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ABSTRACT

This paper tackles a new problem of dataset pruning for Knowledge Distilla-
tion (KD), from a fresh perspective of Decision Boundary (DB) preservation and
drifts. Existing dataset pruning methods generally assume that the post-pruning
DB formed by the selected samples can be well-captured by future networks that
use those samples for training. Therefore, they tend to preserve hard samples since
hard samples are closer to the DB and better characterize the nuances in the dis-
tribution of the entire dataset. However, in KD, the limited learning capacity from
the student network leads to imperfect preservation of the teacher’s feature distri-
bution, resulting in the drift of DB in the student space. Specifically, hard samples
worsen such drifts as they are difficult for the student to learn, creating a situa-
tion where the student’s DB can drift deeper into other classes and make incorrect
classifications. Motivated by these findings, our method selects medium-difficulty
samples for KD-based dataset pruning. We show that these samples constitute
a smoothed version of the teacher’s DB and are easier for the student to learn,
obtaining a general feature distribution preservation for a class of samples and
reasonable DB between different classes for the student. In addition, to reduce
the distributional shift due to dataset pruning, we leverage the class-wise distribu-
tional information of the teacher’s outputs to reshape the logits of the preserved
samples. Experiments show that the proposed static pruning method can even per-
form better than the state-of-the-art dynamic pruning method which needs access
to the entire dataset. In addition, our method halves the training times of KD and
improves the student’s accuracy by 0.4% on ImageNet with a 50% keep ratio.
When the ratio further increases to 70%, our method achieves higher accuracy
over the vanilla KD while reducing the training times by 30%. Code is available
at https://github.com/chenyd7/MDSLR.

1 INTRODUCTION

Deep Neural Networks (DNNs) (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016; Liu
et al., 2022) have dominated the computer vision field in the past decade as an effective feature
extraction tool. One of the most important factors in the success of DNNs is the large number
of parameters. For instance, the early GoogLeNet (Szegedy et al., 2015) utilizes approximately
6.6 million parameters to obtain 69.77% top-1 accuracy on ImageNet (Russakovsky et al., 2015)
classification, and the recently proposed ConvNeXt (Liu et al., 2022) with 197.8 million parameters
increases the accuracy to 84.41%. Although large networks are powerful, they also significantly
increase computation costs for inference, which limits their deployments in real-world applications.

To mitigate this problem, Knowledge Distillation (KD) (Hinton et al., 2015) is proposed to en-
hance the performance of lightweight networks for efficient inference. The mechanism of KD is to
utilize the knowledge hidden in the teachers (large networks) to supervise the training of students
(lightweight networks). Inspired by the promising performance of KD, a series of extensions have
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been proposed by exploiting knowledge in different layers of the teacher network (Ji et al., 2021;
Chen et al., 2022) or designing more effective distillation loss (Tian et al., 2020; Zhao et al., 2022).
Although distillation-based training can greatly improve lightweight networks’ performance, the
training complexity is high due to the addition of the teacher and the usage of large-scale datasets.

There are several methods designed to reduce the training cost of KD. For instance, self-distillation
proposes to replace the teacher’s knowledge with the latent knowledge hidden in the student itself
(Sun et al., 2019; Zhang et al., 2019; Liang et al., 2022; Yang et al., 2023). Although the training
times are reduced by discarding the cumbersome teacher network, the improvement of the student’s
accuracy is limited due to the intrinsic performance gap between the student and the teacher. An-
other solution for KD acceleration is to reduce the frequency of forward propagation (Shen & Xing,
2022; Beyer et al., 2022). A typical way is to store the knowledge generated by the pre-trained
teacher in advance. However, since the technique of data augmentation plays an important role in
KD, the fixed knowledge tends to be less effective as shown in (Beyer et al., 2022). Recently, dy-
namic dataset pruning methods have shown great potential in speeding up training (Li et al., 2022;
Truong et al., 2023; Qin et al., 2024). The main idea of dynamic dataset pruning is to skip the less
informative samples for forward propagation during training based on the loss values from the pre-
vious epoch. By focusing more on learning those hard samples, the training cost can be reduced and
the distillation performance can be maintained to a large extent (Li et al., 2022). However, dynamic
data pruning methods still need to access the entire dataset. As the sizes of training datasets con-
stantly increase in the field of computer vision, the I/O operations for large-scale datasets will stress
resource-constrained devices (Dryden et al., 2021; Nguyen et al., 2022).

To reduce the training cost and the size of datasets simultaneously, this paper explores how to per-
form static dataset pruning (Welling, 2009; Toneva et al., 2019; Paul et al., 2021) given a pre-trained
teacher network. Specifically, static pruning decides which samples should be preserved at the be-
ginning of training and does not need to store the entire dataset. However, existing static pruning
methods are less effective in KD scenarios as illustrated in the recent research (Ben-Baruch et al.,
2024) and Table 5. This is because these methods are not tailored for distillation and neglect the
capacity gap between the student and the teacher. In general, static pruning methods tend to pre-
serve hard samples for training as they are more informative and closer to the decision boundary.
However, we observe the drift of decision boundary in distillation since the student is unable to
fully mimic the teacher’s feature distribution of hard samples, leading to the overlap of features of
different classes. Based on this observation, we propose preserving medium-difficulty samples for
distillation as they form a smoothed decision boundary of the original distribution and are easier to
learn. In addition, to mitigate the distributional shift due to the lack of a large portion of samples,
we record the average distribution information of the teacher’s predictions for subsequent distilla-
tion. By reshaping the logits of the preserved samples with the recorded information, the student’s
performance can be further improved. In summary, the contributions of this paper include:

• We investigate the effects of using different types of samples for distillation from the per-
spective of decision boundary. To avoid the drift of decision boundary, we propose pre-
serving the medium-difficulty samples for training.

• To mitigate the distributional shift due to dataset pruning, we use the average logit distri-
bution information of the teacher to reshape the logits of preserved samples and modify the
distillation loss for the training on a pruned dataset.

• Experimental results demonstrate that our method can even perform better than the state-
of-the-art dynamic pruning method. In addition, when using 70% of samples, our method
achieves higher accuracy over the vanilla KD while reducing the training times by 30%.

