Under review as a conference paper at ICLR 2024

Appendix
Kill Two Birds with One Stone:
Rethinking Data Augmentation for Deep Long-tailed Learning

The content of the Appendix is summarized as follows:

1) in Sec.@ we state the proofs of Theorem 2 (Sec. 2.1), Theorem 3 (Sec. 2.2), and Theorem
4 (Sec. 3.2).

2) in Sec.|B| we summarize existing long-tailed learning (LTL) and data augmentation (DA)
methods and explicitly illustrate the novelty of DODA.

3) in Sec.|C] we demonstrate the details of datasets and baselines we use in experiments of
DODA.

4) in Sec.[D] we illustrate more detailed empirical results and analyses of DODA.

A DETAILED PROOFS

A.1 PROOF OF THEOREM 2

Proof. In Sec. 2.1, Theorem 1 states that when we approximate the ideal model f* by minimizing
the training loss (i.e., O training error), the latter tends to zero, while the former is greater than zero
due to the augmented samples deviate from the level set of f*. Therefore, the trained model fy will
be biased compared to the ideal model f*.
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From the perspective of the dataset, the reason for the bias is that the semantic information of some
samples does not match their original labels after DA, which means that DA cannot guarantee that it
is label-preserving. We reconsider this problem from the perspective of long-tailed learning. First of
all, for the whole dataset D, minimizing the training loss essentially means that the trained model fy
should achieve 0 training error on each class, i.e.,
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Similarly, for class ¢ and augmented samples {(O(z), y)|ly = ¢, (O(x),y) € D}, when we achieve
or approximately achieve the minimization of the training loss on class ¢, DA inevitably makes some
samples of class ¢ mismatch with their original labels, i.e., the augmented samples deviate from the
level set of the ideal model f*. Therefore, when we use the augmented samples of class ¢ as inputs to
f*, f* cannot predict the labels completely correctly.
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Although we achieve a seemingly optimal (ideal) training model fy, its fitting process on class ¢ has
actually deviated from the ideal optimization process. Therefore, the deviation between the trained
model fy and the ideal model f* on class c is inevitable, i.e., fp has class-wise bias.
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A.2 PROOF OF THEOREM 3

Proof. According Definition 1, the distribution of each class in the training set can be approximate
as a circle in a two-dimensional feature space, and the distribution center of class c can be defined as
(X, Y,) and the distribution radius is R.. So, the distribution span S can be expressed as follows:

Se = (X —X.)?2 — (Y - Y,.)? =R.? (14)
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For the data distribution S., and S, of head class ¢}, and tail class c;, the new distribution span
after using uniform DA O(-) can be defined as S., = (R., + A, )? and S,, = (R., + A.,)?, and
A, and A, represent the increase in distribution radius within each class after DA. For the same
augmentation method, A, = A,,.

Here, we define the original data distributions of head class ¢, and tail class c; as the base spaces
Rcf and RChQ, and define the expanded data distributions of head class ¢, and tail class c; as the
marginal spaces (R., + A.,)? — R, % and (R,, + A, ) — R, >

Then, the augmentation sensitivity of head class cj, and tail class ¢, can be defined as v, and ¥.,.

(Rch + ACh)2 — R0h2
R, >

Ye, = (15)
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R 2

Ye, = (16)

Therefore, we can measure the augmentation sensitivity difference between head class ¢, and tail
class ¢, i.e.,

(Rct + Act)Q B R0t2 (Rch + Ach)2 B Rch2
7/}(3 wc;, Rct 2 - Rch 2
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The above derivation indicating that tail classes are more sensitive to the marginal space.
For high-dimensional feature space,

Proof. Assuming that the dimension of high-dimensional features is n,the distribution center of class
c is defined as (X%, X2, ..., X") and the distribution radius is R.. The distribution span S, can be
expressed as

(X —x1)2 - (x2-x%H2 - . - (X" -X")2 =R, (18)

