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ABSTRACT

Recent advances in structure-based drug design (SBDD) have produced surprising
results, with models often generating molecules that achieve better Vina docking
scores than actual ligands. However, these results are frequently overly optimistic
due to the limitations of docking score accuracy and the challenges of wet-lab
validation. While generated molecules may demonstrate high QED (drug-likeness)
and SA (synthetic accessibility) scores, they often lack true drug-like properties or
synthesizability. To address these limitations, we propose a model-level evaluation
framework that emphasizes practical metrics aligned with real-world applications.
Inspired by recent findings on the utility of generated molecules in ligand-based vir-
tual screening, our framework evaluates SBDD models by their ability to produce
molecules that effectively retrieve active compounds from chemical libraries via
similarity-based searches. This approach provides a direct indication of therapeutic
potential, bridging the gap between theoretical performance and real-world utility.
Our experiments reveal that while SBDD models may excel in theoretical metrics
like Vina scores, they often fall short in these practical metrics. By introducing this
new evaluation strategy, we aim to enhance the relevance and impact of SBDD mod-
els for pharmaceutical research and development. Code and data are available at
https://github.com/bowen-gao/sbdd practical_evaluation.

1 INTRODUCTION

The field of Structure-Based Drug Design (SBDD) has experienced remarkable advancements in
recent years, with the development of models such as Pocket2Mol (Peng et al., [2022)), TargetDiff
(Guan et al., 2023)), and MolCRAFT (Qu et al.,2024)). These models are at the forefront of enhancing
the efficiency and precision of drug discovery by generating molecules designed to effectively bind to
specific protein pockets. Despite these technological strides, the practical application of these models
in real-world drug development remains a formidable challenge. The crux of this challenge lies in the
verification of their efficacy, which is complicated by difficulties in synthesizing and testing these
molecules in laboratory settings.

The Vina docking score (Eberhardt et al., 2021} Trott & Olsonl 2010) is the standard metric used to
estimate the binding abilities of molecules generated by SBDD models. It provides an estimate based
on an empirical formula, serving as a proxy for binding affinity. Studies have shown that SBDD
models can generate molecules with Vina docking scores outperforming reference ligands (Guan
et al.| |2023;[2024; |Qu et al., [2024), suggesting significant potential in the field. However, its reliability
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is increasingly questioned. As shown in Figure[I] Vina scores can be inflated by simply increasing
the number of atoms in a molecule or manipulated by various factors, as discussed in Appendix
[El revealing a susceptibility to overfitting. This suggests that reliance on these easily manipulated
metrics can lead to overly optimistic model evaluations. Additionally, as noted by |Gao et al.|(2024),
recent advances in modeling have improved Vina scores, but estimates of specific binding ability,
such as the delta score, remain unchanged or even worse, still falling short of reference ligand
performance. |Guo et al.| (2021) also done experiments showing that some docking algorithms are not
even correlated with binding affinity.

Furthermore, the practical synthesis of molecules generated by current SBDD models often proves
to be complex and unfeasible, which significantly impedes their validation in wet-lab experiments
(Bradshaw et al.l 2019;|Gao & Coley, 2020). This challenge, compounded by the long-term reliance
on flawed metrics such as the Vina docking score, has led to a notable shortcoming in SBDD—a
disconnect from practical applications. This gap is evident as the outputs of current SBDD models
are theoretically promising, but prove challenging to utilize effectively in real-world settings. To
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Figure 1: The relationship between Vina Dock Score/QED and number of atoms

address these critical shortcomings in the field of SBDD, we propose a new evaluation framework
that extends beyond traditional theoretical estimation-based metrics. Recent attempts to incorporate
SBDD-generated molecules into practical drug discovery processes have involved modifying these
molecules into existing or more easily synthesizable forms (Moret et al.| 2023)). Others have used
these molecules as reference templates for virtual screening (Shen et al.,|2024) or conduct virtual
screening using characteristics like scafford of functional groups of the generated molecules (Bo
et al.}2024) Inspired by these successful approaches, our proposed evaluation framework includes
several new metrics designed to directly assess the practical usability and deployment capabilities of
SBDD models from a way that more directly reflects the success rate of wet-lab experiment.

Our framework assesses three levels of evaluation. First, it evaluates the similarity of generated
molecules to known active compounds, gauging their potential to be modified into viable drug
candidates. Second, it introduces a virtual screening-based metric that directly measures the practical
deployment capabilities of these molecules. Third, it continues to consider the estimated binding
affinity, albeit in a more nuanced and critically evaluated manner.

By successfully meeting our proposed metrics, an SBDD model is more likely to produce molecules
that are not only theoretically effective but also therapeutically viable in real-world drug discovery
settings.Notably, our metrics for using generated molecules in virtual screening directly correlate
with and reflect the success rates of wet lab experiments. This approach aims to bridge the
significant gap between theoretical SBDD models and their practical application in the pharmaceutical
industry, paving the way for more reliable and efficacious drug development processes.

We conducted extensive experiments using our dataset, which includes data derived from real crystal
structures and is divided based on local structural similarities of the pockets, to train and evaluate
major SBDD models. Our results show that, from a practical deployment perspective, the molecules
generated by current models fall significantly short of matching the quality of reference ligands.
Despite achieving high Vina scores, their practical usability metrics reveal a substantial gap. Our
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proposed evaluation pipeline is designed to help bridge this gap, offering a direction that could
enhance the practical applicability of future SBDD models.

2 RELATED WORK

Structure-Based Drug Design involves generating small molecules with potential biological activity
for a given protein pocket (Zhang et al.l 2023). Several evaluation metrics have been designed to
evaluate SBDD models.(Du et al.,2024) Traditionally, biological activity is estimated using AutoDock
Vina (Trott & Olson, |2010), a widely used docking software designed to predict the preferred binding
orientation of a small molecule (ligand) when bound to a larger protein (receptor) target.