2 RELATED WORK

Efficient knowledge distillation. The original KD and its extensions generally require a pre-trained
teacher network to generate soft labels (Hinton et al., 2015; Zhao et al., 2022) or intermediate fea-
tures (Ji et al., 2021; Chen et al., 2022) to guide the student’s training, which is computationally
intensive due to the forward propagation of the teacher. In contrast, self-distillation aims to obtain
knowledge without using a large teacher network. For instance, some methods add multiple classi-
fiers to the student network to generate soft labels from the shallow features (Sun et al., 2019; Zhang
et al., 2019). Since the additional branches inevitably introduce more parameters, the computation
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costs are still high. Recent self-distillation methods have been proposed to discover the knowledge
hidden in the student itself. Zipf’s LS (Liang et al., 2022) reuses the classifier of the student to per-
form dense prediction on the feature maps before the pooling layer and obtains soft labels by ranking
the frequency of the predicted class in the dense prediction. Universal Self-Knowledge Distillation
(USKD) (Yang et al., 2023) further divides the distillation loss into non-target and target objectives
based on Zipf’s LS. Although Zipf’s LS and USKD significantly reduce the training complexity of
self-distillation, the distilled students are less discriminative than those using the knowledge from
the large teacher. Since the teacher’s knowledge is indispensable, another line of efficient KD is
to reduce the times of forward propagation. An intuitive idea is to store the knowledge (e.g., soft
labels) of different samples generated by the teacher before distillation as the weights of the teacher
are fixed during training. However, this not only increases the costs for storing the fixed knowledge
but also degrades the effectiveness of KD due to the lack of data augmentation and the inconsistency
between the inputs of the student and the teacher at different epochs (Beyer et al., 2022). Therefore,
this paper focuses on pruning the less important training samples for efficient distillation.

Dataset pruning. Most recently, dynamic dataset pruning methods have shown promising perfor-
mance by selectively feeding the samples to the networks for optimization based on the loss from the
previous epoch (Truong et al., 2023; Qin et al., 2024). The rationale behind dynamic pruning meth-
ods is that samples with larger losses are more informative for the student to learn. By eliminating
the less important samples for forward propagation, the computation costs can be greatly reduced
and the overall performance is surprisingly competitive (Qin et al., 2024). A drawback of dynamic
pruning methods is that they need to access the entire dataset. As the sizes of datasets constantly
increase in the trend of Scaling Laws (Alabdulmohsin et al., 2022), the I/O overhead of accessing
data is likely to be a bottleneck in training a model (Dryden et al., 2021; Nguyen et al., 2022). There-
fore, it is desirable to develop static pruning methods for efficient training. The difference between
static and dynamic pruning is that the static methods prune samples in advance and only access the
pruned dataset during training. Similarly, existing static pruning methods are prone to preserve hard
samples. For example, Forgetting (Toneva et al., 2019) selects samples that are harder to memorize
and Error L2-Norm (EL2N) (Paul et al., 2021) preserves samples that have larger discrepancies with
the corresponding ground-truth labels. Since these static methods do not consider the capacity gap
between the student and the teacher, their effectiveness in KD is degraded.

3 METHODOLOGY

In this paper, we aim to provide insights for practitioners that directly use the pre-trained models
(e.g., downloading model weights from the repository of Pytorch1) to distil a student and try to
prune the dataset using the prior knowledge from the pre-trained teacher without introducing too
much computation overhead. The study on static dataset pruning for KD is limited. For instance, Ye
et al. (2024) conducts a few-shot classification experiment based on the KD framework. However,
the focus of (Ye et al., 2024) is to train an appropriate teacher for the student’s distillation, which
is orthogonal to the goal in this paper. The recent research (Ben-Baruch et al., 2024) proposes to
adaptively adjust the hyper-parameters of distillation and classification losses according to the size
of the pruned dataset. However, Ben-Baruch et al. (2024) suggests randomly pruning samples in
KD scenarios. On the contrary, we propose to utilize medium-difficulty samples for distillation and
achieve better performance. Our pruning strategy is similar to Moderate Dataset Selection (MoDS)
(Xia et al., 2023), which aims at improving the robustness and generalization of dataset pruning by
preserving the samples that are closer to the median distances to the corresponding class centres.
Different from MoDS, we investigate the effects of using medium samples from the perspective of
distillation-based training. In addition, we design a logit reshaping method for the improvement of
distillation on pruned data as illustrated in the following subsections.

3.1 PRELIMINARIES

The vanilla KD uses the teacher’s logits to guide the student’s training. In this paper, the teacher’s
logit and the student’s logit of a certain sample are denoted by p ∈ Rc×1 and z ∈ Rc×1, respectively,
where c is the number of classes. After obtaining the logits, the distillation loss used to train the

1https://pytorch.org/vision/stable/models.html
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(a) Full (b) Hard (c) Easy

Figure 1: Decision boundaries of (a) full samples, (b) hard samples, and (c) easy samples selected
by the pre-trained network ResNet50 on CIFAR-100. Different shapes denote samples of different
classes and the selected samples are visualized with darker colours. Note that hard samples better
preserve the original decision boundary, covering the general distribution of the entire dataset.

student is as follows:

LKL = −
c∑

i=1

exp(pi/µ)∑
j exp(pj/µ)

log
exp(zi/µ)∑
j exp(zj/µ)

, (1)

where pi and zi are the i-th element of p and z, respectively, and µ is the temperature coefficient.
By combining the distillation loss with the cross-entropy loss LCE , the total loss for the student’s
optimization is as follows:

LKD = αLCE + (1− α)LKL, (2)

where α is a hyper-parameter used to trade off the two losses. As shown in Equation 2, the
distillation-based training requires a pre-trained teacher network to generate logits for supervision,
which will significantly increase computation costs. To mitigate this problem, a feasible way is to
reduce the number of training samples. In KD scenarios, it is common to use the pre-trained teacher
networks downloaded from different open-source repositories for distillation. Therefore, this paper
aims to directly prune the dataset according to the predictions of the pre-trained teacher without re-
training (Toneva et al., 2019) or introducing an additional proxy network (Coleman et al., 2020) so
that the computation overhead for dataset pruning can be reduced. Existing dataset pruning methods
score the difficulties of training samples by using different measurements (Paul et al., 2021; Qin
et al., 2024). For example, EL2N obtains the score of a training sample by computing the L2 dis-
tance between the network’s predictions and the one-hot label vectors. Similarly, this paper scores
the samples by measuring the discrepancy between the network’s predictions and the one-hot label
vectors with the cross-entropy loss since we conduct experiments on the image classification task,
which generally adopts the cross-entropy loss for optimization. Given a pre-trained teacher network,
the difficulties of training samples are defined as follows:

MDIF = −
c∑

i=1

yi log
exp(pi)∑
j exp(pj)

, (3)

where y ∈ Rc×1 is a one-hot vector constructed from the ground-truth label. We rank the
difficulty of training samples based on the values of MDIF and obtain an index vector d =
{d1, d2, ..., di, ..., dn} ∈ Rn×1, where n is the total number of training samples and di is the
index of the training sample with the i-th largest loss. Samples with larger losses, i.e., dH =
{d1, d2, ..., di, ..., drn} ∈ Rrn×1 are regarded as hard samples and samples with smaller losses, i.e.,
dE = {dn−rn+1, dn−rn+2, ..., dn−rn+i, ..., dn} ∈ Rrn×1 are considered as easy samples, where
0 < r < 1 is the ratio of the preserved samples and we assume rn is an integer for simplicity.

3.2 SMOOTHED DECISION BOUNDARY FROM MEDIUM-DIFFICULTY SAMPLES

Most of the existing dataset pruning methods tend to preserve hard samples (Toneva et al., 2019;
Paul et al., 2021) for training as hard samples are informative while a few methods find the easy
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(a) Hard (LKL = 2.42) (b) Easy (LKL = 1.37) (c) Medium (LKL = 1.84)

Figure 2: Decision boundaries of (a) hard samples, (b) easy samples, and (c) medium samples
selected by the teacher ResNet50 on the feature space of the distilled student MobileNetV2 on
CIFAR-100. It is shown that the decision boundary of hard samples drifts into other classes and
the decision boundary of easy samples is too small to cover the general distribution of the dataset.
Medium-difficulty samples obtain a balance between these situations.

samples are beneficial (Welling, 2009). To compare the difference between hard and easy samples
selected by the teacher network, we visualize their decision boundaries as shown in Figure 1. In
these visualizations, we first map the deep features generated by the pre-trained ResNet50 (He et al.,
2016) into a two-dimensional space by using t-SNE (Van der Maaten & Hinton, 2008) and then
train a classifier with the selected samples to generate the decision boundary. Figure 1 demonstrates
that the decision boundary obtained by hard samples is closer to that generated by the original full
data. Since the feature distribution of easy samples is relatively concentrated, its decision boundary
retreats too much from the original, which may affect the network’s generalization ability. Figure
1 suggests that preserving hard samples is beneficial to dataset pruning. However, we find that the
performance of existing static pruning methods is far from satisfactory in distillation-based training.
We hypothesize this is because the student network is unable to learn the exact feature distribution
of the teacher due to the large capacity gap, leading to the deviation of the decision boundary.
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Figure 3: Top-1 training accuracy of
different types of samples on CIFAR-
100. The red lines represent the
results obtained by the pre-trained
ResNet50 and the blue lines represent
the results obtained by the distilled
MobileNetV2.

To verify this hypothesis, we first compare the training ac-
curacy of the distilled student MobileNetV2 (Sandler et al.,
2018) and the pre-trained teacher ResNet50. In Figure 3,
we select three subsets from the training set based on the
teacher’s predictions, including 30% of hard samples, 30%
of medium samples, and 30% of easy samples. It is shown
that there is a large gap between the student and the teacher
regarding the training accuracies of hard samples. This
is because hard samples are close to the decision bound-
ary of the corresponding class and tend to be misclassified.
Since the student is unable to mimic the teacher exactly,
the hard samples selected by the teacher may not be suit-
able for the student’s training. As shown in Figure 2(a),
some of the hard samples belonging to the “circle” class
are indistinguishable from the “triangle” class. As a re-
sult, the decision boundary formed by the hard samples of
the “circle” class involves several samples belonging to the
“triangle” class, leading to incorrect classification. On the
other hand, although easy samples are easier to learn ac-
cording to the lower distillation loss, the range of the deci-
sion boundary of easy samples is small as shown in Fig-
ure 2(b). Therefore, a large portion of data points are not included, which will affect the net-
work’s generalization ability. The above analysis indicates that neither hard nor easy samples
are suitable for distillation to obtain accurate and generalizable decision boundaries for different
classes. Motivated by these observations, we propose preserving the medium-difficulty samples,
i.e., dM = {d⌈n−rn

2 ⌉, ..., d⌈n
2 ⌉, ..., d⌈n+rn

2 ⌉−1} ∈ Rrn×1 for distillation on a pruned dataset and em-

5



Published as a conference paper at ICLR 2025

0 20 40 60 80 100
Categories

5

0

5

10

15

20

25

Va
lu

es

w/o Reshaping
w/ Reshaping

(a) Under-confident logits
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Figure 4: Reshaping logits of the preserved samples using the class-wise distribution information of
the entire dataset. Given (a) an under-confident logit vector or (b) an over-confident logit vector of
the preserved sample, we reshape it to better fit the distribution of (c) the mean logit vector of the
corresponding class on the full dataset.

pirically find that such dataset pruning strategy work well in different teacher-student combinations.
Similarly, we visualize the decision boundary learned by the medium-difficulty samples in Figure
2(c). It is shown that the medium-difficulty samples constitute a smoothed decision boundary and
are easier to learn than hard samples. In addition, the medium-difficulty samples obtain a trade-off
between underfitting and overfitting on the training set compared to the hard and easy samples as
illustrated in Figure 3. Therefore, the student’s generalizability on the testing set is better by using
medium-difficulty samples for distillation as shown in Section 4.1.