We assume that the data distribution of head class ¢}, and tail class ¢; are S, and S., and the
distribution span after DA S., and S,,. So the augmentation sensitivity 1 of class c can be expressed
as follows:
" 2(Re+A) /2R,
e = r(1+n/272”/2R T(1+n/2) , (19)
T(itn/2)

and further deduce:

Wn/2 (RCtRCh + ARCh)n — (RCtRCh + ARCf,)n

Ver = Yo, = I'(1+n/2) R.,"R,, "

>0 (20)

This indicates that this theoretical explanation is equally applicable to higher-dimensional spaces.
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A.3 PROOF OF THEOREM 4

Proof. 'We want to show that for a more dominant DA OF1, the bias of O*! from P is smaller than
that of O*2 from P, where Q' and Q2 are the level-sets of the models f;* and f;? learned using
DA OFt and DA OFz, respectively, and P is the level-set of the model fj trained on the original
dataset.

Herr, we use Chebyshev’s inequality to bound the probability that a random variable deviates from
its expected value by a certain amount. Let X be a random variable that represents the deviation of
fo(z) from y for a sample (x, y) in the original dataset. Let Y be a random variable that represents
the deviation of f#(O"(x)) from y for a sample (z,v) in the augmented dataset using DA OF. Then

we have:
P(|X — E(X)| >t) < Var(X)/t? 1)

P(Y = E(Y)| > t) < Var(Y)/t? (22)

The level-set bias §(Q*, P) can be defined as the degree of distributional deviation between the
level-sets Q* and P. Intuitively, this can be measured by the difference between E(Y) and E(X),
or the difference between Var(Y) and Var(X). We assume that E(X) = 0, since fj is trained to
minimize the training loss on the original dataset. Then we have:

5(Q%,P) = |E(Y)| + |Var(Y) — Var(X)| (23)

Now, suppose that O*1 dominates O*2 on class ¢, i.e., V’7° > V”{-. This means that fo(O* (z)) is
Ze Ze

more likely to be equal to y than f5(O*2(z)) for samples (,y) in class c. Therefore, we have:
E(Y|y=c,0") < E(Y]y = ¢, O?) (24)
Var(Yly = ¢, O") < Var(Y|y = ¢, 0O*2) (25)

By taking the weighted average over all classes, we obtain,

E(Y|0") < E(Y|0"2) (26)
Var(Y|0F) < Var(Y|0*?) (27)

Hence, we conclude that:
5(Q™, P) < 6(Q™, P) (28)

This completes the proof.

B RELATED WORK

B.1 LONG-TAILED LEARNING (LTL)

Real-world training datasets typically exhibit a long-tailed class distribution, where a small fraction
of classes have massive samples and the rest classes are associated with only a few samples. Un-
fortunately, the deep models trained by the common practice of empirical risk minimization cannot
handle this distribution, resulting in a significant decrease in model performance [Zhang et al.| (2021b).
Recently, missive novel longt-tailed learning methods have been proposed to learn a more generalized
model from imbalanced training datasets, which can be divide into three main categories: class
re-balancing Kang et al.[(2020); Ren et al.| (2020); Wang et al.| (2020); |Lin et al.| (2017); |Cui et al.
(2019); [Tan et al.|(2020), module improvement |Zhang et al.|(2017b); Ouyang et al.| (2016); Tang et al.
(2020); |[Kang et al.|(2020); Zhou et al.|(2020); Zhang et al.|(2022), and information augmentation Chu
et al.| (2020); Kim et al.| (2020b)); Hu et al.| (2020); |[Zang et al.| (2021)); [Park et al.|(2022)); Ahn et al.
(2023).

