keypoints from different parts in Fig. 1.

B.2 Pose Encoder Architecture
We leverage the RGB encoder and Pose encoder to extract RGB and
Pose features, respectively. The RGB Encoder is a pre-trained I3D[1]
network. Therefore, for the sake of simplicity, we do not go into
details here. We only detail the structure of the Pose Encoder that
consists of GCN-hand, GCN-body and 1D Conv Fusion module. As
shown in Tab. 1, where ST-GCN[9] layer 𝑖 means the 𝑖-th ST-GCN
layer in each module.

As depicted in Fig. 2, the 2D coordinates produced by the es-
timator serve as input. We utilize GCN-hand and GCN-body to
respectively extract features related to the hand and body. Subse-
quently, these features are combined through the 1D Conv Fusion
module, yielding the final Pose features.

C EFFICIENCY COMPARISON ON DIFFERENT
MODULES

In order to provide a more intuitive demonstration of the efficiency
of different modules in the SEDS framework, we present the param-
eters, FLOPs and input size of these modules in Tab. 2. From the
table, it is obvious that there is not much difference in the number

Figure 1: The coordinates of each group in our approach.
They represent the body, left hand, right hand, mouth, and
face respectively.
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Figure 2: The architecture of Pose Encoder.

Structure GCN-hand GCN-body

ST-GCN layer 1 128 128
ST-GCN layer 2 128 128
ST-GCN layer 3 256 256
ST-GCN layer 4 512 512

Concat 1536

1D Conv Fusion 1536
Table 1: Output dimension of different layers in Pose Encoder.

of parameters between each module. However, for the consumption
of FLOPs, the RGB encoder is more than two hundred times that of
other modules, primarily due to extensive convolution operations
by multiple negative samples. In comparison to RGB encoders, Pose
encoders and other modules require significantly less computa-
tional resources, allowing for end-to-end training. Furthermore, the
input size of each module indicates that the density of RGB visual
data inevitably consumes a significant amount of memory.
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Metrics RGB Encoder Pose Encoder RGB Interaction Pose Interaction Text Encoder CGAF Module

Parameters 17.8M 9.66M 57.7M 57.8M 25.2M 17.4
FLOPs 28551.3G 132.1G 59.7G 60.1G 12.9G 18.1G
Input Size (16×64, 3, 224, 224) (16×64, 49, 2) (16, 64, 1024) (16, 64, 1536) (16, 32, 512) (16, 64×2, 512)

Table 2: The efficiency comparison on different modules in our SEDS framework. We set the batch size to 16 and assume the
RGB encoder for online feature extraction. Where 64 is the length of video clips, 32 is the length of text words, 49 is the total
number of keypoints, 1024 is the output size of the RGB encoder and 1536 is the output size of the Pose encoder.

Signbert Structure T2V V2T
Initialization R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

% Pose 48.4 64.5 71.3 42.9 59.6 66.6
! Pose 55.9 69.6 74.9 50.9 64.7 69.3

% SEDS 57.5 72.4 77.5 53.1 67.0 71.9
! SEDS 62.5 75.1 80.1 57.9 70.4 74.9

Table 3: The ablation study on How2Sign to investigate the
influence of Signbert Initialization.

Parts T2V V2T
R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

hand 58.7 72.4 77.7 54.1 67.3 73.3
hand+body+face 62.0 74.8 79.7 56.8 69.3 74.2
hand+body+mouth 61.9 74.9 79.6 57.0 69.9 74.4
hand+body+face+mouth 62.3 75.0 79.4 57.6 69.6 74.8

hand+body 62.5 75.1 80.1 57.9 70.4 74.9

Table 4: The ablation study on How2Sign to investigate the
influence of using keypoints from different parts to input
Pose Encoder.

layers T2V V2T
R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

0 60.2 73.3 78.1 55.2 68.5 73.3
1 61.6 74.8 79.0 56.4 69.3 74.2
2 62.5 75.1 80.1 57.9 70.4 74.9
3 62.2 74.9 80.0 57.6 70.2 74.4
4 61.8 74.2 79.1 56.8 69.9 74.0

Table 5: The ablation study on How2Sign to investigate the
influence of the number of cross gloss attention layers.

batchsize T2V V2T
R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

16 42.6 58.9 65.5 40.7 55.8 61.7
32 49.7 65.2 71.1 47.0 62.1 67.8
64 57.4 71.7 76.6 53.0 66.1 71.1
128 62.5 75.1 80.1 57.9 70.4 74.9

Table 6: The ablation study on How2Sign to investigate the
influence of the batch size.