3.3 MITIGATING BIAS OF THE PRUNED DATA

Although the distillation on a pruned dataset can be improved by using medium-difficulty samples,
it is still challenging to achieve lossless performance due to the information loss of a large portion
of pruned samples. To mitigate this problem, we record the global distribution information of the
teacher’s predictions to reshape the logits of the selected samples. Specifically, we obtain the class-
wise logit information of the i-th class as follows:

ki =

∑mi

j=1 MSTD(pi,j)

mi
(4)

where mi is the number of samples of the i-th class, MSTD(·) is used to compute the standard
deviation of a logit vector and pi,j is the logit vector of the j-th samples in i-th class. Since the
recorded information k is a c-dimensional vector, it barely increases the storage overhead. After
obtaining the average logit information, we use it to reshape the logits of the preserved samples and
rewrite the distillation loss as follows:

L̃KL = −
c∑

i=1

exp(p̃i/µ)∑
j exp(p̃/µ)

log
exp(zi/µ)∑
j exp(zj/µ)

, (5)

where p̃ = pkp/MSTD(p) and kp is the average logit information of the class that p belongs to.
The idea of KD is to use the soft labels generated by the teacher to characterize the latent between-
class information of the dataset. Since the pruned dataset only preserves a portion of samples, the
teacher may be biased regarding the relationships between classes. By using the global distribution
information to reshape the logits of the preserved samples, the distributional shift of an incomplete
dataset can be mitigated. We use Figure 4 to illustrate the effect of logit reshaping.

4 EXPERIMENTS

This section compares the effectiveness of different dataset pruning methods for distillation. Several
teacher-student combinations are introduced to verify the generalization abilities of these methods
on different datasets. Experimental details are listed as follows.
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Baselines. Existing static dataset pruning methods such as Herding (Welling, 2009), Forgetting
(Toneva et al., 2019), EL2N (Paul et al., 2021) and MoDS (Xia et al., 2023) are included for compar-
ison. Different from these methods that are not designed for KD, Ben-Baruch et al. (2024) proposes
to randomly prune samples for distillation and adaptively tune the hyper-parameters of the distilla-
tion loss according to the pruning ratio. We compare the method in (Ben-Baruch et al., 2024) in
experiments, which is denoted by Adaptive. Following Adaptive, we randomly prune samples from
the dataset in a class-balanced manner to form a baseline method Random. For a fair comparison,
the proposed method also selects the medium-difficulty samples evenly from each class. In addition,
a recently proposed dynamic pruning method InfoBatch (Qin et al., 2024) is also included.

Datasets. The main experiments are conducted on two benchmark datasets, i.e., CIFAR-100
(Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015). CIFAR-100 contains 60,000
images in total belonging to 100 classes. The dataset is divided into a training set with 50,000 im-
ages and a testing set with 10,000 images. ImageNet is a larger dataset collecting images from 1,000
classes. It contains 1,281,167 training images and 50,000 testing images. The images on CIFAR-100
and ImageNet are resized to 32× 32 and 224× 224 pixels, respectively.

Teacher-student combinations. We evaluate the generalization ability of different pruning methods
by using different network combinations. The architectures of teacher networks include ResNet34
(He et al., 2016), ResNet50 (He et al., 2016), VGG13 (Simonyan & Zisserman, 2014), WRN-40-2
(Zagoruyko & Komodakis, 2016) and ResNet32x4 (He et al., 2016). The architectures of student
networks include MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018), VGG8
(Simonyan & Zisserman, 2014), ResNet8x4 (He et al., 2016) and WRN-16-2 (Zagoruyko & Ko-
modakis, 2016).

Training setup. We follow the training scheme of a popular open-source distillation repository
(Tian et al., 2020) to set up the learning rate, learning rate decay rate, training epochs, batch size,
weight decay rate and optimizer. On CIFAR-100, the hyper-parameter α is set to 0.1. For Adaptive,
we set α = 0.1, α = 0.15, α = 0.2 and α = 0.5 when the keep ratio r is 30%, 40%, 50% and
70%, respectively. On ImageNet, we set the hyper-parameters to 0.5 and 0.9 for the cross-entropy
loss and the distillation loss, respectively. In addition, the temperature coefficient is set to 4 in all
experiments. The results are obtained by using an NVIDIA V100 GPU.

4.1 ABLATION STUDIES

Table 1: Top-1 accuracy±standard deviation (%) on
CIFAR-100 with ResNet50-MobileNetV2 using dif-
ferent data pruning strategies. Reshape denotes re-
shaping logits with the average information.

Strategy r = 40% r = 70%
Random 55.95±0.89 63.89±1.03

Hard 54.17±0.67 64.99±0.29
Easy 56.20±0.56 63.57±0.27

Medium 57.59±0.06 65.59±0.40
Medium+Reshape 58.04±0.74 66.18±0.11

We first investigate the distillation perfor-
mance with samples selected from dH , dE ,
dM . Table 1 lists the top-1 accuracy of dif-
ferent students distilled with different types
of samples. The results on CIFAR-100 are
averaged over 3 trials and the standard de-
viation is also reported. As shown in the ta-
ble, since hard samples are difficult for the
student to learn, the student distilled with
hard samples underperforms those distilled
with random samples in a low keep ratio.
However, as the ratio increases, the situa-
tion is different. This is because the student
has more training iterations to learn the teacher’s feature distribution with a higher keep ratio. On
the other hand, the teacher’s knowledge of easy samples is easy to learn and helps the student obtain
better performance in a low keep ratio compared to using random samples. However, as shown in
Figures 1 and 2, the decision boundary formed by easy samples is limited and can only cover a small
portion of features, which degrades the generalization ability of the student. By selecting medium-
difficulty samples, the proposed method obtains a better trade-off between sample difficulty and the
network’s generalization ability achieving the best performance with different keep ratios of data.
In addition, by using the logit reshaping technique, the student’s accuracy can be further increased.
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4.2 MORE JUSTIFICATION OF USING MEDIUM-DIFFICULTY SAMPLES

Apart from comparing the classification accuracy, we investigate the effects of using different
types of samples for distillation from the perspectives of gradient variation and mutual information.
Specifically, we compute the L2-norm of the gradient of the last layer by using different samples for
training and obtain the standard deviation of the gradient magnitudes over different training epochs.
In this way, we can analyze how different samples affect the network’s learning. In addition, we
measure the alignment between decision boundaries formed by the student and the teacher by using
mutual information.

Table 2: Standard Deviation (SD) of gradi-
ents and Mutual Information (MI) of decision
boundaries on CIFAR-100 with ResNet50-
MobileNetV2 using different strategies.