Class re-balancing is the most typical strategy, which balances inter-class sample numbers or weights
by re-sampling or cost-sensitive learning. On the one hand, traditional re-sampling methods, e.g.,
random over-sampling (ROS) and random under-sampling (RUS), achieve re-balancing by repeating
the samples from tail classes and discarding the samples from head classes, but they tend to overfit
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to tail classes when datasets are extremely unbalanced. To this end, recent studies propose class-
balanced re-sampling strategies, e.g., bi-level class-balanced sampling Wang et al.| (2020) and meta
learning based sampling Ren et al.[(2020). Besides from the perspective of classes, scheme-oriented
sampling strategies try to re-balance classes by designing some specific learning schemes, such as
quintuplet sampling |Huang et al.| (2016)) and replay based sampling |Kim et al.|(2020a)). On the other
hand, some studies, called cost-sensitive learning, re-balance classes by adjusting the loss values of
different classes. For example, CB |Cui et al.| (2019) proposed a effective number to approximate
the expected sample number of each class, and Focal loss |Lin et al.| (2017) used the prediction
probabilities to inversely re-weight classes.

In addition to class re-balancing, researchers also explored enhancing model performance by improv-
ing network modules. A intuitive method is decoupled training, which decouples the learning proce-
dure into representation learning and classifier training. As a pioneering work, Decoupling |[Kang et al.
(2020) proposed a two-stage training scheme and showed some refreshing observations. KCL [Kang
et al.|(2021) and FRS |Wang et al.|(2023) believed that a balanced feature space is beneficial to LTL, so
they designed contrastive learning based losses to learn a more class-balanced and class-discriminative
feature space. Furthermore, as a classic theory, ensemble learning is also applied to LTL by designing
and combining multiple expert networks. For instance, BBN [Zhou et al.| (2020) proposed to use two
network branches to handle LTL. Following BBN, BAGS [Li et al.|(2020b) explored a multi-head
scheme. Not restricted to a balanced test set, SADE |Zhang et al.| (2022) explored the multi-expert
scheme to handle test distribution-agnostic LTL.

Although the overall performance is improved, these methods cannot essentially handle the issue
of lacking information, particularly on tail classes due to limited data amount. Orthogonally, some
information augmentation studies seek to introduce additional information into model training,
such as FTL |Yin et al.| (2019) and M2m |Kim et al.| (2020b)) transferred the knowledge from head
classes to enhance model training on tail classes considering the inter-class knowledge imbalance.
To solve information restrictions in essence, another line of research is to apply representation
augmentation or data augmentation to LTL. For example, CMO [Park et al.| (2022) augmented
diversified minority samples by leveraging the rich context of the majority classes as background
images. Considering fairness, FSR |Wang et al.| (2023)) and CUDA |Ahn et al.| (2023)) advocate to find
appropriate augmentation strength for each class. However, although these methods enrich the overall
information to a certain extent and improve model performance, they ignored the sacrifice of some
classes behind this improvement. For this reason, we jointly pay attention to the inherent data-
wise imbalance and extrinsic augmentation-wise imbalance, thereby minimizing the sacrifice.

B.2 DATA AUGMENTATION

DA has been applied in many fields because it can effectively alleviate overfitting and improve model
generalization performance. DA is simple in design, and various DAs can be achieved through
image manipulation, e.g., filp, crop, and rotate Robbins & Monro|(1951)). Recently, mixup based
DA methods are proposed to improve model robustness by fusing two images and their labels |[Zhang
et al.| (2017a)); Tokozume et al.|(2018)). Considering the diversity of DA, some studies try to combine
them randomly or in order, such as AutoAugment|Cubuk et al.|(2019), Fast AutoAugment|Lim et al.
(2019), DADA Li et al.| (2020a)), and RandAugment |Cubuk et al.| (2020). In addition, researchers are
improving DAs to make them suitable for LTL, however, they ignore that DA is class-independent,
and thus may cause a mismatch between augmented data and actual labels [Park et al.|(2022); [Wang
et al.|(2023);|Ahn et al.|(2023). Therefore, it is necessary to design a class-dependent long-tailed
DA to allow each class to choose an appropriate augmentation method.

