
A Supplemental Material1

A.1 Notations2

We first summarize the symbols in the main body, which will remain in use in the supplementary3

materials:4

Table 1: Major symbols and definitions.

Symbols Definitions
G = (V, E) graph G with nodeset V , edgeset E
A n× n adjacency matrix of G
L normalized graph Laplacian matrix
L̃ L̃ = 2L/λmax − I
x n-dimensional signal defined on the given graph G
z n-dimensional filtered signal

Y set of class labels
yv class label for node v ∈ V
dG(v,m) the shortest path distance between two nodes v and m on graph G
N(v) neighbors of node v in G
Ni(v) i-hop neighbors of node v, Ni(v) = {m : m ∈ V ∧ dG(v,m) = i}
Θ the parameters of the MLP used for feature transformation
W the weight matrix of the feature propagation
Λ the trainable coefficient of the feature propagation
σ the non-linear activation function of the feature propagation

A.2 Detailed Analysis of Proposition 3.15

Proof. For node v, following the assumption that its neighbors’ class labels {ym : m ∈ N(v)}6

are conditionally independent when yv is given, and P (ym = yv|yv) = α, P (ym = y|yv) =7
1−α
|Y|−1 ,∀y ̸= yv, we have P (ym = i|yv = i) = α and P (ym = j|yv = i) = 1−α

|Y|−1 ,∀i, j ∈ Y8

and j ̸= i, where m ∈ N(v). The 2-hop neighborhood N2(v) of a node v will be expectedly9

heterophily-preferred when the following inequality holds:10

P (yo = i|yv = i)− P (yo ̸= i|yv = i) ≤ 0, ∀o ∈ N2(v) (1)

Consider node o ∈ N2(v), we have:11

P (yo = k|yv = i) =
∑
j∈Y

P (yo = k|ym = j)P (ym = j|yv = i) (2)

Let τ = (1−α)2

|Y|−1 and (1− α)2 = (|Y| − 1)τ . From Eq. 2, we have:12

P (yo = i|yv = i) = α2 + τ (3)

and for j ∈ Y ,13 ∑
j ̸=i

P (yo = j|yv = i) = P (yo ̸= i|yv = i) = 2α(1− α) + (|Y| − 2)τ (4)

Hence, defining the difference between P (yo = i|yv = i) and P (yo ̸= i|yv = i) as ϵ, we have:14

ϵ = P (yo = i|yv = i)−P (yo ̸= i|yv = i) = α2 + τ − 2α(1− α)− (|Y| − 2)τ (5)

Eq. 5 can be simplified as :15

ϵ = (2α2 − 1) + 2τ (6)

Applying (1−α)2

|Y|−1 = τ , we have16

ϵ =
2α(α|Y| − 2) + (3− |Y|)

|Y| − 1
(7)
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Notice that |Y| ≥ 3 for multi-class node classification task, it can easily obtain17

ϵ ≤ 2α(α|Y| − 2)

|Y| − 1
≤ 0, if α ≤ 2

|Y|
(8)

Clearly, the sufficient condition for P (yo = i|yv = i)− P (yo ̸= i|yv = i) ≤ 0 is α ≤ 2
|Y| . Thus, the18

2-hop neighborhood N2(v) of a node v will always be expectedly heterophily-preferred if α ≤ 2
|Y| .19

This completes the proof.20

According to Eq. 6 and Eq. 7, we also have remarks as follows:21

Remark 1. For a graph G with a class label set Y , consider the class labels of the neighbors of22

node v in G, {ym : m ∈ N(v)}, are conditionally independent given yv, and P (ym = yv|yv) = h,23

P (ym = y|yv) = 1−h
|Y|−1 ,∀y ̸= yv, we have: 1) the 2-hop neighborhood N2(v) of a node v will24

always be expectedly homophily-preferred if h ≥
√

1
2 . 2) the 2-hop neighborhood N2(v) of a node v25

will always be expectedly homophily-preferred if Y is a binary class label set.26

