
Appendices

A Bernoulli-CRS Properties

Let us define K ∈ Rn×n a random diagonal sampling matrix where Kj,j ∼ Bernoulli(pj) for
1 ≤ j ≤ n.

Let us define another diagonal scaling matrix P ∈ Rn×n where Pj,j = 1√
pj

for 1 ≤ j ≤ n.

Using the K and P matrices we may now define our new Bernoulli-CRS algorithm. Let A ∈ Rn×m
and B ∈ Rn×p. The product A>B can be approximated with Ã>B̃ defined as follows:

Ã>B̃ :=

k∑
i=1

Zi
pi
A>(i)B(i) = A>PKKPB (19)

where {Zi ∼ Bernoulli(pi)}ni=1 are independent random variables. We denote Ã , KPA and
B̃ , KPB.

First, we show that the above holds in expectation:

Proposition 1. E
[
Ã>B̃

]
= A>B.

Let T = Trace(K) the number of non-zero diagonal elements in K. We note that to perform the
actual computation it is enough to sample the T column-row pair with the corresponding element in
K being non-zero. Unlike CRS, the lower rank of the sampled matrices is not constant and depends
on the random matrix K. Its expectation is controlled through the parameter k:

Proposition 2. E [T ] = k.

Therefore, Bernoulli-CRS will perform on average the same amount of computations as in the
fixed-rank CRS.

Let us further derive the properties of the proposed sampling algorithm. Specifically, what are the
optimal values for the probabilities pi under the constraint

∑n
i=1 pi = k?

First, let us calculate the variance of Ã>B̃:

Proposition 3.

Var
[
(Ã>B̃)i,j

]
=

n∑
t=1

1− pt
pt

A2
t,iB

2
t,j

We will be interested in the Frobenius norm of the error matrix
∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F
, which can be

derived from the following theorem:

Theorem 3. The expected Frobenius norm of the error matrix E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
is∑n

t=1
1−pt
pt
|A(t)|2|B(t)|2.

Furthermore, under the constraint
∑n
i=1 pi = k it is minimized for the probabilities:

pi =
|A(i)||B(i)|√

µ
1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

where µ is a root of the following function:

G(µ) :=

n∑
i=1

( |A(i)||B(i)|√
µ

1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

)
− k

14



Corollary. The sampling probabilities

pi = min

{
k|A(i)||B(i)|∑n
j=1|A(j)||B(j)|

, 1

}

are optimal if k ≤
∑n

i=1|A(i)||B(i)|
maxi|A(i)||B(i)|

From Theorem 3 it follows that for the probabilities:

pi = min

{
k|A(i)||B(i)|∑n
j=1|A(j)||B(j)|

, 1

}
(20)

the expected Frobenius error is:

1

k

(
n∑
i=1

ei|A(i)||B(i)|

)2

−
n∑
i=1

ei|A(i)|2|B(i)|2 (21)

where we denote:

ei ,

{
1 |A(i)||B(i)| ≤

∑n
j=1|A(j)||B(j)|

k

0 else
. (22)

Comparing that with the bound in (5), we can see that different values of A,B determine which
algorithm performs better.

Knowing the expected Frobenius error also implies a bound on the spectral norm of the error matrix,
since the spectral and Frobenius norms are related by:

||A|| ≤ ||A||F ≤
√
r ||A|| (23)

where r is the rank of A and ||A|| denotes its spectral norm.

The following theorem yields high probability bounds for the Frobenius and spectral norms for the
Bernoulli-CRS algorithm:

Theorem 4. Let A ∈ Rn×m and B ∈ Rn×p. Let Ã, B̃ be the sampled matrices according to the
Bernoulli-CRS algorithm described above. Denote

R , max
i

∣∣∣∣∣∣A>(i)B(i)

∣∣∣∣∣∣
and

σ2 ,
1

k

(
n∑
i=1

ei|A(i)||B(i)|

)2

−
n∑
i=1

ei|A(i)|2|B(i)|2

then, for all t ≥ 0:

P
{∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣ ≥ t} ≤ (m+ p) · exp

(
−t2/2

σ2 +Rt/3

)

P
{∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣

F
≥ t
}
≤ (m+ p)3/2 · exp

(
−t2/2

σ2 +Rt/3

)

A.1 Bernoulli-CRS in linear regression

We now show that applying Bernoulli-CRS in linear regression leads to unbiased estimate of the
original gradients with an additional term that can be interpreted as regularization. The analysis for
linear regression using Bernoulli-CRS is the same as in Section 3, with the sampling and scaling
matrices DS>SD replaced with PKKP

15



The expression for the weight gradient (simimlar to (11)) now becomes:

E

[
(
∂̂`

∂w
)j

]
= 2xj(

n∑
t=1

wt(E
[
(K̃)j,j(K̃)t,t

]
xt − y) (24)

= 2xj(w
>x− y + wj

(
E
[
(K̃)2j,j

]
− 1
)
xj) (25)

= 2xj(w
>x− y +

1− pj
pj

wjxj) (26)

where we denote K̃ , PKKP .

When comparing (26) and (8) we see that using Bernoulli-CRS yields unbiased estimates of the
original gradients with an additional bias term that is related to a scale-dependent regularization
R(w), which we define as:

R(w) = E

 n∑
j=1

1− pj
pj

x2jw
2
j

 (27)

and the expectation is with respect to the distribution of the data samples.

This term can be interpreted as input-dependent L2 regularization. The regularization is higher as xj
grows in magnitude and as pj decreases. Both serve to reduce the impact on the weights if they were
chosen with small probabilities or mostly because of the input size.

B Approximating Convolutions - Details

Formally, let I ∈ RIW×ICB×IH be the input tensor, where B is the batch size, IH, IW are the input
height and width, and IC are the input channels. Let K ∈ RIC×OCKH×KW be the kernels tensor, where
KH,KW are the kernel height and width, and IC,OC are the input and output channels respectively.
Let O ∈ ROW×OCB×OH be the output tensor, where OH,OW are the output height and width.