Recently, with the development of deep generative models, several representative models have
emerged. These include autoregressive models like AR (Luo et al., [2021)) and Pocket2Mol (Peng
et al.,[2022), diffusion-based models like Targetdiff (Guan et al.l [2023), and the newly developed
Bayesian Flow Network model, MolCRAFT (Qu et al., [ 2024)).

Typically, these models are trained and tested using the CrossDocked dataset (Francoeur et al.,
2020), which is constructed by cross-docking protein-small molecule pairs from the PDBbind dataset.
However, this benchmark dataset presents several issues. First, the structures in CrossDocked are
generated by docking software instead of real complexes, which may be inaccurate and cannot fully
reflect the real interaction pattern. Secondly, the data selection in CrossDocked relies on docking
software, which leads to bias in the dataset, as the ligands selected for the training data tend to be
favored by the docking software. Third, we observed that many existing models use the test set as a
validation set to select checkpoints during training, which risks data leakage. Given these concerns, it
is important to adopt a new dataset for a more reliable evaluation of SBDD models.

3 METHODS

3.1 EVALUATION METRICS THAT REFLECT PRACTICAL NEEDS

Despite recent advancements in deep learning-based generative models for drug design—some even
surpassing reference ligands in Vina docking scores—their practical application in pharmaceutical
settings remains limited. The ultimate goal is to generate drug-like molecules that specifically bind
to intended targets, but current structure-based drug design (SBDD) models fall short in real-world
applications.

A significant limitation lies in current evaluation metrics, which fail to accurately assess a model’s
effectiveness in generating useful molecules. Most of the previous SBDD models published in major
machine learning conferences primarily relied on Vina docking scores, biased toward molecules that
achieve high scores yet are less effective practically. For example, as shown in Table (1] Vina scores
are less predictive than other methods for virtual screening. Additionally, Figure [T demonstrates that
merely increasing molecular size can inflate Vina scores while decreasing Quantitative Estimate of
Drug-likeness (QED) values, revealing a vulnerability to overfitting. We also find vina score can be
overfitted with more Hydroxyl groups(-OH), less percentage of Nitrogen and Oxygen atoms, and
more Halogen atoms. Details can be found at Appedix [E] More importantly, despite improvements in
Vina docking scores, the delta score—a crucial metric for assessing specific binding capability—still
significantly lags behind that of reference ligands. This discrepancy could misdirect model devel-
opment away from practical needs, underscoring the inadequacy of relying solely on Vina docking
scores and highlighting the necessity for more relevant and accurate evaluation criteria.

Another challenge is the synthetic feasibility of molecules generated by deep learning approaches.
Although these molecules often achieve high synthetic ability (SA) scores, studies (Bradshaw et al.,
2019} |Gao & Coley, 2020) indicate they are frequently difficult to synthesize in practice, hindering
wet-lab validation and application. This suggests that current theoretical metrics are impractical and
do not accurately reflect the ability of models in terms of generating useful molecules.

To address these limitations, we propose reevaluating how model outputs are assessed. Instead of
relying on theoretical estimation-based metrics, we advocate for metrics that directly reflect the
usefulness of generated molecules without the need to consider synthetic ability.
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Recent research has involved successfully manually modifying generated molecules into synthesizable
structures for wet-lab validation, drawing on the expertise of medicinal chemists who typically adjust
molecules based on actives targeting the same biological structures (Moret et al.||2023). Building on
this approach, we suggest shifting the evaluation paradigm. Rather than solely aiming for molecules
ready for direct wet-lab experiments and binding affinity estimation, we should assess their potential
to resemble active compounds. This perspective focuses on the feasibility of transforming generated
molecules into practically useful compounds. A similarity or distance-based metric could then be
employed to gauge this practical utility, reflecting a more realistic and applicable measure of a
generated molecule’s value in drug development.

Furthermore, leveraging the capability of generative models in virtual screening to serve as templates
for identifying similar compounds has shown promise, achieving significant hit rates (Shen et al.|
2024])). Thus, we suggest adding a virtual screening metric to evaluate how well a generated molecule
can discriminate between active and inactive compounds, providing a direct measure of its utility in
drug discovery.

In summary, as shown in Figure 2} our proposed evaluation metrics for assessing the effectiveness of
deep learning-based generative models in drug design are structured across three levels:

1. Similarity To Know Actives: These metrics evaluate the potential for modification and
optimization of generated molecules. They assess how closely these molecules resemble
known active compounds, facilitating easier synthesis and optimization.

2. Virtual Screening Ability: These metrics determine the ability of generated molecules to
distinguish between active and inactive compounds. This is crucial for identifying potential
drug candidates that are more likely to succeed in later stages of drug development.

3. Binding Affinity Estimation: These metrics theoretically estimate the binding capabilities
of generated molecules to target structures. Beyond the conventional vina docking score, we
also include other score functions.
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Figure 2: Our three-level evaluation metrics include: (a) Binding affinity estimation, which encom-
passes the Vina docking score, delta score, and DrugCLIP score; (b) Similarity-based metrics that
assess the resemblance between generated molecules and known actives; (c) Virtual screening ability
metrics that evaluate the capability of the generated molecules to differentiate between actives and
decoys when used as reference templates.

We introduce the details of those metrics.

