Mellon Shaojie Bail, J. Zico Kolter? and Vladlen Koltun?

Carnegie Deep Equilibrium Models M
UnlverSiW Carnegie Mellon University!, Bosch Center for Al°, Intel Labs’ T ———

TL;DR: “One layer” is all you need! An implicit-depth (or infinite-depth) model that solves for equilibriums and achieves SOTA, with only constant memory.

Introduction Deep Equilibrium Models Accelerating DEQ and Properties of DEQ Models

» Deep networks have long been built on a core concept: » To do the reduction from deep networks to a single-layer » No need to actually compute the inverse Jacobian Jg_el. » We test both instantiations of DEQ on both synthetic and
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» Code at: https://github.com/locuslab/deq

I T
N
Ul

Validation Perplexity

Difference Norm ||f(x)-x]|

S . . el - ' -of-the- '
Forward paSS leen InPUt X]_T; Com pUte the eqUIllbrlum USIng State Of the art Sequence m0d6|s (Flgure 2) 10_ : welg:ttlejlrans EEP 1)2) 00~
point 2%, which is the root of gy: » DEQ-TrellisNet [2]: (i.e., f | Zip Oupu — oeaTren. e5 1 j
RElatEd Work i . . : 107 | | [ ———— 5] —————————————————— ¢
— (blaCk_bOX) ROOtFInd(g(91 X) IS temporal COﬂVOlUtIOnS) ) ’ > Nurimoboer 01‘1;8nctiéOnOEvaI%i‘;\otions?)oO > 1o 1O_I5:orwa1rgl_fl'hresrllg;; Epsillcc))r_lz(Steplzzllg.) o
> PrlOr WOrkS have Used gradlent—CheCprlntlng [4] and Backward Pass: |mp|IC|t|y dlﬂ:erentlate through thlS > DEQ—TranSfOrmer [5] (i.e., f'@ Il.npst : o J Z[lz]T " Flglure d5b Lleft: D.EQ—;rahnsforrlner finds the equilibrium in a stable and efficient manner. Right: DEQ can be
- o ] _ _ _ hjection o iaaen accelerated by leveraging higher tolerance €.
reversible networks [6] to reduce memory cost. equilibrium state only using the output: is multihead self-attention). Lol g gl e » DEQ represent the largest-scale practical application of implicit
» Neural-ODE [3]; more work on implicit deep learning can O/ O/ L\ Of(Z%: x) I AN | . pd | el € which P PP P
. — N ' . IR R o dyers 1IN deep itearning or wniCcn we ar€ aware.
also trace back to some original works on the attractor (") 82*( g0 z*) (") (More options possible...) o e . y T P < g T TR e T

. [2] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. In International Conference on Learning Representations (ICLR), 2019.
Flgu re 2 TWO SOTA Seq uence models [3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In Neural Information Processing Systems, 2018.
[4] Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv:1604.06174, 2016.
[5] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and tukasz Kaiser. Universal transformers. International Conference on Learning Representations (ICLR), 2019.
[6] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network: Backpropagation without storing activations. In Neural Information Processing Systems, 2017.

networks and recurrent backpropagation (RBP) [1]. regardless of the path/trajectory to this equilibrium.
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