The multi-channel convolution operation is defined as:

Oow,ocb,oh = I ∗K =

IC∑
i=1

KH∑
kh=1

KW∑
kw=1

Iow+kw−1,i
b,oh+kh−1 ·K

i,oc
kh,kw (28)

For notation simplicity, we assume zero padding. The inner sums in (28) can be written as 1-channel
convolutions:

Oow,ocb,oh =

IC∑
i=1

I [i] ∗K[i] (29)

where I [i] ∈ RIW×1B×IH denotes a tensor with one input channel that corresponds to the i’th input

channel of I , i.e I [i]
iw,1

b,ih = Iiw,ib,ih . Similarly, K[i] ∈ R1×OC
KH×KW corresponds to the i’th input channel

of K.

This formulation immediately hints at the possibility to sample over the input channel dimension,
similarly to sampling column-row pairs in matrices. We propose to approximate convolutions by
sampling lower-rank tensors:

Õ =

k∑
t=1

1

kpit
I [it] ∗K[it] , Ĩ ∗ K̃ (30)

where {it}kt=1 are such that it ∈ {1, ..., IC} and {pi}ICi=1 is a probability distribution over the input

channels, Ĩ is a tensor composed of sampled input channels of I scaled by
√

1
kpi

, and K̃ is a tensor
composed of corresponding sampled input channels of K scaled by the same factor.

16



Computing the convolution of the smaller tensors Ĩ ∗ K̃ can be done using standard efficient
convolution implementations. Figure 2 illustrates the sampling operation.

The properties of the approximation in (30) can be derived similarly to the CRS derivations for matrix
multiplication. In particular, we prove the approximation is unbiased, and similar to matrix CRS, we
use sampling probabilities proportional to the tensor Euclidean norms:

pi =

∥∥I [i]∥∥
F
·
∥∥K[i]

∥∥
F∑IC

j=1

∥∥I [j]∥∥
F
·
∥∥K[j]

∥∥
F

(31)

In section C.4 we show that the optimal sampling probabilities are significantly more complicated to
calculate, but under certain conditions they reduce to (31).

Bernoulli-CRS and top-k algorithms can be developed for convolutions as well in an analogous way.

C Proofs

C.1 Proofs for Section 5 - Approximate Backpropagation

Theorem 1. Let f(x,W, b) be a multi-layer neural network with β-Lipschitz activation functions
σ. Let ` be a β-Lipschitz loss function, and let the network be trained with SGD using properly
decreasing learning rate. If the matrix products in the backward pass are approximated using an
unbiased approximation scheme satisfying:

E
[
A>B − approx(A>B)

]
= 0

and:
E
[∣∣∣∣A>B − approx(A>B)

∣∣∣∣2] ≤ C ||A||2 ||B||2
for some finite constant C and some norm ||·||,
and if the weights are bounded, then the approximated gradients are unbiased with bounded second
moments.

Corollary. Based on recent works on non-convex optimization [50], Theorem 1 implies that approxi-
mate backpropagation enjoys the same convergence guarantees as regular SGD training.

Proof. The network f can be described by:

h1 = W>1 x+ b1
a1 = σ(h1)

hl = W>l al−1 + bl
al = σ(hl)

ŷ = W>L aL−1

where x ∈ Rn,W1 ∈ Rn×d1 , Wl ∈ Rdl−1×dl , bl ∈ Rdl , ` is the number of layers and ŷ ∈ RdL is the
network output.

Let us denote the weight, bias and activation gradients with respect to a loss function ` by
∇Wl,∇bl,∇al respectively. Let us denote and the gradients yielded by the approximation scheme
as∇W̃l,∇b̃l,∇ãl.

Lemma 1.
E
[
∇W̃l

]
= ∇Wl and E

[
∇b̃l
]

= ∇bl

Proof. We prove by induction. The last layer satisfies:

∇WL = aL−1∇ŷ ∇aL−1 = WL∇ŷ

17



and its approximation is given by:

∇W̃L = approx(aL−1∇ŷ) ∇ãL−1 = approx(WL∇ŷ)

Since the approximation methods satisfies:

E
[
A>B − approx(A>B)

]
= 0

we get:

E
[
∇W̃L

]
= ∇WL E [∇ãL−1] = ∇aL−1

for the induction step, we will show that if E [∇ãl] = ∇al then:

E
[
∇W̃l−1

]
= ∇Wl−1

E
[
∇b̃l−1

]
= ∇bl−1

E [∇ãl−1] = ∇al−1

∇W̃l−1 is given by:

∇W̃l−1 = approx(al−1∇h̃>l ) = approx(al−1Σ′(hl)∇ã>l )

where Σ′(hl) is a diagonal matrix with the diagonal being the derivative of σ in location hl. Taking
the expectation we get:

E
[
∇W̃l−1

]
= E

[
approx(al−1Σ′(hl)∇ã>l )

]
= E

[
E
[
approx(al−1Σ′(hl)∇ã>l )|∇ã>l

]]
= E

[
al−1Σ′(hl)∇ã>l

]
= al−1Σ′(hl)∇a>l
= ∇Wl=1

where we used the unbiased approximation property of approx and the law of total expectation.
Similar arguments for E [∇ãl−1] yield:

E [∇ãl−1] = E
[
approx(Wl∇h̃l)

]
= E [approx(WlΣ

′(hl)∇ãl)]
= E [E [approx(WlΣ

′(hl)∇ãl)|∇ãl]]
= E [WlΣ

′(hl)∇ãl]
= WlΣ

′(hl)∇al
= ∇al−1

and for E
[
∇b̃l−1

]
:

E
[
∇b̃l−1

]
= E

[
∇h̃l−1

]
= E [Σ′(hl)∇ãl]
= Σ′(hl)∇al
= ∇bl−1

In other words, the unbiased estimation of the gradients follows from the linearity of backpropagation
with respect to the gradients, even for non-linear activation functions.

We can write the training step using SGD and the approximate gradients ∇W̃ t
l for layer l at iteration

t as:
W t+1
l = W t

l − αt(∇W t
l + ωt)

18



where ωt is a gradient noise defined as:

ωt , ∇W̃ t
l −∇W t

l

Based on Lemma 1, the gradient noise ωt is a martingale difference sequence satisfying:

E [ωt|Wt−1] = E
[
∇W̃ t

l −∇W t
l |Wt−1

]
= 0

Lemma 2. Under the assmuptions in Theorem 1:

E
[
||ωt||2 |Wt−1

]
< D

for some constant D.

