A Fkr, Reduces to 7 under Gaussian Assumptions

In this section, we prove that PC'r, , is a generalized version of PC and, therefore, it retains all its
properties and previously achieved results when assuming a Gaussian generative model. Particularly,
we show that the newly introduced energy function F 1, reduces to the PC original energy formulation

F and, almost exactly, F, when reintroducing the Gaussian assumptions for the generative model.
Consider the KL divergence formulation and a layer I. As per Eq. (9), & = Dx1[X;(00)|| X (1))
If we assume that A} and 2?1 are multivariate Gaussian distributions with means v;, %; and fixed
diagonal covariance matrices ¥.;, il, we have that
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which equals the energy function for each layer used in Eq. (6). If, instead, we assume that f)l isa
learnable parameter associated with layer [ (that is, ¥; € 6;, while keeping ¥; = I), we obtain:
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where %’ is a constant. By substituting (e?z +1) = e;!i, & corresponds to the layer energy function
obtained in Eq. (5).

B Biological Plausibility

Biological plausibility is a generic concept in the literature, often used to state that a specific family
of models behaves similarly to biological neural networks present in our brains. However, different
definitions of biological plausibility exist in the literature, and a model can be considered biologically
plausible according to some definitions and not others. In what follows, we refer to the definition
introduced in [Whittington and Bogacz, 2017], mostly restricted to local computations and plasticity.
We now discuss how our framework fails to satisfy them at the most general level, and how to address
this limitation. Particularly, the learning dynamics determined by the F  energy respects the PC
assumptions defined by Whittington and Bogacz [2017] at the layer level. Particularly:

* Local computation: the activity of each layer depends only on the activities of its input
nodes and their synaptic weights (i.e., u; = fi(¢1—1,6;)).

¢ Local plasticity: synaptic plasticity only depends on pre and post-synaptic nodes. In fact, to
minimize Fg,, we take the derivatives
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and, analogously,
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where the terms of both summations only depends on ¢;, ¢;11, and ¢;_.
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However, this does not guarantee that the above two properties are satisfied at the neural level, as the
exact neural circuit employed within each layer strictly depends on the distribution families chosen

for .5(\'1 and AX;. Consequently, while the original formulation of PC has some degree of biological
plausibility, this may not be true in the general proposed framework. This is because we do not
set any limit on the complexity of possible distributions. This could also have repercussions on
eventual implementations on analog and neuromorphic hardware. Hence, an interesting open problem
is understanding which classes of probability distributions are biologically plausible, and which
allow our framework to be implemented on these emergent technologies. Researchers interested
in developing biologically plausible models, could then only restrict their study to specific classes
of probability distributions. The same applies to researchers interested in implementing models on
analog circuits.

C A More Detailed Analysis of Learning Dynamics of Fx

In what follows, we explicitly derive the update rules for the two classes of distributions discussed
in the main body of the paper: categorical distributions and Gaussian distributions with non-fixed
variance.

Categorical distributions: A PC layer following a softmax activation function represents a categorical
distribution over w; elements. Each node stores a different probability mass value. We have that, at
each time step ¢:

8(}5”' 8]-“KL 0
2= — =— E+ &
ot dén, a¢hj(’ +1)
0~ b
= —— i) In(—)+¢& 14
961, (;(@, ) <m,i) 1+1) (14)
o0&,
=—In¢;;+lnp; —1— ag;;r_l7
J
where £,1 = 0 when [ = L. Furthermore,
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where p; = f1(0; $i1—1).

Gaussign distributioAns: As shown in Section 4.2, we can model a full Gaussian distribution
N (U, %), with (U, %)) = i = fi(¢y—1,6;). In this scenario, the layer [ parameterises the
distribution N (uy, %), and ¢; = (uy, ;). We are, again, assuming diagonal covariance matrices.
The dynamics are as follows:

3ul,j o 6]—'KL o 0
o ow,  ow, T Ew)
’ ’ (16)
_ s, - 084
1,5 =btJ aul,j
0%;  OFkL 0
ot oSy, azl,j(gﬁgl“)
A7)
_ 1(2—1 A—l) _ agl+1
2 i LiZ oy’



and
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where ¢, = (u; — ;) and j' = j — w/2.

D Derivations of the Equations Used in this Work

In this section, we provide more explicit derivations for several of the equations presented in this
work. By doing so, we hope to ease a detailed understanding of the mathematical framework that we
defined.
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E Implementation Details

In this section, we provide a detailed description of the models and parameters needed to reproduce the
results presented in this work. Note that our goal was to compare the performance of different training
methods. Hence, we do not aim for state-of-the-art results, but rather a comparable performance
across the different training methods for each employed architecture.