D MORE EXPERIMENTS
D.1 Ablation Study on Signbert Initialization
In our framework, the GCN network module for hand keypoints
in Pose encoder is initialized with the Signbert[4], which under-
stands the hand Pose through the masked modeling strategy and
the Hand-model-aware decoder based on MANO[8]. We compare
a randomly initialized baseline with one initialized by Signbert in

(a) Learning rate for Pose encoder

(b) Learning rate for CGAF module

Figure 3: The ablation study on How2Sign to investigate the
influence of the learning rate for different modules.

Tab. 3. Both Pose encoder and SEDS show significant performance
improvements due to the initialization of Signbert.

D.2 Ablation Study on Cross Gloss Attention
Layers

In the SEDS framework, the Cross Gloss Attention Fusion (CGAF)
module aggregates the local sequence features with similar seman-
tics from inter-modal and intra-modal. We utilize two cross gloss
attention layers in CGAF module for fusion of two modalities. In
Tab. 5, we investigate the impact of different layer numbers. The
performance of model is optimal at two layers, exhibiting a gradual
increase at few layers, and a slight decrease after two layers. This
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Figure 4: More Top-3 TVR results on How2Sign. Left: by Pose encoder. Middle: by RGB encoder. Right: by our framework. Red:
correct videos. Q: query annotation.

indicates that only when there are sufficient layers, Pose features
and RGB features are interacted and fused more fully. However, the
excessive number of layers results in the two features losing their
discrimination in the fusion process.

D.3 Ablation Study on Keypoints from Different
Parts

Tab. 4 illustrates the performance changes of the SEDS framework
when different combinations of keypoints are used for the Pose
Encoder. We observe a notable decrease in model performance
when only hand keypoints were introduced. This is because body
keypoints not only provide a comprehensive description of overall
human motion but also enhance the robustness of the model, reduc-
ing the dependency of the RGB model on specific individuals and
backgrounds. Additionally, we find that there is a slight decrease
in model performance when keypoints from face or mouth[6] are
introduced alone. This is due to the RGB modality inherently con-
taining rich facial expression information. So the keypoints from
the face or mouth alone disrupt the existing facial expression in-
formation. Using both face and mouth keypoints produces similar
results to using hand and body keypoints, as the information they
provide is largely redundant with existing facial expression data
from the RGB modality. Due to the feature extraction of excess key-
points bringing extra computational complexity, we only use the
combination of hand and body keypoints as input in Pose Encoder.

D.4 Ablation Study on Training Batch Size
As shown in Tab. 6, the continuous increase of batch size steadily
improve the retrieval performance. In contrastive learning, batch
size directly decides the number of negative samples in a batch
during the training process. Due to GPU memory limitations, we
set the batch size to 128.

D.5 Ablation Study on Learning Rate for
Different Modules

In Fig. 3, we study the different learning rates of two modules. The
performance of both modules reach their peak at a learning rate of
1e-4, but the trend of change is different. The most complex part
of the Pose encoder is the GCN module for both hands, which is
initialized by Signbert. In contrast to the CGAFmodule, the Pose en-
coder demonstrates superior performance at low learning rates due
to the influence of prior knowledge. However, excessive learning
rates result in a more obvious decline in performance, particularly
in the Pose encoder, which is attributed to the deterioration of prior
knowledge. And the performance of randomly initialized CGAF
modules exhibit a relatively minor decline.

E MORE QUALITATIVE RESULTS
E.1 More Top-3 TVR Results.
We show more Top-3 TVR results in Fig. 4. The different emphases
of the Pose encoder and RGB encoder are clearly displayed. Con-
currently, our framework SEDS integrates the benefits of both and
retrieves accurate samples in all examples.

E.2 More Visualization of the Fine-grained
Similarity Matrices

As shown in Fig. 5, we show more visualization results of the fine-
grained similaritymatrices. These examples intuitively illustrate the
positive impact of our proposed Pose-RGB fine-grained matching
objective. It ensures a balanced distribution of the Pose-Text and
RGB-Text fine-grained similarity matrices during the fusion process,
thereby enhancing the representation ability of the fusion features.
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Figure 5: More visualization results of the fine-grained similarity matrices. We sample 64 clips in the video and 32 words in the
text to extract features, calculate similarity, and display them in a heatmap format.
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