Proof. We prove by induction. Since ` is β-Lipschitz, the gradients ∇y are bounded. During
backpropagation the gradients are propagated by:

∇ãl−1 = approx(WlΣ
′(hl)∇ãl)

Let us assume∇ãl is bounded and show that∇ãl−1 is bounded in expectation as well:

E
[
||∇ãl−1||2

]
≤ E

[
||∇ãl−1 −WlΣ

′(hl)∇ãl||
2
]

+ E
[
||WlΣ

′(hl)∇ãl||
2
]

≤ C ||Wl||2 ||Σ′(hl)∇ãl||
2

< D′

for some constant D′, where the second inequality follows from the properties of approx and last
inequality follows from the β-Lipschitz of Σ, the induction assumption on the boundness of ∇ãl and
the assumption on the boundness of Wl.

The gradients ∇W̃ are calculated by:

∇W̃l−1 = approx(al−1Σ′(hl)∇ã>l )

and therefore:

E
[
||ωt||2 |Wt−1

]
= E

[∣∣∣∣∣∣∇W̃ t
l −∇W t

l

∣∣∣∣∣∣2 |Wt−1

]
= E

[∣∣∣∣∣∣∇W̃ t
l − (al−1Σ′(hl)∇ã>l ) + (al−1Σ′(hl)∇ã>l ) +∇W t

l

∣∣∣∣∣∣2 |Wt−1

]
≤ E

[∣∣∣∣∣∣∇W̃ t
l − al−1Σ′(hl)∇ã>l

∣∣∣∣∣∣2]+ E
[∣∣∣∣al−1Σ′(hl)∇ã>l

∣∣∣∣2]+ E
[∣∣∣∣∇W t

l

∣∣∣∣2]
≤ C1 ||al−1||2 E

[∣∣∣∣Σ′(hl)∇ã>l ∣∣∣∣2]+ C2 ||al−1||2 E
[∣∣∣∣Σ′(hl)∇ã>l ∣∣∣∣2] + E

[∣∣∣∣∇W t
l

∣∣∣∣2]
≤ D

In the second inequality we used the properties of approx. In the last inequality we used the
boundness of Σ′,∇W t

l from the assumptions, the boundness of E
[∣∣∣∣∇ã>l ∣∣∣∣2] from above. In

addition, we assumed boundness of the activations al−1. This assumption holds if the activation
function σ is bounded (for example, sigmoid) and in the general case it also requires the assumptions
on the boundness of weights and inputs.

The same arguments can be made for the bias and the approximate bias gradients.

Based on Lemmas 1 and 2 and using standard analysis of SGD (for example [56] and [50]) the SGD
convergence guarantees hold for approximate backpropagation as well.

19



Remark. Both CRS and Bernoulli-CRS satisfy the property

E
[∣∣∣∣A>B − approx(A>B)

∣∣∣∣2] ≤ C ||A||2 ||B||2
since the expected Frobenius norm for the error matrix satisfies:

E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
=

1

k

(
n∑
i=1

ei|A(i)||B(i)|

)2

−
n∑
i=1

|A(i)|2|B(i)|2

≤

(
n∑
i=1

ei|A(i)||B(i)|

)2

≤

(
n∑
i=1

|A(i)|2
)(

n∑
i=1

|B(i)|2
)

= ||A||2F ||B||
2
F

where we used Theorem 3 and the Cauchy-Schwarz inequality.
Corollary. Let f(x,W, b) be a multi-layer neural network with bounded β-Lipschitz activation
functions σ. Let ` be a β-Lipschitz loss function, and let the network be trained with SGD using
properly decreasing learning rate. If the weight gradient matrix products in the backward pass are
approximated using an unbiased approximation scheme satisfying:

E
[
A>B − approx(A>B)

]
= 0

and:
E
[∣∣∣∣A>B − approx(A>B)

∣∣∣∣2] ≤ C ||A||2 ||B||2
for some finite constant C and some norm ||·||,
then then the approximated gradients are unbiased with bounded second moments.

Proof. Lemma 1 under these assumptions holds by the same arguments. We now prove the equivalent
of Lemma 2:

E
[
||ωt||2F |Wt−1

]
= E

[∣∣∣∣∣∣∇W̃ t
l −∇W t

l

∣∣∣∣∣∣2
F
|Wt−1

]
= E

[∣∣∣∣∣∣∇W̃ t
l − al−1Σ′(hl)∇a>l

∣∣∣∣∣∣2
F

]
≤ ||al−1||2F

∣∣∣∣Σ′(hl)∇atl∣∣∣∣2F
≤ D

The first inequality follows from the properties of approx. The second inequality follows from the
β-Lipschitz property of `,Σ bounding the second term, and from the boundness of the activation
function σ bounding the first term.

C.2 Proofs for Section 6 - Sampling Without Scaling and Top-k Selection

Theorem 2. Let A be a n×m random matrix and B be n× p random matrix, such that

E
[
A>(i)B(i)

]
= 0

for 1 ≤ i ≤ n. Assume k column-row pairs with indices {j}n1 are sampled from A and B.

Then, the MMSE estimator for the matrix product A>B would be Ã>B̃ where Ã, B̃ are constructed
from the sampled column-row pairs without scaling.

Furthermore, if A>(i)B(i) and A>(j), B(j) are independent for different i and j then the MSE will be
minimized when sampling k pairs with the maximum norm multiplication |A(i)||B(i)|.

20



Proof. Given sampled pairs j1, ..., jk the MMSE estimator would be:

Â>B = E
[
A>B|A(j1), ..., A(jk), B(j1), ..., B(jk)

]
= E

 k∑
i=1

A>(ji)B(ji) +
∑
i/∈{j}k1

A>(i)B(i)|A(j1), ..., A(jk), B(j1), ..., B(jk)


=

k∑
i=1

A>(ji)B(ji) +
∑
i/∈{j}k1

E
[
A>(i)B(i)

]

=

k∑
i=1

A>(ji)B(ji)

= Ã>B̃

The MSE would be:

E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
= E


∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i/∈{j}k1

A>(i)B(i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F


if we assume independence between different column-row pairs A>(i)B(i), A

>(j)B(j) then the last
expression reduces to: ∑

i/∈{j}k1

E
[∣∣∣∣∣∣A>(i)B(i)

∣∣∣∣∣∣2
F

]
=
∑
i/∈{j}k1

E
[
|A(i)|2|B(i)|2

]
and therefore will be minimized for a top-k selection scheme that samples the pairs with the highest
norm.