Strategy SD MI
Hard 0.018 0.046
Easy 0.030 0.054

Medium 0.022 0.051

As shown in Table 2, the standard deviation of gra-
dients of hard samples is lower, leading to a more
stable training process. However, the mutual infor-
mation of hard samples is also lower, which indi-
cates the student’s decision boundaries of hard sam-
ples do not well align with that of the teacher. Al-
though the mutual information is high in the case
of easy samples, the training process is unstable in
terms of the standard deviation of gradient magni-
tudes, which may result in overfitting and affect the
generalizability of the student. Overall, medium-
difficulty samples obtain a trade-off between standard deviation and mutual information.

4.3 COMPARISON OF DIFFERENT LOGIT RESHAPING METHODS

Table 3: Top-1 accuracy±standard deviation (%)
on CIFAR-100 with ResNet50-MobileNetV2 us-
ing different logit reshaping methods.

Method r = 40% r = 70%
Medium 57.59±0.06 65.59±0.40

SKD 56.40±0.41 64.94±0.27
NormKD 55.99±0.93 65.55±0.31

LSKD 56.25±0.91 65.06±0.50
Ours 58.04±0.74 66.18±0.11

The technique of logit reshaping has been
well-studied in the existing KD methods.
For instance, Spherical Knowledge Distillation
(SKD) (Guo et al., 2020) proposes to align
the magnitude of the student logit with that
of the teacher logit. NormKD (Chi et al.,
2023) rescale student logits and teacher log-
its with their corresponding standard devia-
tions. Logit Standardization in Knowledge Dis-
tillation (LSKD) (Sun et al., 2024) further re-
shape the logit to a zero mean vector based on
NormKD. The technical details of existing logit
reshaping methods are described in Appendix A.3. Different from these logit reshaping methods that
focus on aligning the smoothness of student and teacher logits, we aim to align the distribution of the
preserved teacher logits with the global distribution information for distillation on a pruned dataset.
As shown in Table 3, existing logit reshaping methods degrade the distillation performance with
different keep ratios. The proposed method improves the student’s accuracy by a clear margin.

4.4 DISCUSSIONS ON CIFAR-100

Logit distillation. Figure 5 compares the proposed method with the existing static dataset pruning
methods on CIFAR-100 with different keep ratios. In these experiments, ResNet50-MobileNetV2
and ResNet50-VGG8 are used to test the teacher and the student that have different network archi-
tectures and VGG13-VGG8 is used to evaluate the teacher and the student that has similar network
architectures. More combinations are given in Appendix A.4. Experimental results show that ex-
isting methods, such as Herding, Forgetting, and EL2N underperform the other methods in most
cases since they tend to select easy or hard samples for training. Random and Adaptive obtain bet-
ter performance by approximately evenly selecting easy, medium and hard samples from datasets.
By comparison, MoDS and the proposed method focus more on the medium-difficulty samples and
achieve consistent improvements for different keep ratios. The differences between our method and
MoDS are two-fold. Firstly, we introduce a logit reshaping method to convey the global information
of the teacher’s predictions to mitigate the gradient bias of a pruned dataset. Secondly, we select
medium-difficulty samples in a class-balanced manner to avoid classification bias in the teacher.
Therefore, our method consistently performs better than MoDS as shown in Figure 5.
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Figure 5: Top-1 accuracy of different static data pruning methods on CIFAR-100 datasets with
different keep ratios. The proposed method consistently outperforms the existing pruning methods
under different teacher-student combinations and network architectures.

Table 5: Top-1 accuracy (%) on ImageNet with different teacher-student pairs using different data
pruning strategies. InfoBatch∗ is a dynamic pruning method, which needs to store the entire training
set during distillation.

Pair ResNet34-MobileNet ResNet50-MobileNet
Keep Ratio r = 30% r = 50% r = 70% r = 30% r = 50% r = 70%

Random 67.25↓3.47 69.39↓1.33 70.20↓0.52 66.84↓3.81 68.96↓1.69 69.91↓0.74
Herding 61.96↓8.76 66.58↓4.14 68.88↓1.84 60.76↓9.89 66.30↓4.35 68.82↓1.83
EL2N 64.70↓6.02 69.14↓1.58 70.57↓0.15 63.47↓7.18 68.47↓2.18 70.16↓0.49

Moderate 66.79↓3.93 69.05↓1.67 69.93↓0.79 66.46↓4.19 68.72↓1.93 69.75↓0.90
InfoBatch∗ 67.43↓3.29 69.91↓0.81 70.47↓0.25 66.95↓3.70 69.83↓0.82 70.46↓0.19

Ours 67.91↓2.81 69.98↓0.74 70.92↑0.20 67.67↓2.98 69.97↓0.68 70.93↑0.28
Full Dataset w/o KD 69.57↓1.15 69.57↓1.08
Full Dataset w/ KD 70.72 70.65

Table 4: Top-1 accuracy (%) on CIFAR-100 with
ResNet50-MobileNetV2 using feature distillation.

Strategy r = 40% r = 70%
Random 57.68±0.95 66.04±0.90
Herding 55.42±0.40 65.03±0.46

Forgetting 50.41±0.33 65.34±1.36
EL2N 54.41±0.22 65.95±0.54
MoDS 57.61±0.25 66.06±0.36

Ours (w/o Reshape) 58.11±0.61 66.46±0.18

Feature distillation. As a representative
extension of the vanilla KD, feature dis-
tillation methods aim to distil the knowl-
edge hidden in the intermediate layers of
the teacher network. Table 4 evaluates
the performance of different dataset prun-
ing methods for feature distillation. In this
experiment, we use the method in (Chen
et al., 2022) to perform feature distilla-
tion. Similar to the results of logit distilla-
tion, selecting medium-difficulty samples
is beneficial to the feature distillation on a pruned dataset. The comparison between MoDS and
the proposed method further demonstrates the importance of class-balanced sampling in distillation.

4.5 DISCUSSIONS ON IMAGENET

Performance comparisons. We further verify the effectiveness of the proposed method on a larger
dataset ImageNet. Table 5 shows the top-1 accuracies of different methods with teacher-student
pairs ResNet34-MobileNet and ResNet50-MobileNet. Experimental results show that the proposed
method consistently outperforms the other static pruning methods under different ratios of preserved
samples. In addition, the proposed method achieves lossless accuracy by solely using 70% of the
training data. This is because the large-scale dataset contains more redundant samples. Therefore,
it is necessary to develop effective dataset pruning methods to identify useful samples for training
efficiency improvement. Apart from static pruning methods, a recently proposed dynamic pruning
method InfoBatch is also included for comparison in Table 5. Since InfoBatch prunes different
numbers of samples at different epochs, as in the original paper, we report the top-1 accuracies of
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different keep ratios by matching the number of forward propagation during training. In addition,
InfoBatch tends to preserve hard samples for training, which will also lead to the drift of the decision
boundary. Although the proposed method does not access the entire dataset during training, it still
obtains competitive performance compared to InfoBatch.
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Figure 6: Top-1 accuracy and training time
on ImageNet with different keep ratios.