Similarity to Known Drugs and Actives Our framework maps molecules into a feature space
using molecular fingerprints, specifically 2D Extended Connectivity Fingerprints (ECFP) and 3D
Extended Three-dimensional Fingerprints (E3FP), which are 1024-dimensional bit vectors. We also
use deep learning-based encoders like Uni-Mol (Zhou et al., [2022)) and the DrugCLIP (Gao et al.,
2023) molecular encoder, which aligns with binding pockets.
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Given a target with N known actives aq, as, . . . , an, the Active Similarity score is:
Active Similarity(/) = max o(l)-o(a;)).
y() = max | (o()- o(a)

The underlying rationale for the similarity-based metrics is that similar molecules show similar
binding behaviour(Bostrom et al., [2006), and for a generative model to be considered effective, it
must be capable of generating molecules that are at least similar to one of the known active
compounds. Furthermore, to ensure that the generated molecules exhibit “drug-like” properties, they
should also demonstrate similarity to one or more known approved drugs.

Table 1: Results from virtual screening using docking software, and using real ligands as templates
for similarity searches. Similarity is determined through various molecular fingerprints and deep
learning encoders. BEDROC and EF@1 are metrics of vitrual screening. The results demonstrate
that using real ligands as templates for virtual screening yields better outcomes compared to virtual
screening with the docking software Vina.

Category Method BEDROC {1 EF@1 1
Docking G1.1de 40.7 16.18
Vina - 7.32
2D Fingerprints 39.32 24.95
. . . 3D Fingerprints 23.77 14.30

Ligand-based virtual s

18ANCDASEd VITUAL SCIECNINE | 1ypi-Mol Encoder 13.39 7.48
DrugCLIP Encoder 4543 29.23

Virtual Screening Ability Relying solely on similarity-based metrics remains insufficient for
a comprehensive evaluation. In real-world drug discovery, known active compounds often have
decoys—molecules that are structurally similar or share properties but are ineffective against the
target. Therefore, if a model predominantly generates decoys that exhibit high similarity to active
compounds, it cannot be considered effective. To address this, it is crucial to not only assess the
similarity of generated molecules to known actives but also evaluate the model’s ability to distinguish
between actives and decoys. This ensures the model generates therapeutically relevant molecules
rather than misleadingly similar but inactive compounds, providing a more accurate measure of its
true potential in drug discovery.

Thus, we introduce our virtual screening-based metrics. Using the molecules generated by our
models as references, we retrieve similar compounds from a compound library and evaluate the
accuracy of identifying known actives. The library includes experimentally validated actives and
decoys—structurally analogous to actives but experimentally confirmed to lack binding affinity. This
makes the task of distinguishing actives from decoys particularly challenging. Additionally, we
leverage different encoders for virtual screening, offering a flexible approach to better assess model
performance across diverse molecular representations.

Specifically, we use the BEDROC and EF metrics to evaluate the effectiveness of virtual screening.

BEDROC incorporates exponential weights that assign greater importance to early rankings. In the

context of virtual screening, the commonly used variant is BEDROCgs, where the top 2% of ranked

candidates contribute to 80% of the BEDROC score. The formal definition is shown in equation [T}

where NTB,, is the number of true binders in the top a%. Enrichment Factor (EF) is also a widely
NTBa

used metric, calculated as EF,, = NTB, sa where N'TB; is the total number of binders in the entire

screening pool. Table[I|demonstrates that using real ligands as templates for virtual screening yields
better results compared to virtual screening with docking software, validating the reliability of our
proposed metric.

NTB¢ g—ari/N R, sinh(a/2) 1

2zt
BED = == .
ROCq R, ( l—e—c ) 8 cosh(a/2) — cosh (/2 — aR,,) T et R
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The virtual screening capability we use to evaluate SBDD models is central to our proposed metrics.
Notably, unlike the Vina docking score, which is a theoretical estimation and shows poor correlation
with actual binding affinity, the enrichment factor from virtual screening is directly correlated
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with, or even equivalent to, the real hit rate in wet lab experiments. This means our metric aligns
with practical needs and directly reflects the success rate of SBDD.

Binding Affinity Estimation Although the focus of this paper is not the theoretical estimation of
binding affinity, we still provide more comprehensive metrics to do the estimation. In this benchmark,
we continue to use Vina docking scores as one of the metrics to reflect the binding estimation. In
addition to the conventional docking score, we also use the delta score proposed by (Gao et al., [2024),
which provides a good estimation of the specific binding ability of generated molecules. It provides an
unbiased evaluation of whether the generated molecules possess structures that specifically contribute
to binding the desired target, rather than structures that overfit the docking software to achieve high
docking scores across all targets. To be specifically, for each target y; and the generated molecules
x;5, 7 € 1,2, ..., m;. While the docking score is calculated as S(x;;, y;), after random sample another
target yy, the delta score is calculated as:

1 7
Delta Score(y;) = i Z(—S(l“ij, Yi) + S(@ijs yr)), @)

j=1
for each i, we sample k € {1,2,...,n} with k # i.

To obtain a more accurate delta score with improved docking scores, we utilized both Glide SP and
Glide XP (Friesner et al.,|2006)) for calculating the delta score. Glide XP is a more precise docking
method compared to Glide SP, but it is also more time-consuming.

Beyond docking scores, we also employ a machine learning-based scoring function. DrugCLIP Gao
et al.| (2023) has demonstrated outstanding performance in virtual screening, making it a valuable
evaluation metric for assessing the binding potential of generated molecules.

3.2 TEST DATASET

Previous work primarily tested models on the CrossDocked (Francoeur et al.| [2020) test set, which has
several limitations. It is randomly selected, lacks diversity checks, and is derived from synthesized
data rather than real-world crystal structures. Additionally, each pocket in CrossDocked is paired
with only one ground truth ligand, even though a single pocket can bind to multiple different ligands.