C DATASET AND BASELINE DETAILS

C.1 DATASET

CIFAR-100-LT Cao et al.|(2019): is a long-tailed version of artificially truncated from the original
balanced dataset CIFAR-100, which includes 100 different categories, 50,000 training images and
10,000 test images. The 100 categories in CIFAR-100 form 20 superclasses, each with 5 classes.
CIFAR-100-LT has three imbalance ratio settings 10, 50, 100, where the imbalance ratio p is defined
as the ratio of the sample sizes of the most frequent and least frequent classes, i.e., p = Nyaz/Nmin.
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Table 3: Statistics of the long-tailed datasets.

Dataset #of Classes  # of Training set # of Test set Imbalance ratio
CIFAR-100-LT 100 50,000 10,000 {10, 50, 100}
ImageNet-LT 1,000 115,846 50,000 256
iNaturalist 2018 8,142 437,513 24,426 500

ImageNet-LT |Liu et al.| (2019)): is a long-tailed version of artificially truncated from the original
balanced dataset ImageNet, which includes 1,000 different categories, 115,846 training images and
50,000 test images. The most frequent or least frequent class has 1,280 or 5 images, so the imbalance
ratio p = 256.

iNaturalist 2018 Van Horn et al.|(2018): is a real-world, naturally long-tailed dataset, which includes
8,142 different categories, 437,513 training images and 24,426 test images. Each image has one
ground truth label. The iNat dataset is highly imbalanced with dramatically different number of
images per category and the imbalance ratio p is 500.

C.2 AUGMENTATION

we incorporated ten commonly used DA methods in our experiments, and descriptions are shown in
Table ] The specific code implementation can be found in */aug/doda.py’.

Table 4: Description of DAs utilized in DODA.

DA Parameter Description
Flip 0/1 Flip top and bottom
Mirror 0/1 Flip left and right
EdgeEnhance 0/1 Increasing the contrast of the pixels around the targeted edges
Detail 0/1 Utilize convolutional kernel [[0,-1, 0], [-1, 10,-1], [0,-1, 0]]
Smooth 0/1 Utilize convolutional kernel [[1, 1, 1], [1, 5, 1], [1, 1, 1]]
AutoContrast 0/1 Remove a specific percent of the lightest and darkest pixels
Equalize 0/1 Apply non-linear mapping to make uniform distribution
Invert 0/1 Negate the image
GaussianBlur [0, 2] Blurring an image using Gaussian function
Rotate [0, 30] Rotate the image

C.3 BASELINES

To ensure a fair comparison, we select a large number of long-tailed learning methods as baselines in
our experiments, and integrate DODA with these baselines to evaluate the effectiveness and flexibility
of DODA. In addition, we also select the state-of-the-art data augmentation methods as comparison
baselines to prove the superiority of DODA in long-tailde learning.

Long-tailed methods:
* CE |He et al.[ (2016): is a cross-entropy loss based model, which is one of the most classic
methods in the field of deep long-tailed learning.
* CE-DRW |Cao et al.[(2019): is a two-stage fine-tuning strategy based on cross-entropy loss.

* LWS Kang et al.|(2020): is a two-stage training strategy, which keeps both the representations
and classifier weights fixed and only learn the scaling factors.
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* cRTKang et al.|(2020): is a two-stage training strategy, which keeps the representations fixed
and randomly re-initialize and optimize the classifier weights using class-balanced sampling.

* LDAM-DRW |Cao et al|(2019): extends the existing soft margin loss by enforcing class-

dependent margins based on label frequencies and further introduces a deferred re-balancing
optimization schedule.

* BS|Ren et al.|(2020): proposes to use the label frequencies to adjust mode predictions during
training, so that the bias of class imbalance can be alleviated by the prior knowledge.

* RIDE (3 experts)|Wang et al|(2021): introduces a knowledge distillation multi-expert framework
to reduce the parameters by learning a student network with fewer experts.

* BCL Zhu et al|(2022): proposes a balanced contrastive learning loss and learns stronger feature
representations through a dual-branch framework.

* CMO Park et al.|(2022): focuses on utilizing the rich context of majority samples to improve
the diversity of minority samples and mixes minority and majority images by using CutMix to
enhance balancing and robustness simultaneously.