Training complexity. Since the proposed method di-
rectly utilizes the pre-trained teacher to rank the diffi-
culties of training samples, the overhead for data selec-
tion can be significantly reduced. Therefore, we in-
vestigate how the pruned dataset affects the training
time and accuracy of distillation. Figure 6 displays
the curves of testing accuracy versus training time us-
ing the teacher-student pair ResNet34-MobileNet. By
using 50% of training samples, the proposed method
outperforms the student without using distillation by
0.41% in terms of top-1 accuracy. Besides, the train-
ing time of distillation can be halved by using dataset
pruning. On the other hand, the student trained on a
full dataset requires one and a half times of training
time compared to the distillation using 50% of train-
ing data. In addition, by using the proposed method
to facilitate logit distillation on the pruned datasets, the
distilled student converges faster with different keep ratios compared to the training on a full dataset.

Table 6: Top-1 accuracy and training time on ImageNet
of self-knowledge distillation and the proposed method
with ResNet34-MobileNet using 70% of samples.

Baseline Zipf’s LS USKD Ours
Acc (%) 69.57 69.59 70.38 70.92
Time (h) 39.86 >39.86 >39.86 36.98

Comparisons with self-knowledge
distillation. Self-knowledge distillation
is another technical route for acceler-
ating the training of KD. Therefore,
we compare our method with several
recently proposed self-knowledge dis-
tillation methods in Table 6. The top-1
accuracies of Zipf’s LS and USKD are
cited from (Yang et al., 2023). Since
the self-knowledge distillation methods need to use the entire dataset and additional distillation
losses for training, their computation complexities will be slightly higher than the standard training
procedure (i.e., Baseline). However, the proposed method can significantly reduce the training
cost by using 70% of training data. In terms of the student’s accuracy, the improvement of
self-knowledge distillation methods is restricted due to the lack of the teacher’s knowledge. By
eliminating less important samples, the proposed method can speed up the training process and
benefit from the supervision of the teacher. In addition, the performance of our method can be
further improved by equipping with a more advanced distillation loss as shown in Appendix A.7.

5 CONCLUSION

This paper proposes a dataset pruning method with logit reshaping to accelerate the training of KD.
Specifically, we observe that the teacher’s knowledge of hard samples is difficult for the student to
learn, which will lead to a deviation of the decision boundary. Therefore, we suggest preserving
medium-difficulty samples for dataset pruning so that students can achieve smooth and discrimina-
tive decision boundaries between classes. In addition, to mitigate the gradient bias caused by dataset
pruning, an improved distillation loss is proposed by utilizing the global information of the teacher’s
predictions to reshape the logits of the preserved samples. Experiments on different datasets with
multiple teacher-student pairs verify the effectiveness and generalizability of the proposed method.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Following CRD Tian et al. (2020), we set the batch size, training epochs, and weight decay rate to
64/256, 240/100, and 0.0005/0.0001 on CIFAR-100/ImageNet. The initial learning rate is 0.01 for
MobileNetV2 and 0.05 for the other students and is multiplied by 0.1 at 150, 180, and 210 epochs
on CIFAR-100. On ImageNet, the initial learning rate is 0.1 and is multiplied by 0.1 at 30, 60, and
90 epochs. In addition, the commonly used data augmentation techniques, e.g., random crop and
horizontal flip are utilized for training. The optimizer is Stochastic Gradient Descent (SGD) with a
momentum of 0.9. The feature distillation loss we use in Table 4 is as follows:

LFD =
1

2
|| f(s)

||f(s)||2
− t

||t||2
||22, (6)

where s and t are the student and teacher feature vectors of a certain sample, respectively, and
f(s) is a function used to align the feature dimensions of the student and teacher with the projector
ensemble mechanism. The hyper-parameters of the cross-entropy loss, the distillation loss and the
number of projectors are set to 1, 25 and 3, respectively, as in the code released by the authors2.

A.2 DETAILS OF REPRODUCING BASELINES OF DATASET PRUNING

In the experiments, we reproduce existing dataset pruning methods by using the codes released by
the authors or implement the codes according to the descriptions of the corresponding paper. The
technical details of different baselines are as follows:

• Random (Ben-Baruch et al., 2024): We evenly prune samples from different classes to
achieve class-balanced sampling. Ben-Baruch et al. (2024) demonstrates such a dataset
pruning strategy can outperform existing methods in KD.

• Herding (Welling, 2009): We preserve samples with deeper features generated by the pre-
trained teacher that are closer to the corresponding class centres.

• Forgetting (Toneva et al., 2019): We use the code released by the authors3 to re-train the
teacher network and monitor the forgetting events of samples. Samples that are harder to
memorize (i.e., the number of forgetting events is higher) during training will be preserved.

• EL2N (Paul et al., 2021): The original EL2N compares the discrepancy between the
ground-truth labels and the predictions of networks trained with a few epochs. In our
experiments, we use the pre-trained teacher to compute the EL2N scores. Samples with
larger scores are preserved for distillation.

• MoDS (Xia et al., 2023): We use the code released by the authors4 to select samples.
Specifically, samples with deeper features generated by the pre-trained teacher that are
closer to the median distance of the corresponding class centres are preserved.

• Adaptive (Ben-Baruch et al., 2024): This baseline adopts the same dataset pruning strategy
as Random.

• InfoBatch (Qin et al., 2024): We use the code released by the authors5 to dynamically prune
data during distillation. Samples that have larger LKD values will be preserved at the next
training epochs. In addition, InfoBatch re-scales the loss according to the data pruning ratio
for further improvement.