C.3 Proofs for Section A - Bernoulli-CRS

Proposition 1. E
[
Ã>B̃

]
= A>B

Proof.

E
[
A>PKKPB

]
= A>PPE [KK]B

= A>PPE [K]B

= A>B

where we used that fact that K is diagonal and that Ki,i ∈ {0, 1}.

Proposition 2. E [T ] = k

Proof.

E [T ] = E

 n∑
j=1

Kj,j

 =

n∑
j=1

E [Kj,j ] =

n∑
j=1

pj = k

Proposition 3.

Var
[
(Ã>B̃)i,j

]
=

n∑
t=1

1− pt
pt

A2
t,iB

2
t,j

21



Proof. Fix i, j. From Proposition 1:

E
[
(Ã>B̃)i,j

]
= (A>B)i,j

Calculating the second moment:

E
[
(Ã>B̃)2i,j

]
= E

( n∑
t=1

At,i
Kt,t

pt
Bt,j

)2


= E

[
n∑
t=1

n∑
u=1

At,i
Kt,t

pt
Bt,jAu,i

Ku,u

pu
Bu,j

]

= E

 n∑
t=1

n∑
u6=t

At,i
Kt,t

pt
Bt,jAu,i

Ku,u

pu
Bu,j


+ E

[
n∑
t=1

A2
t,iB

2
t,j

Kt,t

p2t

]

=

k∑
t=1

k∑
u6=t

At,iBt,jAu,iBu,j +

n∑
t=1

1

pt
A2
t,iB

2
t,j

= (A>B)2i,j −
n∑
t=1

A2
t,iB

2
t,j +

n∑
t=1

1

pt
A2
t,iB

2
t,j

= (A>B)2i,j +

n∑
t=1

1− pt
pt

A2
t,iB

2
t,j

Therefore:

Var
[
(Ã>B̃)i,j

]
= E

[
(Ã>B̃)2i,j

]
− E

[
(Ã>B̃)i,j

]2
=

k∑
t=1

1− pt
pt

A2
t,iB

2
t,j

Theorem 3. The expected Frobenius norm of the error matrix E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
is∑n

t=1
1−pt
pt
|A(t)|2|B(t)|2.

Furthermore, under the constraint
∑n
i=1 pi = k it is minimized for the probabilities:

pi =
|A(i)||B(i)|√

µ
1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

where µ is a root of the following function:

G(µ) :=

n∑
i=1

( |A(i)||B(i)|√
µ

1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

)
− k

Proof. Note:

E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
=

m∑
i=1

p∑
j=1

E
[(
A>B − Ã>B̃

)2
i,j

]

=

m∑
i=1

p∑
j=1

Var

[(
Ã>B̃

)
i,j

]

22



Therefore, using Proposition 3 we get:

E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
=

m∑
i=1

p∑
j=1

n∑
t=1

1− pt
pt

A2
t,iB

2
t,j

=

n∑
t=1

1− pt
pt

(
m∑
i=1

A2
t,i

) p∑
j=1

B2
t,j


=

n∑
t=1

1− pt
pt
|A(t)|2|B(t)|2

Let us now find the optimal sampling probabilities that minimize the Frobenius error. Define the
function:

f(p1, p2, ..., pn) =

n∑
t=1

1− pt
pt
|A(t)|2|B(t)|2

We can now consider the optimization problem:

min
p1,...,pn

f(p1, ..., pn)

s.t pi − 1 ≤ 0

− pi ≤ 0
n∑
i=1

pi − k = 0

We define the Lagrangian as:

L(p1, ..., pn, λ1, ..., λn, ν1, ..., νn, µ) ,

f(p1, p2, ..., pk) +

n∑
i=1

λi (pi − 1)−
n∑
i=1

νipi + µ

(
n∑
i=1

pi − k

)
where λi ≥ 0, νi ≥ 0 and µ ∈ R.

Applying KKT stationarity condition:

0 =
∂

∂pi
L = − 1

p2i
|A(i)|2|Bi)|2 + λi − νi + µ = 0

Therefore:

pi =
|A(i)||B(i)|√
λi − νi + µ

Next we divide into 3 cases,
Case 1: If pi ∈ (0, 1): In this case due to complementary-slackness we obtain λi = νi = 0, and
therefore,

pi =
|A(i)||B(i)|√

µ

Case 2: If pi = 1: In this case due to complementary-slackness we obtain νi = 0, and therefore,

1 = pi =
|A(i)||B(i)|√

µ+ λi

Case 3: If pi = 0: In this case due to complementary-slackness we obtain λi = 0, which implies
that,

0 = pi =
|A(i)||B(i)|√

µ− νi
but this can only happen if |A(i)||B(i)| = 0.

23



Combining the above we conclude that given µ one can write the solution as follows,

pi =
|A(i)||B(i)|√

µ
1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

Now, in order to satisfy the equality conditions µ should satisfy the following equality,
n∑
i=1

( |A(i)||B(i)|√
µ

1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

)
= k

Now, one can actually find µ using bisection, To see this consider the following function,

G(µ) :=

n∑
i=1

( |A(i)||B(i)|√
µ

1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

)
− k

And note that G(µ) is a one dimensional monotonically decreasing (actually non-increasing) function
of µ.