* CUDA |Ahn et al.|(2023): is a simple and efficient curriculum, which is designed to find the
appropriate per-class strength of data augmentation.

Data augmentation methods:

* AutoAugment|Cubuk et al.| (2019): describes a simple procedure to automatically search for
improved data augmentation policies by designing a search space where a policy consists of
many sub-policies, one of which is randomly chosen for each image in each mini-batch.

* Fast AutoAugment|Lim et al.[|(2019): finds effective augmentation policies via a more efficient
search strategy based on density matching.

* DADA [Li et al.|(2020a): relaxes the discrete DA policy selection to a differentiable optimization
problem via Gumbel-Softmax and introduces an unbiased gradient estimator to learn an efficient
and accurate DA policy.

* RandAugment Cubuk et al.[(2020): proposes a simplified search space that vastly reduces the

computational expense of automated augmentation, and permits the removal of a separate proxy
task.

D MORE EMPIRICAL RESULTS

D.1 PARAMETER SENSITIVITY ANALYSIS OF Paug
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Figure 8: Parameter sensitivity analysis of augmentation probability p,., on CE, BS, and BCL.

To preserve the knowledge of the original dataset, we define the augmentation probability pgyq. For
further analyze the impact of 4.4, we conduct a sensitivity analysis of hyperparameter pq,4. As
shown in Figure[8| we test 8 different hyperparameter settings on three baselines, and the experimental
results showed that a too small augmentation probability cannot sufficiently improve the model’s
generalization, while a too large augmentation probability cannot retain the knowledge in the original
dataset, resulting in a decrease in model performance.
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Figure 9: Parameter sensitivity analysis of number of DAs be selected .

D.2 PARAMETER SENSITIVITY ANALYSIS OF ¢t

In previous analyses, we select the optimal DA for each class. However, we find that in some
baselines, multiple DAs can be beneficial. Therefore, we further conduct a parameter sensitivity
analysis on the number of DAs be selected ¢. As shown in Figure 9] we test three hyperparameter
settings (¢t = 1, 2, 3) on three baselines. It can be observed that on CE and BCL, the model tends to
select the optimal DA, while on BS, it tends to select both the optimal and suboptimal DAs. This

phenomenon is consistent with the trend of selection hierarchies during training mentioned in the
main text.

D.3 PARAMETER SENSITIVITY ANALYSIS OF NUM. OF DAS
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Figure 10: Impact of different numbers of DAs CIFAR-100-LT (IR=100).

As shown in Figure[I0] we gradually reduced the number of DAs based on the degree of preference.
The results indicate that reducing the number of augmentations leads to a loss of diversity. However,

when the 'neglected’ augmentations are removed, the model performance does not significantly
degrade.

D.4 NETWORK ARCHITECTURE ANALYSIS

As shown in Figure [T} following (2023), we also utilize ResNet-10[Liu et al | and
ResNeXt-50|Xie et al.[(2017) as our backbone network on ImageNet-LT. We conduct comparative
experiments on three baselines (e.g., CE, BS, and BCL), and the results show that no matter what kind
of backbone is used, DODA can always bring stable improvement to long-tailed learning algorithms.

D.5 TRAINING TIME ANALYSIS

In DODA’s augmentation pipeline, we require additional computations to update and maintain the
augmentation preference list for each class. Therefore, compared to the original baselines, using
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Figure 11: Network architecture analysis.

BS

DODA incurs additional training time. As shown in Table 5] using DODA inevitably brings varying
degrees of computational cost, but these costs are acceptable. For example, BS w/o DODA achieves
better model performance and avoids serious sacrifices with only x 0.09 additional cost.

Table 5: Training time (min.) analysis on various algorithms.