A.3 TECHNICAL DETAILS OF EXISTING LOGIT RESHAPING METHODS

Let p and z denote the teacher and the student logit vectors, the logit reshaping methods normalize
the logit vectors as follows:

2https://github.com/chenyd7/PEFD
3https://github.com/mtoneva/example forgetting
4https://github.com/tmllab/Moderate-DS
5https://github.com/NUS-HPC-AI-Lab/InfoBatch/tree/master
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SKD: p = p, z = z
MSTD(p)

MSTD(z)
(7)

NormKD: p =
p

αMSTD(p)
, z =

z

αMSTD(z)
(8)

LSKD: p =
p− p̄

MSTD(p)
, z =

z − z̄

MSTD(z)
(9)

Ours: p = p
kp

MSTD(p)
, z = z (10)

where p̄ is the mean of p, α is a hyper-parameter. Unlike the previous methods that aim to align the
scale of the student logits with those of the teacher logits, the proposed method focuses on aligning
the teacher logits with their corresponding class-wise information, mitigating the distribution shift
due to dataset pruning. Therefore, the proposed method is significantly different from the previous
logit reshaping methods. In addition, we can integrate these methods in one framework, i.e., p = β1p
and z = β2z, where β1 and β2 are different coefficients for scaling. To apply different logit reshap-
ing methods, we just need to set the corresponding coefficients (e.g., β1 = kp/MSTD(p), β2 = 1).

A.4 MORE COMBINATIONS ON CIFAR-100

In this subsection, we introduce more teacher-student combinations for evaluation as shown in
Tables 7 to 10. Combinations WRN-40-2-WRN-16-2 and ResNet32x4-ResNet8x4 share similar
network architectures while combinations WRN-40-2-VGG8 and ResNet32x4-VGG8 have differ-
ent network architectures. In these experiments, we perform logit distillation between the stu-
dent and the teacher with the keep ratios of samples ranging from [30%, 40%, 50%, 70%]. Ex-
perimental results in these tables demonstrate that the proposed method performs better than the
other static dataset pruning methods in most cases. Overall, we evaluate the effectiveness of dif-
ferent methods with about nine different teacher-student pairs. We use the ratio of parameters
of teacher-student pairs to roughly quantify their learning capability discrepancy (i.e., parame-
ters of student network/parameters of teacher network). The ratios of these pairs range from
[0.02, 0.08, 0.16, 0.2, ..., 0.87], involving teacher and student networks with different learning ca-
pabilities. The diversity of the teacher-student pairs and the corresponding results demonstrate the
generalizability of the proposed method.

Table 7: Top-1 accuracy±standard deviation (%) on CIFAR-100 dataset using a teacher-student pair
with similar network architectures.

Teacher-Student Pair WRN-40-2-WRN-16-2
Strategy / Ratio r = 30% r = 40% r = 50% r = 70% Full Dataset

Random 67.73±0.07 69.69±0.09 71.13±0.37 73.29±0.25

74.82±0.21

Herding 61.93±0.25 65.52±0.24 68.37±0.26 71.99±0.15
EL2N 64.79±0.59 68.23±0.39 70.53±0.05 73.12±0.12

Moderate 67.87±0.23 70.40±0.07 71.59±0.31 73.63±0.11
Adaptive 67.73±0.07 70.04±0.19 71.11±0.30 72.98±0.09

Ours 68.93±0.56 70.56±0.09 72.33±0.20 73.81±0.20

Table 8: Top-1 accuracy±standard deviation (%) on CIFAR-100 dataset using a teacher-student pair
with similar network architectures.

Teacher-Student Pair ResNet32x4-ResNet8x4
Strategy / Ratio r = 30% r = 40% r = 50% r = 70% Full Dataset

Random 63.64±0.36 66.47±0.07 68.45±0.05 71.08±0.34

73.24±0.23

Herding 59.69±0.16 63.46±0.21 66.58±0.04 70.57±0.21
EL2N 61.71±0.27 65.65±0.37 68.48±0.17 71.37±0.13

Moderate 65.73±0.20 68.04±0.31 69.80±0.30 71.67±0.33
Adaptive 63.64±0.36 66.46±0.08 68.24±0.22 70.92±0.15

Ours 65.46±0.18 68.33±0.23 69.80±0.14 72.77±0.13
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Table 9: Top-1 accuracy±standard deviation (%) on CIFAR-100 dataset using a teacher-student pair
with dissimilar network architectures.

Teacher-Student Pair ResNet32x4-VGG8
Strategy / Ratio r = 30% r = 40% r = 50% r = 70% Full Dataset

Random 61.40±0.14 64.50±0.22 66.81±0.18 69.84±0.06

72.50±0.19

Herding 57.91±0.25 62.13±0.40 65.42±0.40 69.68±0.12
EL2N 58.74±0.48 63.10±0.17 66.04±0.48 69.75±0.42

Moderate 62.79±0.32 65.66±0.29 67.69±0.18 70.51±0.18
Adaptive 61.40±0.14 64.15±0.17 66.30±0.32 69.54±0.33

Ours 63.07±0.22 66.09±0.49 68.18±0.08 70.97±0.24

Table 10: Top-1 accuracy±standard deviation (%) on CIFAR-100 dataset using a teacher-student
pair with dissimilar network architectures.

Teacher-Student Pair WRN-40-2-VGG8
Strategy / Ratio r = 30% r = 40% r = 50% r = 70% Full Dataset

Random 64.06±0.18 66.63±0.21 68.49±0.26 71.30±0.20

73.06±0.43

Herding 59.52±0.08 63.55±0.24 66.70±0.08 70.67±0.23
EL2N 60.08±0.34 64.49±0.23 67.28±0.24 70.56±0.42

Moderate 64.10±0.25 66.80±0.13 69.08±0.44 71.31±0.22
Adaptive 64.06±0.18 66.61±0.33 68.29±0.32 70.63±0.08

Ours 65.37±0.14 67.97±0.22 69.62±0.14 72.10±0.34

A.5 EVOLUTION OF STUDENT FEATURE SPACE

In Figure 2, we visualize the decision boundaries formed by different types of samples in the student
feature space. In this subsection, we further investigate the change of decision boundaries during
the distillation process. Figures 7, 8, and 9 illustrate the evolution of decision boundaries formed by
hard, easy, and medium samples at 120, 160 and 240 epochs, respectively. For hard samples, it is
shown that the problem of the drift of decision boundaries is more severe at the early training stage.
This is because the teacher’s knowledge of hard samples is too complex for the student to learn.
On the other hand, the training for easy samples converges rapidly and the constructed decision
boundaries avoid overlap between different classes. However, these decision boundaries are too
small to cover the overall feature distribution. The medium-difficulty samples constitute smoothed
decision boundaries during the distillation process, leading to a discriminative and generalizable
student network.