Also, if we sorts the |A(i)||B(i)|’s, i.e. |A(1)||B(1)| ≤ |A(2)||B(2)| ≤ . . . |A(n)||B(n)|, then given
j such that µ ∈ (|A(j)||B(j)|, |A(j+1)||B(j+1)|), then we can find the exact value of µ from the
equality constraints equation:

n∑
i=1

( |A(i)||B(i)|√
µ

1{0<|A(i)||B(i)|<µ} + 1{|A(i)||B(i)|≥µ}

)
= k

Corollary. The sampling probabilities

pi = min

{
k|A(i)||B(i)|∑n
j=1|A(j)||B(j)|

, 1

}

are optimal if k ≤
∑n

i=1|A(i)||B(i)|
maxi|A(i)||B(i)|

Proof. As a simpler, sub-optimal solution for the above optimization problem we propose the
following relaxation. First, we solve the optimization problem without the inequality conditions:

0 ≤ pi ≤ 1

Then, for each optimal p∗i we clamp the value between the range [0, 1]. This allows us to comply with
the inequality conditions that allows to treat pi as a parameter to Bernoulli distribution at the expense
of relaxing the constraint on the sum of the parameters pi, leading to potentially sub-optimal solution.

As the first step, we therefore solve the problem:

min
p1,...,pn

f(p1, ..., pn)

s.t
n∑
i=1

pi − k

To minimize f subject to the constraint
∑n
i=1 pi = k we use the Lagrange multiplier λ and define

the function:

g(p1, p2, ..., pn) = f(p1, p2, ..., pn) + λ

(
n∑
i=1

pi − k

)
Deriving and equaling to zero we get:

0 =
∂g

∂pi
= − 1

p2i
|A(i)|2|Bi)|2 + λ

24



Therefore:

pi =
|A(i)||B(i)|√

λ

Substituting in
∑n
i=1 pi = k:

n∑
i=1

|A(i)||Bi)|√
λ

= k

√
λ =

∑n
i=1|A(i)||B(i)|

k
And therefore we get:

pi =
k|A(i)||B(i)|∑n
i=1|A(i)||B(i)|

And the final result after clamping would be:

pi = min

{
k|A(i)||B(i)|∑n
i=1|A(i)||B(i)|

, 1

}
Note that this solution yields pi ≥ 0, satisfying one of the original inequality conditions. What about
pi ≤ 1?

If

k ≤
∑n
i=1|A(i)||B(i)|

maxi|A(i)||B(i)|
then the second inequality conditions holds as well and the solution is indeed the optimal solution to
the original problem.

Substituting in the expression for the Frobenius error we get:

E
[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2

F

]
=

n∑
t=1

1− pt
pt
|A(t)|2|B(t)|2

=
1

k

(
n∑
i=1

|A(i)||B(i)|

)2

−
n∑
i=1

|A(i)|2|B(i)|2

The following theorem yields high probability bounds for the Frobenius and spectral norms for the
Bernoulli-CRS algorithm:

Theorem 4. Let A ∈ Rn×m and B ∈ Rn×p. Let Ã, B̃ be the sampled matrices according to the
Bernoulli-CRS algorithm described above. Denote

R , max
i

∣∣∣∣∣∣A>(i)B(i)

∣∣∣∣∣∣
and

σ2 ,
1

k

(
n∑
i=1

ei|A(i)||B(i)|

)2

−
n∑
i=1

ei|A(i)|2|B(i)|2

then, for all t ≥ 0:

P
{∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣ ≥ t} ≤ (m+ p) · exp

(
−t2/2

σ2 +Rt/3

)

P
{∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣

F
≥ t
}
≤ (m+ p)3/2 · exp

(
−t2/2

σ2 +Rt/3

)

Proof. The Matrix Bernstein concentration inequality states:

25



Theorem (Matrix Bernstein [57]). Consider a finite sequence {Zk} of independent, random matri-
ces with dimensions d1 × d2. Assume that each random matrix satisfies

E [Zk] = 0 and ||Zk|| ≤ R almost surely.

Define

σ2 , max

{∣∣∣∣∣
∣∣∣∣∣∑
k

E
[
ZkZ

>
k

]∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣∑
k

E
[
Z>k Zk

]∣∣∣∣∣
∣∣∣∣∣
}

Then, for all t ≥ 0,

P

{∣∣∣∣∣
∣∣∣∣∣∑
k

Zk

∣∣∣∣∣
∣∣∣∣∣ ≥ t

}
≤ (d1 + d2) · exp

(
−t2/2

σ2 +Rt/3

)
.

In our sampling algorithm, we can define:

Zk , A>(k)B(k) −
1

pk
Kk,kA

>
(k)B(k)

when Kk,k is a Bernoulli random variable with parameter pk as defined above. It is clear that
E [Zk] = 0.

Also, let us define:
R , max

k

∣∣∣∣∣∣A>(k)B(k)

∣∣∣∣∣∣
so it it also clear that ||Zk|| ≤ R.

By construction, {Zk} are independent.

We can also define:

σ2 , max

{∣∣∣∣∣
∣∣∣∣∣∑
k

E
[
ZkZ

>
k

]∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣∑
k

E
[
Z>k Zk

]∣∣∣∣∣
∣∣∣∣∣
}

= max

{∣∣∣∣∣
∣∣∣∣∣E
[∑

k

ZkZ
>
k

]∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣E
[∑

k

Z>k Zk

]∣∣∣∣∣
∣∣∣∣∣
}

= max

{ ∣∣∣∣∣∣E [(A>B − Ã>B̃)(A>B − Ã>B̃)>
]∣∣∣∣∣∣ ,∣∣∣∣∣∣E [(A>B − Ã>B̃)>(A>B − Ã>B̃)

]∣∣∣∣∣∣ }
≤ max

{
Tr
(
E
[
(A>B − Ã>B̃)(A>B − Ã>B̃)>

])
,

Tr
(
E
[
(A>B − Ã>B̃)>(A>B − Ã>B̃)

])}
= E

[∣∣∣∣∣∣A>B − Ã>B̃∣∣∣∣∣∣2
F

]

=
1

k

(
n∑
i=1

ei|A(i)||B(i)|

)2

−
n∑
i=1

ei|A(i)|2|B(i)|2

where we used the linearity of expectation and trace, the property ||A|| ≤ Tr[A] for positive semi-
definite matrices and the expected Frobenius norm from Theorem 3.

The bound on the spectral norm follows immediately from the Matrix Berenstein inequality.

Using the property:
||A||F ≤

√
r ||A||

we get the similar result for the Frobenius norm, factored by
√
m+ p.

26



C.4 Proofs for Section B - Approximating Convolutions

The following proofs go along the same lines of [20], generalizing them to multi-channel convolutions
(zero-padding assumed).