Method CE BS BCL

w/oDODA 60 68 94
68 74 102

W/ DODA 113y (x1.09)  (x 1.09)

D.6 MORE ANALYSIS ON SACRIFICE RATES

SR on Different Long-tailed Baselines: We provided the sacrifice rates of different data augmenta-
tions on CE in Figure 2] indicating that DA can lead to sacrifice problems for the original baseline.
Similarly, long-tailed learning baselines also face this issue. Based on your comments, we have
conducted further experiments on cRT and CIFAR-100-LT dataset (IR = 100). The results in Table E]
show that CUDA improved accuracy while sacrificing performance for certain classes, while DODA

mitigated this sacrifice issue by preserving performance across classes.

Table 6: Accuracy (%) on CIFAR-100-LT dataset (IR = 100) wtih cRT. SR (%) indicates the sacrifice

rate.
Method Head Medium Tail All SR
CE 65.6 36.2 8.2 38.1 -
CE + CUDA 70.7 41.4 93 420 29
CE + DODA 74.8 43.8 10,0 445 5
cRT Kang et al.|(2020) 64.4 49.1 258 475 -
cRT + CUDA 63.2 50.9 266 479 22
cRT + DODA 64.4 51.2 275 487 6

In general, just like focusing on tail classes when improving the average accuracy, when applying
DAs in long-tailed learning, focusing on vulnerable classes that are easy to be sacrificed is also in

line with the purpose of long-tailed learning.
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SR on Different DA Baselines: We also tested different class-independent techniques (e.g., Au-
toAugment, CutOut) to demonstrate the superiority of our method. The specific experimental results
are shown in Table[8]

AutoAugment improves the average accuracy on cRT and takes effect on each shot. However,
we further analyze the sacrifice problem caused by DAs, and we find that despite achieving good
performance, AutoAugment still cannot avoid the sacrifice problem, which means,

* The performance improvement of AutoAugment is hypocritical, for example, in the tail
classes, the model achieves performance gains on some classes, while performing badly on
others (i.e., pleasing the ’strong’ and bullying the *weak’). This sacrifice goes against the
purpose of long-tailed learning despite the average performance improvement of the model
on the tail classes.

* Both class-independent techniques lead to the sacrifice problem of sacrifice. From the
sacrifice rate of different shots, it can be found that compared with the head classes, more
classes in the tail classes are sacrificed, indicating that the tail classes are more likely to be
regarded as the bullied *weak’ mentioned above.

Table 7: Accuracy (%) on CIFAR-100-LT dataset (IR = 100) wtih cRT. (-) indicates the sacrifice rate
of different shots.

Method Head Medium Tail All

cRTKang etal|(2020) 64.4(-)  49.1(-)  258(-)  47.5(-)
cRT + AutoAugment  64.8(5)  49.9(6) 25.9(13) 47.9(24)
cRT + CutOut 61.3(12) 44.5(15) 21.723)  43.6(50)
cRT + DODA 64.4(2)  51.2(1) 275(3)  48.7(6)

SR on Different Epochs: Here, we analyzed the changes in the sacrifice rate. The results shown in
Table 2 show that the sacrifice problem caused by previous DAs cannot be eliminated during training,
while DODA significantly improves this.

Table 8: Sacrifice rate (%) on Various Epochs.

Epoch 100 200 400
CE + RandAugment 328 315 309
CE + DODA 73 59 55

D.7 MORE COMPARISONS WITH MODIFIED TWO-STAGE MODEL

Here, we compare DODA with CC-SAM [Zhou et al.|(2023), which is a two-stage model improvement
method that trains the model in a decoupled manner and introduces class-conditional sharpness-aware
minimization in the first stage. We have improved the existing open-source implementation and
incorporated DODA’s augmentation strategy. The quantitative experimental results are shown in
Table

Table 9: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio = 100) wtih CC-SAM. SR (%)
indicates the sacrifice rate.