E.1 Classification Networks

We used fully connected feedforward networks composed by a sequence of L € {3,4,5} fully
connected layers of width w € {256,512, 1024 }. The weights learning rate was set to 5y = 0.0001.
We also experimented with different node learning rates 3, € {0.01,0.05,0.025}. We used 7' = 32
¢-steps and initialized the node values at ¢ = 0 using a forward pass, as suggested by Song et al.
[2020]. We used the Adam optimizer to optimize the weights of the model, while we used a
stochastic gradient descent optimizer for the nodes x. We did not find any relevant differences in
the observed relative performance of the three learning methods among the various combinations
of hyperparameters tested. The results reported in Fig. 3 were obtained with w = 512, L = 3, and
By = 0.05. We found that using ReLU instead of tanh as activation function significantly reduces the
accuracy achieved by PC (at least with the highly-specific architectures used for this task).

E.2 Variational Autoencoders

We used fully connected layers for both the encoders and the decoders. We trained several models
with L € {2, 3} layers for both encoder and decoder and width w € {256, 512}. We used 32 latent
units for the bottleneck layer, divided equally to store mean and variance. The activation function
used was ranh. Learning rates and optimizers are the same used for classification networks. The
variance in the results reported is due to different combinations of the hyperparameters chosen to
obtain one or the other architecture. In Fig. 5, we reported the learning curves for two models. The
choice was completely random to highlight the comparable performance of BP and PC on a general
architecture.

E.3 Transformer Language Models

The 8001-token vocabulary is automatically generated based on a portion of the training data and
includes the <sos>, <eos>, and <pad> tokens. The input of the model is restricted to sequences of
length up to 34, where to the token of the sentence, we prepend the <sos> token and append the <eos>
token. The tokens for each batch are further appended to the same length via the <pad> token.

To optimize the weights of the model, the AdamW optimizer is used with default (0.01) weight decay,
and each model is trained for two epochs with a batch size of 8. We use a stochastic gradient descent
optimizer for the nodes x.

Here are the hyperparameter ranges and best values used for each model:
For BP: 3y € {0.0004,0.0008,0.0016,0.0032,0.0064}. Best value: 0.0016.

For PCr: T € {4,5,6,7,8}, Bs € {0.001953125,0.00390625,0.0078125, 0.015625, 0.03125},
Bs € {0.0002,0.0004,0.0008,0.0016,0.0032,0.0064,0.0128}. Best values: T = 4, 3, =
0.015625, By = 0.0064.

For PCr,,: T € {4,5,6,7,8}, B4 € {0.25,0.5,1.0}, B € {0.000025, 0.00005, 0.0001, 0.0002,
0.0004, 0.0008,0.0016}. Best values: 7' = 5, B, = 0.5, Bg = 0.0008.

The total training time of the hyperparameter search is approximately 94 hours on one Nvidia Titan
RTX GPU.
E.3.1 Qualitative Results

Table 2 shows example sentence completions given by BP, PC'r, and PCr, , along with the
probabilities assigned to each prediction. The sentences were selected subjectively from the test
dataset based on how interesting they are and cut right before a subjectively interesting word to be
predicted.

18



Input sentence | BP PCr PCryy

Yet the bank and its executives are still ready leaders (7.5) . (1.0) leaders (12.1)
to support specific Democratic [candidates] Party (7.2) R (1.0 candidates  (7.3)
candidates (3.8) | and (0.6) presidential  (4.8)
. and 2.2) s (5.3) sales 4.4)
GMAC started out offering car [loans] sales A7 | and  G.1) products (2.3)
N (1.7) in 2.5) services 2.0)
I've been dreaming about this since I was great (1.6) | lot (1.1) " (1.9)
a [child] " (1.5) | good (1.1) good (1.2)
good (1.2) | very (0.9 year (1.1
Here is a breakdown of the seven taxes and a 2.3) a “4.7) a 4.3)
fees that have been [collected] to (2.0) | the (2.3) to (2.6)
in (1.9) in (1.3) the 2.4)
Under the plan, Iceland will reimburse first (1.9) | best (1.7) first (1.9)
the [money] world (1.0) | first (1.6) same (1.2)
same (0.8) | most (0.7) world (1.2)

Aniston and Pitt were still married when N 2.3) s (23.0) . (10.2)

Pitt and Jolie made the 2005 [film] . (1.9) | and (5.6) R (10.0)
World (1.6) . 5.1) and (3.9)

Table 2: Top predictions of each model for completing several sentences. The ground-truth completion
is given in [brackets]; the model prediction format is: <word> (<probability %>).
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