To address these limitations, we propose a new test set for SBDD models that are created from
Mysinger et al.| (2012). Our test set comprises 101 targets , with accurately recorded ligand and
protein files, and includes a diverse range of protein types as shown in the Appendix [Il Each target
is supplemented with a significant number of actives and decoys, facilitating the evaluation of
similarity and distance-based scores as well as virtual screening performance. A robustly generated
molecule should effectively distinguish between actives and decoys. On average, each target in
our test set contains 224.4 actives and 50 decoys for each active.The actives and decoys used
have been validated through wet-lab experiments. Previous studies have demonstrated that virtual
screening methods performing well on these targets can achieve matching results in real-world
wet-lab experiments (Wang et al.| [2024; Jia et al., | 2024)), indicating that virtual screening metrics can
effectively align with real-world wet-lab performance.

3.3 TRAINING AND VALIDATION DATASET

Existing Models are commonly trained and tested on the CrossDocked (Francoeur et al., 2020) dataset,
produced by docking software, which consists of synthesized protein-ligand complexes. In contrast,
our benchmark utilizes real protein-ligand conformations from experimental crystal structures in
PDBbind (Wang et al.,[2004). Actually, ligands in PDBbind have a higher docking score as well as
delta score for specific binding ability. Details shown in Appendix [G]

We refined the PDBbind dataset by excluding complexes with nuclear attachment and inaccurately
recorded ligands. Then split into a 9:1 training and validation set. To assess the SBDD model’s
generalization across diverse pockets, we removed samples with similar pockets using FLAPP for
pocket alignment and similarity assessment. FLAPP(Sankar et al., |2022) (Fast Local Alignment
of Protein Pockets) is a tool used to estimate the structural similarity (alignment rate) between two
pockets. We calculated all the FLAPP scores between the training set and test set pockets and
removed all pockets from the training set with a FLAPP score greater than 0.6 or 0.9 relative to any
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test set pocket. After the removal, the 0.6 version has 12344 complex-ligand pairs remaining while
the 0.9 version has 17519 pairs remaining. Details can be found in the Appendix [G]

4 EXPERIMENTS

4.1 TESTED MODELS

We select representative deep learning-based models for structure-based drug design evaluation. For
voxel-grid based model, we use LIGAN (Ragoza et al.l 2022). For autoregressive models, we choose
AR (Luo et al.,|2021)) and Pocket2Mol (Peng et al., [2022). For diffusion models, we select Targetdiff
(Guan et al., 2023). Additionally, MolCRAFT (Qu et al.,[2024) is included as a generative model
based on the newly developed Bayesian flow network.

4.2 RESULTS OF BINDING ABILITY ESTIMATION

Table 2: Evaluation Results for binding ability estimation. Results for Reference Ligands and best
results are shown in bold text. Atom Efficiency is defined by Vina score/number of heavy atoms,
for reference only.

Vina Delta Score 1

Docking Score | Atom Efficiency | Glide SP Glide Xp | DTUgCLIP score
Reference Ligand | -9.363 -0.349 | 2.686 3.509 | 0.508
LiGAN -5.175 -0.503 0.037 0.065 -0.016
PDBbind AR -7.255 -0.464 0.483 0.694 0.009
60 Pocket2Mol -7.640 -0.479 0.531 0.553 -0.005
TargetDiff -9.562 -0.283 0.325 0.421 0.099
MOoICRAFT -9.788 -0.364 0.973 1.301 0.145
LiGAN -6.577 -0.457 0.107 - -0.000
PDBbind AR -7.340 -0.446 0.523 - 0.007
90 Pocket2Mol -8.195 -0.481 0.599 - -0.006
TargetDiff -9.711 -0.287 0.238 - 0.095
MOoICRAFT -9.778 -0.363 1.163 - 0.173

We first show the metrics that relevant to theoretically binding affinity estimation. In Table
it is evident that both TargetDiff and MolCRAFT outperform the reference ligand in terms of
average docking scores. However, when considering the Delta Score and DrugCLIP score, they
lag significantly behind the reference ligand. Specifically, MolCRAFT, while the best performer
among the evaluated methods, still shows a considerable disparity in Delta Score (0.973 vs. 2.686)
and DrugCLIP score (0.173 vs. 0.508) when compared to the reference ligand. It is noteworthy
that although TargetDiff achieves a competitive docking score, its Delta Score is inferior to those of
autoregressive-based methods. This suggests that TargetDiff’s high docking score might be the result
of overfitting large atom numbers.

4.3 RESULTS OF SIMILARITY-BASED METRICS

The evaluation results using similarity-based metrics are presented in Table 3] While MolCRAFT
excels in generating molecules that closely resemble known active compounds for specific targets,
all models, along with other methods tested, significantly underperform compared to the reference
ligand. This suggests that current structure-based drug design (SBDD) models still lack effective
conditional generation capabilities, highlighting a key area for further development. The distribution
plots for similarity-based metrics across all targets in DUD-E are shown in Appendix [FT][F2]

4.4 RESULTS OF VIRTUAL SCREENING-BASED METIRCS

The results for virtual screening ability metrics are presented in Table d] MolCRAFT outshines
all other methods, regardless of the feature extractor utilized. Nonetheless, it underperforms when
benchmarked against reference ligands. Optimistically, using the DrugCLIP molecular encoder for
encoding generated molecules for similarity-based virtual screening enables MolCRAFT to achieve
a virtual screening efficacy comparable to that of Vina, with an enrichment factor of 5.549 versus
Vina’s 7.32 (Table [I). This result is particularly encouraging as the speed of virtual screening
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Table 3: Evaluation Results for Similarity-Based Metircs on real active molecules. Results for
Reference Ligands and best results are shown in bold text.

