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MDMP: Multi-modal Diffusion for supervised Motion Predictions with
uncertainty

Supplementary Material

Figure 1. Human Pose Representation. (Left) HumanML3D
features. (Right) 3D joint positions.

A. Data Processing for Evaluation, Visualiza-001

tion in 3D Plots and re-Training002

This section details the data processing steps repeatedly per-003
formed in our study. Specifically, we discuss the feature004
transformation process necessary to convert the pose rep-005
resentation of the HumanML3D [3] dataset back into 3D006
coordinates for result evaluation and visualization in 3D007
plots. Furthermore, we describe the adaptations made to008
our model to work with real-time 3D joint position data.009

A.1. Feature Transform010

In our work, the feature transformation is a crucial step to011
obtain the 3D joint positions from the pose representation012
provided by the HumanML3D [3] dataset. This transforma-013
tion is necessary because the dataset’s pose representation014
includes various redundant features that must be processed015
to isolate the 3D joint coordinates required for quantitative016
evaluation of the model using the Mean Per Joint Position017
Error (MPJPE) and for qualitative evaluation through vi-018
sualization of the predicted sequences (see Section ?? and019
supplementary video).020

The pose representation in HumanML3D [3] consists of021
a tuple of features including root angular velocity, root lin-022
ear velocities, root height, local joints positions, velocities,023
rotations, and binary foot contact features. Specifically, it024
provides 263 features per body frame. To extract the 3D025
joint positions, these features must be transformed because026
they include information in root space that needs to be con-027
verted into global coordinates.028

Figure 2. Human-Robot Collaboration Experiment Setup &
Conceptual Zones of Presence Representation The first image
is a representation of our Experiment Setup described in section B,
taken in ROS. The second image is the real-time human pose esti-
mation used as input to our model. The third and fourth images are
conceptual representations of our predicted zones of presences, us-
ing the mean of the uncertainty features Uj,i as the radius around
joint x(j)i. The uncertainty factor ”Mode Divergence” described
in section ?? has proven to provide the best results in simulation.

The transformation process involves the following steps: 029

1. Recover Root Rotation and Position: The root ro- 030
tational velocities are extracted and integrated over time to 031
obtain the root rotation angles, which are then converted 032
into quaternions. Simultaneously, the root positions are re- 033
covered by integrating the root linear velocities. 034

2. Concatenate Rotations and Positions: The local 035
joint rotations and positions provided in the dataset are com- 036
bined with the root rotations. The combined rotations are 037
converted from quaternion representation to a continuous 038
6D rotation format. 039

3. Forward Kinematics: Using forward kinematics, the 040
combined rotations and positions are processed to obtain 041
the global 3D joint positions. This involves computing the 042
global position of each joint based on its local rotation and 043
position relative to the root and applying the root’s global 044
transformation. 045

A.2. Adaptation to 3D Joint Position Data 046

Due to the nature of our recorded motion capture data using 047
real-time pose estimation (see section B), the pose data we 048
have access to consists only of 3D joint positions. This re- 049
sults in a simplified feature representation of 96 features per 050
skeleton (32 joints × 3 coordinates), compared to the 263 051
features per body frame provided by the HumanML3D [3] 052
dataset. To address this discrepancy, we considered two po- 053
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tential solutions:054
1. Transformation to Original Feature Space: One055

approach was to transform the 3D joint positions back to056
the original feature space of 263 features per frame. How-057
ever, this transformation involves estimating several param-058
eters that are not directly observable from the joint positions059
alone, which would likely introduce inaccuracies into the060
data and could negatively impact the model’s performance.061
For instance, approximating the root angular velocity can be062
complex, and computing local rotations typically requires063
sophisticated methods like inverse kinematics (IK).064

2. Retraining the Model: Instead of transforming the065
data, we opted to retrain the model using the simplified fea-066
ture representation of 3D joint positions. The only modi-067
fications involved adjusting the dimensions of the encoder068
and decoder. By training directly on the motion sequences069
represented as 3D joint positions, we avoid the inaccura-070
cies associated with the transformation process and ensure071
that the model is trained on the most accurate representa-072
tion of our data. However, the redundant pose representa-073
tion can be useful for learning spatio-temporal motion pat-074
terns, and this lower-dimensional representation might re-075
sult in a slight loss of information, potentially decreasing076
the model’s performance. Another consideration is that the077
pose estimation data we access through pose estimation in-078
cludes 32 joints, whereas the HumanML3D [3] dataset uses079
only 22 joints to represent the human body. Therefore, we080
need to filter out the 10 additional joints and predict motion081
sequences using only the 22 joints per frame.082