A.3 Analysis of some existing GNNs from a Polynomial Filtering Perspective27

ChebNet [3]. ChebNet first used polynomials to approximate filters, thus avoiding feature decompo-28

sition in spectral convolution. The Chebyshev polynomials Tk(·) is used:29

z =

K∑
k=0

θkTk(L̃)x (9)

Theoretically, the Chebyshev polynomials could approximate arbitrary filters if the order K is high30

enough. Experiments on node classification also empirically demonstrate that ChebNet filters more31

effectively than GCN on non-homophilic graphs.32

GCN [6]. Kipf et al. simplifies ChebNet to 1-order polynomial approximation, and set θ = θ0 =33

−θ1 [6]. Thus, the filtering operation can be seen as:34

z =

1∑
k=0

θkTk(L̃)x = θ0(I+D−1/2AD−1/2)x ≈ θÃx (10)

where Ã is the symmetric normalized adjacency matrix with self-loops. Although GCN uses the35

renormalization trick and non-linear activation function, its filtering capability is still limited since36

the 1-order polynomial can only approximate a finite number of filters. Moreover, the predefined37

coefficients (θ0, θ1) render it equivalent to a low-pass filter. More important, analysis of GCN from38

the spectral filtering perspective can account for the over-smoothing of the GCN. We can derive from39

Eq. 10 that the frequency response of GCN layer is ĝ(λ) = (1− λ̃), where λ̃) are the eigenvalure of40

Ã. Hence, the frequency response of GCN is equivalent to ĝ(λ) = (1− λ̃)
K

when stacking K such41

layers. As K tends to infinity, it will approximate an impulse low-pass filter, which means the filtered42

signal at each node is the same, i.e., over-smoothing. As a simplified version of the GCN, SGC [8] is43

consistent with it.44

APPNP [7]. An improved propagation scheme is derived from PageRank in [7], which is also45

equivalent to a polynomial filtering operation:46

z = (1− α)KÃKx+

K−1∑
k=0

α(1− α)kÃkx (11)

where α ∈ (0, 1] is a hyper-parameter to control the teleport (restart) probability. The second term47

is K-order monomial polynomial of Ã and the coefficient of the k-order is α(1 − α)k. It can be48

seen that the fixed α restricts the expressibility of APPNP, so that only a specific set of filters can be49

approximated. Nevertheless, APPNP can approximate more filters than GCN. On the basis of APPNP,50

GPRGNN [2] and BernNet [5] improve APPNP via trainable parameters to learn the coefficients of51

the polynomial.52
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ARMA [1]. A recursive and distributed formulation is used to implement the auto-regressive moving53

average (ARMA) filter. If we remove the non-linear activation function, the ARMA layer is defined54

as follows:55

z =
1

B

B∑
b=1

x̄
(K)
b , x̄

(K)
b = MKxWK

b +

K∑
k=0

Mkx(VbW
k
b ) (12)

where M = D−1/2AD−1/2, Wb
B
b=1 and Vb

B
b=1 are the trainable weight matrics. It can be seen that56

the second term is a K-order polynomial of M and the coefficient of the k-order is integrated into the57

feature transformation matrix VbW
k
b . Thus, ARMA is similar to ChebNet which can approximate58

arbitrary filters.59

A.4 Details of Experimental Setup60

The Statistics of Datasets. The statistics of the 10 datasets used in this work are summarized in61

Table 2.

Table 2: Statistics of the used datasets

Cora Cite. PubMed Comp. Photo Cham. Squi. Actor Texas Corn.

Nodes 2708 3327 19717 13752 7650 2277 5201 7600 183 183
Edges 5278 4552 44324 245861 119081 31371 198353 26659 279 277
Features 1433 3703 500 767 745 2325 2089 932 1703 1703
Classes 7 6 5 10 8 5 5 5 5 5
HG 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.057 0.301

62

Hardwares. The experiments and models are performed on a workstation with an NVIDIA 2080Ti63