| 2D Fingerprints | 3D Fingerprints | Uni-Mol | DrugCLIP

Reference Ligand 0.588 0.230 0.973 0.870
LiGAN 0.131 0.109 0.022 0366

. AR 0.157 0.122 0.949 0.449
PDES‘“" Pocket2Mol 0.179 0.143 0.946 0414
TargetDiff 0.169 0.143 0.958 0478
MOoICRAFT 0.208 0.161 0.965 0.522

LiGAN 0.136 0112 0.931 0397

. AR 0.161 0.125 0.951 0.468
PDEgmd Pocket2Mol 0.185 0.146 0.945 0.419
TargetDiff 0.169 0.142 0.958 0477
MOoICRAFT 0.214 0.163 0.966 0.547

Table 4: Evaluation Results for Virtual Screening-Based Metircs. Results for Reference Ligands and
best results are shown in bold text.

2D Fingerprints 3D Fingerprints Uni-Mol DrugCLIP

BEDROC EF | BEDROC EF | BEDROC EF | BEDROC EF
Reference Ligand |  39.32 2495 | 23.77 1430 | 13.39 748 | 4543 29.23
LiGAN 2.306 1.079 2.216 1.007 2.024 0.837 1.581 0.655
PDBbind AR 4.938 2.567 4.407 2.196 3.266 1.501 3.698 1.796
60 Pocket2Mol 5.976 3.054 4.192 2.047 2.335 1.033 3.667 1.827
TargetDiff 4.062 1.957 3.747 1.763 2.995 1.340 4.400 2.260
MolCRAFT 7.584 3.953 5.521 2.792 4.868 2.357 7.265 3.968
LiGAN 2.240 1.004 2.610 1.183 2.151 0.932 1.450 0.636
PDBbind AR 4.946 2.522 4.156 2.053 3.115 1.384 4.223 2.139
90 Pocket2Mol 6.277 3.240 4.359 2.174 2.970 1.312 3.215 1.541
TargetDiff 4.431 2.174 3.888 1.861 3.967 1.828 4.122 2.117
MolCRAFT 9.032 4.825 6.423 3.284 5.299 2.456 9.782 5.549

with generated molecules is significantly faster than using docking software to dock all candidate
compounds. The distribution plots for the enrichment factor of all targets in DUD-E across various
models are displayed in Figure 3]

o

| |
20041 e

LiGAN AR Pocket2Mol TargetDiff MolCRAFT LiGAN AR Pocket2Mol TargetDiff MolCRAFT

Enrichment Factor
Enrichment Factor

(a) Morgan Fingerprints (b) ECFP3 Fingerprints

Figure 3: Distribution plots for Virtual Screening results on all targets in DUD-E with different
models.

4.5 ANALYSIS
4.5.1 INSIGHTS REGARDING PERFORMANCE OF DIFFERENT MODELS

Figure ] presents radar plots comparing the performance of different models across various metrics
in our evaluation. The outer circle represents the metrics of reference ligands. It is evident that
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Figure 4: Radar plot shows the performance of different methods on part of our multifaceted metrics.
Detailed definition and results refer to FDA-Similarity can be found at Appendix [E]

MOolCRAFT outperforms other methods. Additionally, all methods fall significantly short of the
reference ligands, even though some points on the outer circle do not represent the full value of the
metrics for reference ligands—such as the virtual screening enrichment factor, which is only 25% of
its actual value. Despite this, the models still perform far below the reference ligands.

While achieving impressive Vina docking scores, TargetDiff’s overall performance is lacking. The
generated molecules exhibit poor delta scores, low similarity to known active compounds, and struggle
to distinguish between active and decoy molecules, even when compared to simpler autoregressive
methods. This points to a potential flaw in the direction of diffusion-based SBDD models, which,
despite their popularity (Guan et al., 2024} Huang et al., 2024)), may primarily overfit to Vina scores.
The ease of generating large molecules inflates the docking scores but fails to translate into truly
useful or relevant molecular structures for drug discovery.

Pocket2Mol ranked second-best for similarity to known actives and virtual screening using fingerprint-
based extractors, its performance declines with deep encoder-based methods. The autoregressive
nature limits its ability to generate larger molecules. Despite this, its good performance on vir-
tual screening indicates that Pocket2Mol can generate valuable substructures or functional groups,
though smaller molecules impact its docking scores negatively. We present some visualizations on
Pocket2Mol’s ability to generate valuable substructures or functional groups in Appendix [D]

MOoICRAFT ranks as a top performer across multiple metrics and excels in virtual screening. It
achieves results comparable to Vina docking but with greater speed, demonstrate that using SBDD
models to generate molecules, then use those molecules as reference for virtual screening to find
potential active molecules is a practical alternative to directly use the generated molecule to do
wet-lab experiment.

Despite achieving higher docking scores, current models still fall short on other proposed metrics such
as delta score, similarity to known actives, and virtual screening ability compared to reference ligands.
Relying heavily on Vina docking scores can lead to an overly optimistic view of the effectiveness
of SBDD models. Interestingly, because SBDD models are often judged by their ability to generate
molecules with high docking scores, many have shifted focus toward overfitting these scores. For
instance, some models use trained Vina predictors to guide sampling, prioritizing the hacking of Vina
scores rather than generating reliable and actual effective molecules. This approach can misguide the
development of SBDD models. We strongly advocate for evaluating SBDD models using metrics
that are more practically relevant to drug discovery, rather than solely depending on inaccurate
theoretical scoring functions that are easy to be hacked or overfitted.