Lemma 3. Suppose I ∈ RIW×ICB×IH ,K ∈ RIC×OCKW×KW , 1 ≤ k ≤ IC, {pi}ICi=1 is a probability distribu-
tion over {1, ..., IC} and {it}kt=1 are such that it ∈ {1, ..., IC}.

Let O ∈ ROW×OCB×OH = I ∗K be the multi-channel convolution of I,K as defined in (28) and let Õ be
its approximation by sampling k input channels as defined in (30). Then:

E
[
Õ
]

= O

Proof. We show that every b, oh, ow, oc satisfies E
[
Õow,ocb,oh

]
= Oow,ocb,oh .

For t ∈ {1, ..., k}, define Xt = (
I[it]∗K[it]

pit
)ow,ocb,oh .

Using (30) we can write Õb,oh,ow,oc =
∑k
t=1

1
kXt.

Taking the expectation, we get:

(E
[
Õ
]
)ow,ocb,oh = E

[
k∑
t=1

1

k
Xt

]
= E [Xt] =

IC∑
i=1

pi ·
(I [i] ∗K[i])

ow,oc
b,oh

pi
= Oow,ocb,oh (32)

Lemma 4. Suppose the same as Lemma 3. Then:

Var
[
Õow,ocb,oh

]
=

1

k

IC∑
i=1

1

pi

KH∑
h=1

KW∑
w=1

(Iow+w−1,i
b,oh+h−1 )2(Ki,oc

h,w)2

+
1

k

IC∑
i=1

1

pi

KH∑
h,h′=1
h6=h′

KW∑
w,w′=1
w 6=w′

Iow+w−1,i
b,oh+h−1 I

ow+w′−1,i
b,oh+h′−1 K

i,oc
h,wK

i,oc
h′,w′

− 1

k
(Oow,ocb,oh )2

Proof. Define Xt as in Lemma 3. From (30) and the independence of different Xt:

Var
[
Õow,ocb,oh

]
= Var

[
k∑
t=1

1

k
Xt

]
=

1

k
Var [Xt] =

1

k
(E
[
X2
t

]
− E [Xt]

2
) (33)

E
[
X2
t

]
=

IC∑
i=1

pi ·
((I [i] ∗K[i])

ow,oc
b,oh )2

p2i

=

IC∑
i=1

1

pi

(
KH∑
h=1

KW∑
w=1

Iow+w−1,i
b,oh+h−1 K

i,oc
h,w

)2 (34)

From (32) we get E [Xt] = O.

Substituting both expressions in (33) and expanding concludes the proof.

Lemma 5. Suppose the same as Lemma 3. Then:

E
[∥∥O − Õ∥∥2

F

]
=

IC∑
i=1

∥∥I [i]∥∥2
F
·
∥∥K[i]

∥∥2
F
− EiIK +RiIK

kpi
− 1

k

∥∥O∥∥2
F

27



where

EiIK =

B∑
b=1

∑
oh,ow s.t
oh<KH or
ow<KW

OC∑
oc=1

KH∑
h=1

KH,KW∑
h,w s.t
h>oh or
w>ow

(Iow,ib,oh )2(Ki,oc
h,w)2

RiIK =

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

KH∑
h,h′=1
h6=h′

KW∑
w,w′=1
w 6=w′

Iow+w−1,i
b,oh+h−1 I

ow+w′−1,i
b,oh+h′−1 K

i,oc
h,wK

i,oc
h′,w′

The expected error is minimized when the sampling probabilities are:

pi =

√∥∥I [i]∥∥2
F
·
∥∥K[i]

∥∥2
F
− EiIK +RiIK∑IC

j=1

√∥∥I [j]∥∥2
F
·
∥∥K[j]

∥∥2
F
− EjIK +RjIK

Remark. We use here the Frobenius norm in its generalization for tensors. For a tensor T of rank r:∥∥T∥∥
F

=

√ ∑
j1,j2,...,jr

T 2
j1,j2,...,jr

Proof. Note that:

E
[∥∥O − Õ∥∥2

F

]
=

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

E
[
((O − Õ)ow,ocb,oh )2

]
=

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

Var
[
Õow,ocb,oh

]
Substituting the result from Lemma 4:

E
[∥∥O − Õ∥∥2

F

]
=

IC∑
i=1

1

kpi

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

KH∑
h=1

KW∑
w=1

(Iow+w−1,i
b,oh+h−1 )2(Ki,oc

h,w)2

+

IC∑
i=1

1

kpi

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

KH∑
h,h′=1
h6=h′

KW∑
w,w′=1
w 6=w′

Iow+w−1,i
b,oh+h−1 I

ow+w′−1,i
b,oh+h′−1 K

i,oc
h,wK

i,oc
h′,w′

− 1

k

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

(Oow,ocb,oh )2

(35)

This expression includes 3 terms. The first involves products between each element of I [i] and all
the corresponding entries in K[i], except for the upper and left edges of I [i]. We therefore add and
subtract the correction term EiIK to get:

IC∑
i=1

1

kpi

B∑
b=1

OH∑
oh=1

OW∑
ow=1

OC∑
oc=1

KH∑
h=1

KW∑
w=1

(Iow+w−1,i
b,oh+h−1 )2(Ki,oc

h,w)2

=

IC∑
i=1

1

kpi

((
B∑
b=1

OH∑
oh=1

OW∑
ow=1

(Iow+w−1,i
b,oh+h−1 )2

)(
OC∑
oc=1

KH∑
h=1

KW∑
w=1

(Ki,oc
h,w)2

)
− EiIK

)

=

IC∑
i=1

∥∥I [i]∥∥2
F
·
∥∥K[i]

∥∥2
F
− EiIK

kpi

The second term is
∑IC
i=1

1
kpi
RiIK .

The third term can be written as 1
k

∑B
b=1

∑OH
oh=1

∑OW
ow=1

∑OC
oc=1(Ob,oh,ow,oc)

2 = 1
k

∥∥O∥∥2
F

Substituting these terms in (35) yields the result of (5).

28



To find {pi}ICi=1 that minimize the expression in (5) it is enough to minimize the function f =∑IC
i=1

α2
i

pi
under the constraints

∑
pi = 1 and pi > 0. We can write the numerator as α2

i because the
expression in (34) is non-negative.