GPU (12GB GPU memory), an Intel Xeon E5-2680 CPU (8 cores), and 100GB memory.64

Baseline Implemenation. For GPRGNN, BernNet, GeomGCN, and BMGCN, we directly use the65

open-source codes released by the original paper. For the others, we use the models that are provided66

by [2], which are implemented based on Pytorch Geometric library [4]. Specifically, we use 2 GCN67

layers with 64 hidden units for GCN implementation. We use 2 GAT layers for GAT implementation,68

where the attention heads are (8, 1), and the number of hidden units of each head is (8, 64). For69

ChebyNet, each layer is set to 2 propagation steps with 32 hidden units. For APPNP, we use a 2-layer70

MLP with 64 hidden units for feature transformation and 10 steps for feature propagation. For SGC,71

we use the default K = 2. The MLP in baselines is as same as the 2-layer MLP of APPNP. The URL72

of the officially released codes are listed as follows:73

• GPRGNN: https://github.com/jianhao2016/GPRGNN74

• BernNet: https://github.com/ivam-he/BernNet75

• GeomGCN: https://github.com/graphdml-uiuc-jlu/geom-gcn76

• BMGCN: https://github.com/hedongxiao-tju/BM-GCN77

NFGNN Implementation and Hyperparameters Tuning. For our NFGNN, a 2-layer MLP is used78

for feature transformation, whose dropout rate dpl is set to 0.5 for all datasets, and hidden units is set79

to (fh, |Y|). Besides, we use lrl to denote the learning rate of the MLP. lrp, dpp are used to denote the80

learning rate, dropout rate of the node-oriented filtering layer. The Adam optimizer with weight decay81

L2 is used to optimize the model. For the parameter initialization of NFGNN, we use PPR [2] to82

initialize Λ and Xavier initialization for Θ and W. The hyperparameter of PPR is denoted as β. For83

each dataset, we search the optimal lrl within {0.01, 0.05}, lrp within {0.001, 0.005, 0.01}, dpp and β84

within {0, 0.1, 0.2, 0.5, 0.7, 0.8, 0.9}, fh within {16, 32, 64}, and L2 within {0.0001, 0.0005, 0.001}.85

The hyperparameters of NFGNN for each dataset are summarized in Table.3.86

A.5 Additional Experimental results of Node-level Analysis87

Fig. 1 shows the results of node-level analysis on six datasets. It can be observed that our NFGNN88

achieves great performance on each interval with high accuracy. Besides, GCN performs poorly for89

nodes with a low homophilic ratio, which is consistent with the analysis of the GCN.90
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Table 3: Hyperparameters for NFGNN on real-world datasets.

Datasets lrl dpl lrp dpp β fh L2 K

Cora 0.01 0.5 0.001 0.9 0.9 32 0.001 10
Citeseer 0.05 0.5 0.001 0 0.9 64 0.001 10
Pubmed 0.05 0.5 0.001 0 0.2 32 0.001 10
Computers 0.05 0.5 0.005 0.7 0.5 64 0 10
Photo 0.05 0.5 0.01 0.8 0.8 64 0 10
Chameleon 0.01 0.5 0.01 0.5 0 64 0.0001 10
Squirrel 0.01 0.5 0.001 0.5 0 64 0 10
Actor 0.05 0.5 0.001 0 0.8 16 0.0005 10
Texas 0.05 0.5 0.001 0.1 0.8 32 0.0001 10
Cornell 0.05 0.5 0.001 0.5 0.9 64 0.001 10

(a) Pubmed (b) Computers (c) Photo

(d) Chameleon (e) Squirrel (f) Texas

Figure 1: Mean classification accuracy of nodes range by homophily ratio hN1
(v) on each dataset.

A.6 Broader Impact91

NFGNN is a general technical and theoretical contribution, which extends existing methods of92

global consistent spectral filtering and adaptive discrimination of the variations of local homophily93

patterns. We consider the proposed NFGNN might have a positive societal impact since it offers a94

new possibility for network analysis and node prediction to benefit the applications involving graph95

data. We hope that this paper could help researchers understand and develop universal GNNs from a96

spectral domain perspective, thus breaking through the long-held homophily assumptions of GNNs.97

Besides, there are no foreseeable potential negative social impacts of this paper.98
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