4.5.2 ANALYSIS ON UNBIASED METRICS

In Figure m we demonstrate that theoretical estimation-based metrics, such as the Vina score and
QED, are prone to overfitting due to their high correlation with molecular properties like atom count.
To investigate whether our proposed metrics exhibit similar behavior, we conduct a comparative
analysis. As shown in Figure 5] metrics such as delta score, similarity to known actives, and virtual
screening performance show no correlation with atom count, indicating their robustness against
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Figure 5: Plots that show the relevance between the atom numbers and different metrics, including
(a) delta score (b) virtual screening ability (c) similarity to known actives.

such biases. Note that as our metrics are based on similarity between molecules, rather than
empirical formulas, they are less vulnerable to overfitting or manipulation by specific factors.

4.6 VISUALIZATION OF PROPOSED METRICS

Ligand Known Active Molecule generated by MoICRAFT Known Drug in Molecule generated by
FDA approved list TargetDiff

' {
J "s%
PR 4
g . Vina Score: \ Z QED
. -6.56 0.051

Active

s Y FDA
”,: / )\ L& Similarity:

Similarity:

i Ol
4

Case 1 Case 2

Figure 6: Cases that show the importance of using similarity-based metrics to evaluate the effective-
ness of generated molecules

We do some visualizations to show the reason and importance of using our metrics. Figurg6[a) shows
a molecule generated by MolCRAFT that, although diverging from the reference ligand, aligns with
a known active of target AOFB, achieving a high Morgan fingerprint similarity of 0.42 but receiving
a bad Vina score of -6.56. This example underscores the necessity of using more practical metrics,
rather than solely relying on Vina scores, and emphasizes the importance of considering all known
actives in addition to reference ligands for comprehensive model evaluation.

In Figure[6[b), a molecule from the TargetDiff model exhibits significant similarity to a molecule
on the FDA-approved list, despite its low QED score. This case demonstrates the significance of
using similarity as a metric. For details and definition on the FDA-approved list and the definition
of similarity, please refer to Appendix |Al This suggests its potential as a drug candidate through
targeted modifications. This case highlights the importance of our practical related metrics for a more
comprehensive assessment of drug-likeness in generated molecules. More visualizations to show the
necessity of our proposed metric can be found in Appendix D}

4.7 CONCLUSION

In this paper, we present a new benchmark of current Structure-Based Drug Design (SBDD) models
with metrics that are related to practical needs. Unlike previous evaluations that primarily relied on
Vina docking scores to estimate the efficacy of generated molecules, we advocate for assessing these
models from a practical deployment perspective. Our findings reveal that while current methods often
outperform reference ligands in terms of docking scores, they fall significantly short when evaluated
using the more practical correlated metrics we propose. This discrepancy not only highlights the
over-optimism in previous evaluations but also provides valuable insights by reassessing the value
of current SBDD models. We hope our evaluation framework will help bridge the gap between
generative models and their practical applications.
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A FDA-SIMILARITY : AN AUXILIARY SIMILARITY-BASED METRIC

In addition to using similarity to known actives to measure the distance between generated molecules
and real actives, we also proposed an FDA similarity metric, comparing the similarity of generated
molecules to 2582 FDA-approved drugs to assess the drug-likeness of generated molecules:

FDA Similarity(l) = o(d)
Similarity (1) je{l’rg}'a.m?%g?} (o(l) - o(d;))

where d; represents the j-th molecule in the FDA-approved drug database.

we believe that the 2582 molecules currently approved by the FDA as small-molecule drugs possess
certain favorable drug-like chemical properties, such as stability, activity in the human body, toxicity
profile, absorption, and proper metabolism. These properties characterize a distribution within
a chemical space, and the distance to that chemical space can characterize the possibility a new
molecule to be modified to a drug. If a model consistently generates small molecules across various
targets that are far from the known drug-like space, the model’s ability to generate drug-usable
molecules may be questionable.

However, this metric may be overly strict; thus we place it in the appendix and provided the results of
various models in Table[3] on this metric for reference.

Table 5: Results for Similarity-Based Metrics including FDA-Approved drug similarity. Results for
Reference Ligands and best results are shown in bold text.

2D Fingerprints | 3D Fingerprints Uni-Mol DrugCLIP
FDA  Active | FDA  Active | FDA Active | FDA  Active

Reference Ligand | 0348 0.588 | 0.139  0.230 | 0.975 0.973 | 0.749 0.870

LiGAN 0.231 0.131 | 0.117 0.109 | 0950 0.922 | 0.783 0.366
AR 0237  0.157 | 0.116  0.122 | 0966 0.949 | 0.747 0.449

PDE'O”‘““ Pocket2Mol | 0.286 0179 | 0.137 0143 | 0.964 0946 | 0.735 0414
TargetDiff | 0209 0169 | 0.132  0.143 | 0967 0958 | 0.683 0478

MOICRAFT | 0258 0208 | 01290 0.161 | 0.971 0965 | 0.676 0.522

LiIGAN | 0236 0136 | 0117 0112 | 0952 0931 | 0.733 0397

I AR 0220 0161 | 0113 0125 | 0965 0951 | 0.730 0.468
oM Pocke2Mol | 0283 0.85 | 0.134 0146 | 0.963 0945 | 0732 0419

TargetDiff | 0.208 0.169 | 0.132  0.142 | 0.967 0.958 | 0.686 0.477
MoICRAFT | 0.258  0.214 | 0.128 0.163 | 0.972 0.966 | 0.681 0.547

Pocket2Mol demonstrates the highest similarity to known drugs on the FDA-approved list based
on 2D Fingerprints.A notable observation is that the reference ligand shows greater similarity to
known active compounds than to FDA-approved drugs in general. In contrast, the generative models
display higher similarity to the broader category of FDA-approved drugs rather than to specific known
actives.