Method Head Medium Tail All SR
CC-SAM [Zhou et al.|(2023) 67.6 51.2 305 50.7(+0.0) -
CC-SAM + CUDA |Ahn et al.|(2023)  67.5 52.0 30.7 51.0(+0.3) 31
CC-SAM + DODA 68.4 53.7 336 528(+3.1) 6
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D.8 MORE COMPARISONS WITH AUTO DA IN OTHER FIELDS

In this section, we compare DODA with Auto DA selection algorithms in other fields. Here we choose
the most advanced method |Zaiem et al.|(2022) in the speech field as a comparison. However, directly
applying the complete method from it in long-tailed learning does not lead to fair comparisons.
So we partially implemented the augmentation strategies proposed in Zaiem et al.| (2022). Firstly,
since [Zaiem et al.|(2022) relies on a carefully designed pretext task, we replaced it with contrastive
learning using cropping and augmentation, where pretext labels for each augmented view of a sample
corresponding to the ID of the sample it originated from. Then, we replaced the downstream task
related to speech with a long-tailed classification task. The experimental results of this modified
implementation are shown in Table [I0}

It can be observed that using the automatic augmentation strategy from Zaiem et al.| (2022)) results
in limited performance improvement, while our method outperforms it significantly. The reasons
for this are as follows: (1)[Zaiem et al.| (2022) relies on a carefully designed pretext task, so the
improvement it brings may come from diversified data augmentation. (2) Zaiem et al.|(2022) lacks
the necessary focus on the tail classes, while our method pays more attention to inter-class fairness,
resulting in better performance.

Table 10: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio = 100) wtih [Zaiem et al.| (2022).

Method Head Medium Tail All

CE 65.6 36.2 8.2 38.1(+0.0)
CE +Zaiem et al.[(2022) 68.9 38.7 8.4 402 (+2.1)
CE + DODA 74.8 43.8 10.0 445(+6.4)

D.9 EXPLORATION OF COMBINATIONS WITH SOTA LONG-TAILED DA

From the macro perspective of long-tailed learning, both DODA and CUDA belong to dynamic DA.
However, at the methodology level, the two are different. A simple comparison is as Table

Table 11: Comparison at the methodology level.

Method Adaptive Strength ~ Adaptive Function Inter-class Fairness = Cold-boot Issues

CUDA v
DODA v v v

It can be seen that to ensure fairness between classes while improving accuracy, we have made some
methodology-level improvements. More interestingly, we find that CUDA and DODA are orthogonal,
and we can find the optimal DA function and strength at the same time. The exploratory results are as
follows:

Table 12: Exploratory results (%) on CIFAR-100-LT dataset (IR = 100).
Method Head Medium Tail All

CE + DODA 74.8 43.8 10.0 445
CE + DODA + CUDA  74.7 441 10.2  44.6

Although the performance gain is limited, continuing to explore this compositionality is beneficial
for long-tail learning.
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D.10 MORE TRENDS OF THE SELECTION HIERARCHIES ON DIFFERENT INDEXS
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Figure 12: Trends of the selection hierarchies on different indexs.

23



	Introduction
	Rethinking DA: Is DA Always Beneficial to Long-tailed Learning?
	Motivation: DA in Long-tailed Learning is `Hypocritical'
	DA Favors Long-tailed Learning Through `Bullying'

	Dynamic Optional Data Augmentation: An Advisable Strategy
	Class-wise Preference List Construction
	Class-wise Preference List Maintenance

	Experiments
	Experimental Settings
	Benchmark Results
	Further Analysis

	Conclusion
	Detailed Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Related Work
	Long-tailed Learning (LTL)
	Data Augmentation

	Dataset and Baseline Details
	Dataset
	Augmentation
	Baselines

	More Empirical Results
	Parameter Sensitivity Analysis of paug
	Parameter Sensitivity Analysis of t
	Parameter Sensitivity Analysis of Num. of DAs
	Network Architecture Analysis
	Training Time Analysis
	More Analysis on Sacrifice Rates
	More Comparisons with Modified Two-stage Model
	More Comparisons with Auto DA in other fields
	Exploration of Combinations with SOTA Long-tailed DA
	More Trends of the Selection Hierarchies on Different Indexs




