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TL;DR: “One layer” is all you need! An implicit-depth (or infinite-depth) model that solves for equilibriums and achieves SOTA, with only constant memory.

Introduction

IDeep networks have long been built on a core concept:
layers. Network depth are usually hand-picked by model
designers: e.g., ResNet-18/101.

IWe propose the Deep Equilibrium (DEQ) Models that
reduce many classes of deep models with a single layer
(defined implicitly) without loss of representational capacity:
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IDEQ aims to directly compute the hidden features of a
weight-tied network at its “infinite limit”, but with memory
cost of just one layer (i.e., constant).

IEmpirically, we show DEQ instantiated on sequence models
reduces SOTA deep networks by almost 90% of its GPU
memory cost, while achieving better results.

IOutput(s) of the network are defined implicitly.
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z[i+1] = f(z[i])

Explicit Layers Implicit Layers

find z[i+1] such that f(z[i], z[i+1]) = 0

Q: Is weight-tying a big restriction?
A: Not at all (as we will show later). Empirical evidence:
TrellisNet, Universal Transformer, ALBERT, ...

ICode at: https://github.com/locuslab/deq

Related Work

IPrior works have used gradient-checkpointing [4] and
reversible networks [6] to reduce memory cost.

INeural-ODE [3]; more work on implicit deep learning can
also trace back to some original works on the attractor
networks and recurrent backpropagation (RBP) [1].

Deep Equilibrium Models

ITo do the reduction from deep networks to a single-layer
model, we broadly consider the class of weight-tied,
input-injected deep models:

z[i+1] = fθ(z
[i ]; x), i = 0, . . . , L− 1, z[0] = 0

where fθ could be complex. Illustration in Figure 1 (left).
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Figure 1: A weight-tied, input-injected network and a deep equilibrium “network”.

I In practice, after these types of models converge to an
equilibrium point:

fθ(z
?; x) = z?

Q: When will the equilibrium points exist?
A: They virtually always exist. Intuitively, the layers we use
for deep networks already need this amount of stability.

Deep Equilibrium (DEQ) Models: directly solve for this
equilibrium/stable point via black-box root-finding; directly
differentiate through the equilibrium state.

To train/predict with a DEQ:

IDefine a single layer fθ, and gθ(z; x) := fθ(z; x)− z.

Forward pass: Given input x1:T , compute the equilibrium
point z?, which is the root of gθ:

z? = (black-box)RootFind(gθ; x)

Backward pass: Implicitly differentiate through this
equilibrium state only using the output:
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regardless of the path/trajectory to this equilibrium.

Accelerating DEQ and Properties of DEQ Models

INo need to actually compute the inverse Jacobian J−1
gθ

.

I In the forward pass, we propose to use Broyden’s method
(quasi-Newton) that makes low-rank updates to estimate J−1

gθ
:
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I In the backward pass, we alternatively solve the linear system

(
J>gθ|z?

)
x> +

(
∂`
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)>
= 0

where the vector-Jacobian product can be efficiently
computed (time-wise and space-wise).

IMemory cost of DEQ: Forward pass only needs to store z?

and x for the backward updates.

IUniversality of DEQ model’s capacity:
Theorem 1[informal]: Any conventional deep network can
be recovered by a DEQ.
Theorem 2[informal]: Stacking multiple DEQs doesn’t
create extra representational power than a single DEQ.
(Proof in paper.)

Key idea: One layer (of DEQ) is all you need.

Instantiations of DEQ on Sequences

IWe specifically investigate the domain of sequence
modeling, where z = z1:T and x = x1:T now have T
timesteps, with fθ autoregressive.

IThe formulation of DEQ is not predicated on any particular
kind of fθ. We highlight its two (very different) instantions
using state-of-the-art sequence models (Figure 2).

IDEQ-TrellisNet [2]: (i.e., fθ
is temporal convolutions).

IDEQ-Transformer [5] (i.e., fθ
is multihead self-attention).

(More options possible...)

Deep (Feed-Forward) Nets on Sequences
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Figure 2: Two SOTA sequence models

Experiments

IWe test both instantiations of DEQ on both synthetic and
realistic, large-scale and high-dimensional sequence benchmarks.
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Figure 3: Left: DEQ demonstrates good memory retention over relatively long sequences. Right: DEQ achieves
competitive performance on PTB corpus with > 80% reduction in memory cost.

Large-Scale Benchmarks
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Figure 4: DEQ significantly reduces memory while improving the results on the large-scale WikiText-103 dataset.

IDEQ sequence models achieve results on par with (or better
than) the SOTA, while paying 10-30% of the memory cost.

IDEQ runtime: about 1.5-2× slower at prediction.
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Figure 5: Left: DEQ-Transformer finds the equilibrium in a stable and efficient manner. Right: DEQ can be
accelerated by leveraging higher tolerance ε.

IDEQ represent the largest-scale practical application of implicit
layers in deep learning of which we are aware.
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