B ADDITIONAL BENCHMARK RESULTS FOR OPTIMIZATION-BASED METHOD.

We present the results of RGA (Fu et al [2022)), an optimization-based method, in Table [/} After
several rounds of optimization, RGA model can generate molecules with better Vina docking scores.
However, the virtual screening metrics are not improved. And the Delta Score is still quite limited.

C ADDITIONAL BENCHMARK RESULTS ON LIT-PCBA

In addition to the 101 targets used in the main paper, which utilizes decoys designed according
to specific rules, we also benchmark the models with 15 additional targets that are derived from
LIT-PCBA dataset (Tran-Nguyen et al.,|2020), an alternative virtual screening dataset. This dataset
consists of decoys that have been actualized in wet-lab experiments and exhibit minimal bioactivity.
The threshold used to differentiate between active compounds and decoys in LIT-PCBA is more
relaxed, making it a significantly more stringent test.
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Table 6: Evaluation Results for optimization-based method RGA.

\ Binding Affinty | Virtual Screening

| Vina docking Delta score | BEDROC  EF
Reference Ligand | -9.363 2686 | 39.32 24.95
MOolCRAFT ‘ -9.788 0.973 ‘ 7.584 3.953
RGA Initial -9.000 0.177 4.042 1.951
RGA Final -9.665 0.286 3.888 1.850

Table 7: Evaluation Results for Similarity-Based Metrics on LIT-PCBA dataset. Results for Reference
Ligands and best results are shown in bold text.

| Similarity to Actives | Virtual Screening

| Fingerprints DrugCLIP | BEDROC  EF
Reference Ligand | 0.269 0.613 | 4332 3.641
LiGAN 0.141 0.529 1.527 0.889
AR 0.157 0.558 1.879 1.361
Pocket2Mol 0.187 0.538 2.363 1.711
TargetDiff 0.167 0.508 2.095 1.237
MolCRAFT 0.189 0.556 2.498 1.577

Table [/| shows that LIT-PCBA is indeed a difficult dataset, with an enrichment factor of 3.64
when using actual ligands as a reference, indicating a modest improvement over random selection.
MolICRAFT remains the top-performing model overall.

D MORE VISUALIZATIONS

D.1 MOLECULE GRAPH

We provide additional visualizations in Figures[7] [8| 0] and[I0]to demonstrate the significance of
our proposed metrics. Molecules generated by MolCRAFT and Pocket2Mol exhibit good similarity
to one of the known active compounds, even though they only achieve moderate docking scores.
It is important to note that these molecules are not similar to the original ligands, highlighting the
importance of using targets with multiple known actives for evaluating similarity metrics.
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Figure 7: Cases that show the importance of using similarity-based metrics to evaluate the effective-
ness of generated molecules. Molecule is generated by MolCRAFT.
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Figure 8: Cases that show the importance of using similarity-based metrics to evaluate the effective-
ness of generated molecules. Molecule is generated by MolCRAFT.
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Figure 9: Cases that show the importance of using similarity-based metrics to evaluate the effective-
ness of generated molecules. Molecule is generated by Pocket2Mol.
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Figure 10: Cases that show the importance of using similarity-based metrics to evaluate the effective-
ness of generated molecules. Molecule is generated by Pocket2Mol.

D.2 DOCKING POSES

Here, we present a comparison of the binding poses between real actives and generated molecules with
high similarity to actives. Figure[TT|and Figure [I2]illustrates molecules generated by MolCRAFT, [I3]
and[[4]are generated by Pocket2Mol.
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Figure 11: Binding poses between real active molecules (green) and generated molecules (pink) on
Target ROCK1. Molecule is generated by MolCRAFT.

Figure 12: Binding poses between real active molecules (green) and generated molecules (pink) on
Target HDAC2. Molecule is generated by MolCRAFT.

Figure 13: Binding poses between real active molecules (green) and generated molecules (pink) on
Target ESR1. Molecule is generated by Pocket2Mol.
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Figure 14: Binding poses between real active molecules (green) and generated molecules (pink) on
Target GLCM. Molecule is generated by Pocket2Mol.

E ADDITIONAL ANALYSIS ON VINA DOCKING BEING EASY TO BE
OVERFITTED

In addition to atom number, we identified several factors that can lead to overfitting or manipulation
of Vina docking scores. These factors include the count of hydroxyl groups (-OH), the percentage of
nitrogen and oxygen atoms (N+O), and the count of halogens ((fluorine, chlorine, bromine, iodine,
and astatine)). The correlations between these factors and Vina docking scores are illustrated in

Figures I3} [T6] [T7]

Mean Vina Score vs Hydroxyl (-OH) Count
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Figure 15: Vina docking scores have a high correlation with the count of Hydroxyl groups.
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Figure 16: Vina docking scores have a high correlation with the ratio of Nitrogen(N) and Oxygen(O)
atoms.
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Figure 17: Vina docking scores have a high correlation with the number of Halogen atoms.
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F ADDITIONAL DISTRIBUTION PLOTS

We provide the violin distribution plots of different targets in the test test for different metrics.

F.1 DISTRIBUTION PLOT FOR SIMILARITY TO KNOWN DRUGS IN FDA APPROVED LIST

In Figure [T§]

Max Similarity
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YR P IE N R
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Figure 18: Distribution plots for max similarity to all drugs in FDA approves list on all targets in
DUD-E with different models.

F.2 DISTIRBUTION PLOT FOR SIMILARITY TO KNOWN ACTIVES

In Figure[19]
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Figure 19: Distribution plots for max similarity to known actives on all targets in DUD-E with
different models.