This minimization problem has a straightforward solution in Lemma 4 of [20], which is pi = αi∑IC
j=1 αj

.

In our case, αi =
√∥∥I [i]∥∥2

F
·
∥∥K[i]

∥∥2
F
− EiIK +RiIK , and therefore the optimal probabilities are:

pi =

√∥∥I [i]∥∥2
F
·
∥∥K[i]

∥∥2
F
− EiIK +RiIK∑IC

j=1

√∥∥I [j]∥∥2
F
·
∥∥K[j]

∥∥2
F
− EjIK +RjIK

The termsEiIK , R
i
IK emerge for convolutions when the kernel spatial dimensions are greater than one.

However, computing them is too expensive, precluding efficient implementation of the approximate
version. We therefore omit them and verify empirically whether the resulting norm-proportional
probabilities:

pi =

∥∥I [i]∥∥
F
·
∥∥K[i]

∥∥
F∑IC

j=1

∥∥I [j]∥∥
F
·
∥∥K[j]

∥∥
F

yield better results than the uniform sampling. Intuitively, in some (common) cases these terms
are much smaller than

∥∥I [i]∥∥2
F
·
∥∥K[i]

∥∥2
F

, so their omission does not significantly impact the final
outcome. EiIK amounts to the outer spatial dimensions of the input not being convolved with the
entire kernel, so it is likely to be smaller than the Frobenius norm of the whole input. RiIK is the sum
of products of different input and kernel entries. If different kernels are lowly-correlated and weights
are centered around zero, the sum will include terms of similar magnitudes but opposite signs.

D Implementation Details

All single-node results were obtained using 2.2GHz Intel Xeon Silver 4210 CPU with four NVidia
V100 GPUs with 32GB of memory. Wall-time speedup were measured when running with a single
GPU, except ResNet-152 where 2 GPUs are used due to memory capacity. We used PyTorch version
1.7.0 with CUDA 10.1 and Python version 3.6.9.

D.1 MLP for MNIST

The MNIST dataset [28] includes 60K training examples and 10K test examples. We use 5K as
validation set. Each example is a 28× 28 gray-scale image of a handwritten digit.

Our MLP model contains the following layers:

• 784× 500 fully-connected layer with RELU activations.
• 500× 500 fully-connected layer with RELU activations.
• 500× 10 fully-connected layer with RELU activations.
• Log Softmax

We use the Adam optimizer [58] with default parameters (learning rate=0.001,β1 = 0.9,β2 =
0.999,ε = 1e− 08). As loss function we use negative log likelihood. We use minibatch size of 50
and train the model for 20 epochs.

We apply sampling to all the fully connected layers. When sampling in the backward pass, we do not
reduce the batch dimension below 10 in the weight gradient computation.

Figure 7(a) shows the MNIST test accuracy for different sampling algorithms and sampling ratios
in the forward pass. We observe that top-k performs the best. Figure 7(b) shows the same when
approximations are applied in the backward pass only. In this case, all sampling algorithms are
similar when performing above 30% of the backward pass computations.

29



80

85
90

95

100

0 20 40 60 80 100
% of computations

top-k
CRS
Bernoulli
Baseline

(a) Sampling in forward pass

80
85

90

95
100

0 20 40 60 80 100
% of backward computations

top-k
CRS
Bernoulli
Baseline

(b) Sampling in backward pass

Figure 7: MNIST test accuracy for MLP, under different approximating algorithms and different
sampling ratios

D.2 CNN for MNIST

The network is composed of the following layers:

• 5× 5× 32 convolution layer with RELU activation, followed by 2× 2 max pooling.

• 5× 5× 64 convolution layer with RELU activation, followed by 2× 2 max pooling.

• Dropout layer with p = 0.5.

• 3136× 1024 fully connected layer with RELU activation.

• 1024× 10 fully connected layer.

• Dropout layer with p = 0.5.

• Log Softmax

The model is trained using Adam optimizer with default parameters (learning rate=0.001,β1 =
0.9,β2 = 0.999,ε = 1e− 08) and negative log likelihood loss. We use minibatch size of 50 and train
the model for 20 epochs.

We apply sampling to the convolutional layers. When sampling in the backward pass, we do not
reduce the batch dimension below 10 in the weight gradient computation.

Figure 8(a) shows the MNIST test accuracy for different sampling algorithms and sampling ratios
in the forward pass. We observe that top-k performs the best. Figure 8(b) shows the same when
approximations are applied in the backward pass only. In this case, all sampling algorithms are
similar when performing above 30% of the backward pass computations.

98.5

99

99.5

100

30 50 70 90

Te
st

 A
cc

ur
ac

y

% of computations

top-k CRS
Bernoulli Baseline

(a) Sampling in forward pass

99
99.2
99.4
99.6
99.8
100

20 40 60 80 100

Te
st

 A
cc

ur
ac

y

% of backward computations

top-k CRS
Bernoulli Baseline

(b) Sampling in backward pass

Figure 8: MNIST test accuracy for CNN, under different approximating algorithms and different
sampling ratios

30



D.3 Wide ResNet-28-10 for CIFAR-10

The CIFAR-10 dataset [30] consists of 32× 32 color images from 10 classes, split into 50K training
set and 10K test set.

For WRN-28-10 [29] we use the implementation in https://github.com/meliketoy/
wide-resnet.pytorch, avialable under MIT License.

WRN-28-10 includes the following layers:

• conv1 - 3× 3× 16 input convolution layer

• conv2 - eight 3× 3× 160 convolution layers

• conv3 - eight 3× 3× 320 convolution layers

• conv4 - eight 3× 3× 640 convolution layers

• Batch normalization, 8× 8 Average pooling, fully connected+softmax layers.

Every two subsequent convolution layers are followed by a residual connection that adds the input to
these layers to the result. the first convolution conv3 and conv4 has a stride of 2, halving the spatial
dimensions. For additional details see [29].

Image preprocessing includes padding to 36x36 and random crop, horizontal flipping and per-image
whitening. The optimizer is Momentum SGD with momentum=0.9 and 5e-4 weight decay. Learning
rate is 0.15 for the first 60 epochs, 0.03 until epoch 120, 0.006 until epoch 160 and 0.0012 afterwards.
We use batch size of 256, cross-entropy loss and train the model for 200 epochs.