A.6 RESULTS ON A HIGHLY-IMBALANCED DATASET

To verify if the proposed logit reshaping method works in a highly imbalanced dataset, we sam-
ple the CIFAR-100 dataset in an imbalanced manner. To be specific, we set the sampling rates
to be [100%, 99%, 98%, ..., 1%] for class [0, 1, 2, ...99], respectively, to create a highly imbalanced
dataset and use this imbalanced dataset for the student’s distillation. Experimental results in Table
11 demonstrate that even if the dataset is highly imbalanced, the proposed logit reshaping method
still improves the student’s performance in terms of results in the second and third columns. This
further verifies the generalizability of the proposed method. In addition, there is a potential way to
optimize the proposed method further. Specifically, instead of aligning the teacher’s logits with the
class-specific distributions, we align the teacher’s logits with the average distribution information of
the entire dataset (i.e., the mean of class-specific distributions). In this way, we can balance the logit
variance between the minority and the majority classes. Results in the last column demonstrate the
effectiveness of such a reshaping technique.
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(a) Hard (b) Easy (c) Medium

Figure 7: Decision boundaries of (a) hard samples, (b) easy samples, and (c) medium samples
selected by the teacher ResNet50 on the feature space of the distilled student MobileNetV2 on
CIFAR-100 at 120 epochs.

(a) Hard (b) Easy (c) Medium

Figure 8: Decision boundaries of (a) hard samples, (b) easy samples, and (c) medium samples
selected by the teacher ResNet50 on the feature space of the distilled student MobileNetV2 on
CIFAR-100 at 160 epochs.

(a) Hard (b) Easy (c) Medium

Figure 9: Decision boundaries of (a) hard samples, (b) easy samples, and (c) medium samples
selected by the teacher ResNet50 on the feature space of the distilled student MobileNetV2 on
CIFAR-100 at 240 epochs.

A.7 ADVANCED DISTILLATION LOSS

As mentioned in the Introduction, various extensions of the vanilla KD have been proposed in recent
years. Since this paper focuses on the acceleration of distillation, we mainly adopt the vanilla KD
for illustration in the experiments. This subsection demonstrates that the student’s accuracy can be
further increased by combining the proposed method with an advanced logit distillation loss. Specif-
ically, the recently proposed Decoupled Knowledge Distillation (DKD) Zhao et al. (2022) firstly
decomposes the vanilla logit distillation loss into a Target Class Knowledge Distillation (TCKD)
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Table 11: Experiments on CIFAR-100 with imbalanced sampling by using ResNet50-MobileNetV2.

Method w/o Reshaping w/ Reshaping w/ Improved Reshaping
Top-1 Testing Accuracy (%) 56.64 57.46 58.09

Table 12: Top-1 accuracy (%) on ImageNet by using different logit distillation losses with the pro-
posed dataset pruning and logit reshaping method. The student network is MobileNet.

Teacher ResNet34 ResNet50
Method r = 50% r = 70% r = 50% r = 70%

KD 69.98 70.92 69.97 70.93
DKD 70.17 71.27 70.22 71.61

loss and a Non-target Class Knowledge Distillation (NCKD) loss and the applies different hyper-
parameters for these two losses. Following the code released by the authors6, we set the hyper-
parameters of TCKD and NCKD to be 1 and 0.5 on ImageNet, respectively. As shown in Table 12,
the student’s performance can be consistently improved by using DKD under different keep ratios,
which demonstrates the generalizability of the proposed method.

A.8 TRANSFER LEARNING

We further validate the performance of the distilled students from the view of transfer learning.
In these experiments, we introduce two image datasets CUB-200 (Wah et al., 2011) and Cars-196
(Krause et al., 2013) for evaluation. For classification on a different dataset, we freeze the parameters
of the backbones of the students distilled on ImageNet and re-train the last classification layer. Table
13 lists the top-5 accuracy of the students distilled with different static dataset pruning methods. As
shown in the table, the proposed method outperforms the existing dataset pruning methods by a clear
margin on different datasets.

Table 13: Top-5 accuracy (%) on CUB-200-2011 and Cars-196 datasets using the pre-trained student
MobileNet distilled by different static dataset pruning strategies with keep ratio r = 30%.

Teacher ResNet34 ResNet50
Strategy CUB200 Cars196 CUB200 Cars196
Random 88.59 76.65 88.02 74.41
Herding 87.78 75.35 87.02 72.35
EL2N 87.19 74.75 85.76 71.54

Moderate 89.04 75.11 87.81 73.62
Ours 89.48 78.10 88.31 75.97

A.9 VISUALISATION OF SELECTED SAMPLES

To illustrate the differences between the preserved images, we visualize some images on ImageNet
selected by the pre-trained teacher ResNet50. Figure 10 displays the images of hard samples from
three different classes. It is shown that images of hard samples are more difficult to learn since
these images contain more uncorrelated objects as in the image of “Ballon” or fewer features of the
object as in the image of “Red wolf”. In addition, hard samples may contain noise as the image
of “Hamster”. On the contrary, images of easy samples are easy to distinguish as shown in Figure
11. From these visualizations, medium-difficulty samples achieve a trade-off between easy and hard
samples as shown in Figure 12 so that the student can learn accurate and generalizable decision
boundaries between classes.

6https://github.com/megvii-research/mdistiller
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Label: balloon

(a) Balloon

Label: hamster

(b) Hamster

Label: red wolf

(c) Red wolf

Figure 10: Images of hard samples selected by the pre-trained ResNet50 on ImageNet.

Label: balloon

(a) Balloon

Label: hamster

(b) Hamster

Label: red wolf

(c) Red wolf

Figure 11: Images of easy samples selected by the pre-trained ResNet50 on ImageNet.

Label: balloon

(a) Balloon

Label: hamster

(b) Hamster

Label: red wolf

(c) Red wolf

Figure 12: Images of medium samples selected by the pre-trained ResNet50 on ImageNet.
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