F.3 DISTIRBUTION PLOT FOR VIRTUAL SCREENING

In Figure[3]

"
g s
2 g’

v

: £
§ OC2
g b}

of L A > 0

LiGAN AR Pocket2Mol TargetDiff MoICRAFT LIGAN AR Pocket2Mol TargetDiff MolCRAFT
(a) Morgan Fingerprints (b) ECFP3 Fingerprints
5 5
g g
AE ‘E‘ 75
[
£ £ .
S 5
S UEJ 25
LiGAN Pocket2Mol TargetDiff MolCRAFT LiGAN Pocket2Mol TargetDiff MolCRAFT
(c) Uni-Mol Molecular Encoder (d) DrugCLIP Molecular Encoder

Figure 20: Distribution plots for Virtual Screening results on all targets in DUD-E with different
models.
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G COMPARISON OF PDBBIND AND CROSSDOCKED DATASET.

Table 8: Glide Docking score and Delta Score of the pocket with reference ligand on PDBbind and
CrossDocked dataset.

| Glide Docking  Delta Score
CrossDocked | -6.37 1.05
PDBBind ‘ -7.19 1.88

H TRAINING AND VALIDATION SET DETAILS

We constructed our training and validation sets using data from PDBbind, renowned for its highly
reliable, experimentally observed structures. The dataset underwent rigorous filtering to ensure quality
and relevance. Initially, we excluded all ligands that RDKit could not correctly interpret, including
those with erroneous molecular structures and discontinuous molecules. Subsequently, we selected
pockets from target PDB files using a 10 A distance threshold from the ligand. We further refined
the dataset by excluding pockets containing nucleic acids (DNA/RNA) and repairing non-standard
residues within the pockets. Rare non-standard residues that could not be repaired were removed.
Additionally, protein pockets with fewer than 100 atoms were discarded. This comprehensive filtering
process yielded a final set of 19,438 protein pockets, which we then used to construct our training
and validation datasets.

To assess the ability of the SBDD generation model to generalize to novel pocket types, we imple-
mented a homology reduction based on pocket structural similarity between the training and test sets.
Utilizing FLAPP, we aligned pockets from the training set with those from the test set, quantifying
structural similarity through the ratio of successfully aligned amino acids. Figure [21|illustrates the
impact of varying FLAPP score thresholds on the number of remaining samples. To strike a balance
between removing highly similar pockets and retaining an adequate volume of training data, we
selected thresholds of 0.6 and 0.9, resulting in two distinct datasets, as detailed in Table E} These
datasets were subsequently divided into training and validation sets in a 9:1 ratio through random
sampling.

17500

ize

.N 15000
12500
10000

7500

5000

Training and Validation Set S

2500

0 51

0.0 0.2 0.4 0.6 0.8
FLAPP scores

Figure 21: Relationship between FLAPP Score Threshold and Dataset Sizes

Figure [22]illustrates the FLAPP similarity scores between selected targets from the DUD-E dataset
and protein pockets from the PDBbind database. The majority of cases have scores clustered in the
range of 0.2 to 0.4.
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FLAPP score distribution: DUD-E vs PDBBind
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Figure 22: FLAPP score distribution. Each figure is the distribution of FLAPP score between a
DUD-E target and all pdbbind pockets.
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Table 9: Data sizes for different thresholds

Threshold (FLAPP Score) \ Data Size (PDBbind)
0.6 \ 12,344
0.9 \ 17,519

I TEST SET DETAILS

We constructed new test sets utilizing data from the well-established virtual screening benchmarks
DUD-E and LIT-PCBA. Following the removal of erroneous records, we curated 101 test data
points from DUD-E and 15 from LIT-PCBA. These test data cover various categories of protein
targets, such as G-Protein Coupled Receptors (GPCRs), kinases, and nuclear receptors. This diversity
enables a comprehensive assessment of the model’s performance across different protein types. The
classification and quantity of these data points are provided in Table [I0}

In DUD-E, each target in our test set contains an average of 224.4 active compounds and 50 decoys per
active. For LIT-PCBA, each target includes an average of 503.33 active compounds and 176,268.13
decoys. Consistent with our training and validation sets, we defined pockets for SBDD inputs by
selecting regions within a 10 A radius from the reference ligand. This systematic approach ensures
a robust and comprehensive evaluation of the model’s capabilities across diverse protein-ligand
interactions.

Table 10: Distribution of protein target categories in our test set

Target Categories | DUD-E | LIT-PCBA
Kinase 26 2
Protease 15 0
Nuclear Receptor 11 4
GPCR 4 2
Miscellaneous 5 0
Ion Channel 2 0
Cytochrome P450 2 0
Other Enzymes 36 7

J  MODEL TRAINING DETAILS

We employed a new dataset to train and test across five distinct SBDD baselines. All models were
trained on a single NVIDIA A100 80GB GPU. The training durations were as follows: MolCRAFT
required approximately 30 hours, TargetDiff took around 48 hours, Pocket2Mol also took about
48 hours, AR’s main model and frontier model each required 48 hours, and LiGAN training took
approximately 30 hours.

K MODEL SAMPLING DETAILS

For the 101 + 15 targets in our test set, we sampled 20 small molecules per target using each model.
For the autoregressive-based models, AR and TargetDiff, which initially tend to generate smaller
molecules, we first sampled 100 molecules and then randomly selected 20 from this set to ensure
uniformity in molecule size.

L EVALUATION PARAMETERS

For Morgan Fingerprint, we use radius = 2, length of bit vector = 1024.
For E3FP Fingerprint, we use length of bit vector = 1024, radius multiplier = 1.5.
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For Uni-Mol molecular encoder, we use the trained weights provided.

For DrugCLIP related models, we use the trained weights provided.
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