We apply sampling to the convolutional layers except the first layer due to the small number of
input channels (3) and the single fully-connected layer which amounts only to 0.01% of the total
computations in WRN-28-10. When sampling in the backward pass, we do not reduce the batch
dimension below 10 in the weight gradient computation.

Figure 9(a) shows the CIFAR-10 test accuracy for different sampling algorithms and sampling ratios
in the forward pass. We observe that top-k performs the best. Figure 9(b) shows the same when
approximations are applied in the backward pass only. In this case, Bernoulli-CRS performs the best
but is still below 1% of the baseline accuracy until 90% sampling ratio.

0
20
40
60
80

100

0 20 40 60 80 100
% of computations

top-k
CRS
Bernoulli
Baseline

(a) Sampling in forward pass

50
60
70
80
90

100

20 40 60 80 100

Te
st

 A
cc

ur
ac

y

% of backward computations

top-k CRS

Bernoulli Baseline

(b) Sampling in backward pass

Figure 9: CIFAR-10 test accuracy for WRN-28-10, under different approximating algorithms and
different sampling ratios

Figure 6(a) shows the CIFAR-10 validation accuracy learning curves for different forward-pass
top-k sampling ratios, compared to the non-approximate baseline. We observe that higher sampling
ratios lead to slower learning at the early training stages but the gap is decreasing as the training
progresses. Figure 10 focuses on the last training epochs to observe the accuracies in more detail. We
observe that 50% sampling is slightly lower than the non-approximate baseline, while less aggressive
approximations that perform 70% or 90% of the computations achieve identical or slightly higher
validation accuracy.

31

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch


88

90

92

94

96

120 160 200
Ac

cu
ra

cy
Epoch

Baseline 10%
30% 50%
70% 90%

% of computations

Figure 10: Learning curves for WRN-28-10 CIFAR-10 validation accuracy under different top-k
sampling ratios. Focused view of last training epochs

D.4 ResNet-50 and ResNet-152 for ImageNet

The ImageNet [32] ILSVRC 2012 dataset contain 1.2 million training images of varying dimensions
split into 1000 classes. The validation set includes 50K images and the test set consists of 100K
images.

For ResNet-50 [31] we use the implementation in https://github.com/pytorch/examples/
tree/master/imagenet, available under BSD 3-Clause License. See [31] for further details on
ResNet-50 architecture.

Image preprocessing includes random 224x224 crop, horizontal flipping and image normalization.
The optimizer is Momentum SGD with momentum=0.9 and 1e-4 weight decay. Learning rate is 0.1
and it is decayed by 10 every 30 epochs. We use batch size of 256, cross-entropy loss and train the
model for 90 epochs.

We apply sampling to the convolutional layers except the first layer due to the small number of input
channels (3) and the fully-connected layer.

Figure 11(a) shows the top-1 accuracy of ResNet-50 for different sampling ratios. The different
data points correspond to 50% top-k sampling applied to all the layers, all layers with at least 128
channels, 256 channels, 512 channels and 1024 channels.

Figure 11(b) shows the top-1 accuracy of ResNet-152 for different sampling ratios. The different
data points correspond to 50% top-k sampling applied to all the layers, all layers with at least 256
channels, 512 channels and 1024 channels.

71
72
73
74
75
76

50 60 70 80 90 100

Ac
cu

ra
cy

% of computations

top-k
Baseline

(a) ResNet-50

75

76

77

78

50 60 70 80 90 100
% of computations

top-k
Baseline

(b) ResNet-152

Figure 11: ResNet-50 and ResNet-152 ImageNet top-1 test accuracy. The accuracy increases as
higher amounts of the computations are performed

32

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet


Figures 6(b) and 6(c) show the top-1 validation accuracy learning curves for different forward-pass
top-k sampling ratios, compared to the non-approximate baseline. We observe that ResNet-50 and
ResNet-152 are more sensitive to sampling compared to WRN-28-10 on CIFAR10. Nonetheless,
applying 50% sampling in the layers with 1024 channels, corresponding to 93% of the computations
in ResNet-50 and 91% of the computations in ResNet-152, follow the non-approximate learning
curves almost identically.

D.5 Distributed Training

To evaluate the accuracy of top-k-weights algorithm for ResNet-152 on Imagenet we used the same
settings as in the previous section and trained on a single node with 4 GPUs. The accuracy results are
shown in figure 12. The different data points correspond to 50% top-k-weights sampling applied to
all layers with at least 256 channels, 512 channels and 1024 channels.

75

76

77

78

50 60 70 80 90 100
% of weights

top_k_weights
baseline

Figure 12: ResNet-152 ImageNet top-1 test accuracy, using top-k-weights algorithm.

For the distributed training experiments we used eight AWS EC2 instances equipped with 2.7GHz
Intel Xeon E5-2686v4 CPU, one V100 GPU with 16 GB of memory, 10 Gbps networking, PyTorch
version 1.7.1, CUDA 11 and Python 3.7.6.

For the distributed measurement we used the same hyper-parameters except the minibatch size which
we set to 32 per GPU. We could not increase the batch size since the AWS EC2 GPU we used had
16GB of memory and could not support higher batch size. We note that the eight-node setting has a
total global batch size of 256, which matches the batch size used in the accuracy evaluation.

E NeurIPS Paper Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section 3 describes the limited
theoretical properties for sampling in the forward pass; the experimental results section
mentions what did not work well.

(c) Did you discuss any potential negative societal impacts of your work? [No] This work
does not present any foreseeable societal consequence.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions

are stated in each theorem.
(b) Did you include complete proofs of all theoretical results? [Yes] Included in Ap-

pendix C.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Included in
Appendix D.

33



(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Included in Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We did not repeat the experiments multiple times due to
time and resource constraints.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Included in Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited datasets and

frameworks we used when we mention them in the paper. We provide URLs for public
repositories we used in Appendix D.

(b) Did you mention the license of the assets? [Yes] Included in Appendix D.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code and models are included in the GitHub link provided.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [N/A] We used popular benchmark datasets without personal
information

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We used popular benchmark datasets without
personal information

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

34