We chose the second approach and retrained our model083
on the 3D joint position feature space. This retrained model084
was then used for the experiments in our lab, allowing us to085
work directly with the data collected through our real-time086
pose estimation system.087

B. Experiment Setup088

We provide details about our experimental setup used in our089
lab to predict the future motions of a human worker in a090
Human-Robot Collaborative (HRC) Workspace.091

Physical Setup: Our collaborative workspace, as shown092
in Fig. 2, consists of a duAro1 Kawasaki robot and mul-093
tiple desks where both the human and the robot can place094
and pass objects. The workspace is monitored by multiple095
Azure Kinect RGB-D cameras. All sensor data, along with096
the command signals for controlling the robot, are central-097
ized in a ROS (Robot Operating System) setup. April Tags098
are used for calibration to ensure all spatial data (including099
the real-time position of the robot and data from the sensors)100
is aligned within the same reference frame.101

Motion Tracking: Human Pose Estimation is per-102
formed in real-time to gather skeleton data and track the103
human worker within the HRC workspace using the Azure104
Kinect Body Tracking SDK. The skeleton data is transmit-105

ted to the ROS system via the Azure Kinect ROS driver, 106
transformed into the robot’s base frame, and then recorded 107
in MarkerArray topics. These motion sequences are subse- 108
quently fed into our trained model. 109

Textual Actions: To leverage the benefits of our multi- 110
modal approach, a set of predefined Human-Robot collabo- 111
rative actions is mapped to specific keys on a keyboard. This 112
keyboard can be operated by either the human worker or 113
an external observer who can also provide detailed textual 114
descriptions of the actions being performed. If the model 115
is not given textual information between actions, it relies 116
solely on motion sequence data. As demonstrated in our 117
Motion & Text ablation study in section C, our model can 118
perform short-term predictions without contextual informa- 119
tion. However, as described in the limitation section ??, 120
we are aware that this reliance on textual descriptions is not 121
ideal for real-time Human-Robot Collaboration, as it can be 122
burdensome and not every action is scripted in advance. 123

C. Additional Experimental Results 124

We present qualitative results by comparing our model 125
to state-of-the-art Text2Motion methods such as Mo- 126
tionGPT [5] and MDM [7]. The comparisons are show- 127
cased in the video appendix, where our model’s predictions 128
are visualized against ground truth motion sequences. In ev- 129
ery sequence, our model outperforms the baselines in terms 130
of proximity to the ground truth. 131

Additionally, we visualize our predictions using meshes 132
created with SMPL [6] and rendered in Blender. These vi- 133
sualizations transform the skeleton motions into human-like 134
meshes performing the same actions, providing a clearer 135
and more intuitive understanding of the predicted motions. 136

C.1. Video Representation 137

In the video appendix, we compare our model’s predictions 138
to those of MotionGPT [5] and MDM [7] on certain spe- 139
cific actions. The videos allow for a visual assessment of 140
the proximity of the predicted sequences to the ground truth 141
motion. Our model shows better performance in maintain- 142
ing proximity to the ground truth. Even when the predic- 143
tions differ from the ground truth, our model’s predicted 144
actions align with the intended textual actions, while the 145
baseline models tend to diverge. Even when our predicted 146
sequences differ from the ground truth, the actions corre- 147
spond accurately to the textual descriptions, whereas the 148
other baselines quickly diverge from the ground truth. 149

C.2. Path Trajectory Following 150

In Fig. 3, we also evaluate the trajectory following capabil- 151
ity of our model through stop-motion images. These im- 152
ages track the motion sequences with faded colors for early 153
frames and progressively darker colors for later frames. Ad- 154
ditionally, a trajectory path projecting the root joint position 155
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Model NPSS MPJPE (mm)

0-1s 1-2s 2-4s 1s 2s 3s 4s 5s

MDM (re-trained) 0.059 0.064 0.172 205.5 385.5 551.3 692.0 791.9
MDMP (Ours) 0.034 0.043 0.132 186.7 341.8 474.8 592.5 669.8

Table 1. Comparison of NPSS & MPJPE (mm) on HumanML3D.

Method R-Precision ↑ FID ↓ Diversity →

Top-1 Top-2 Top-3

Real Motion 0.511 ±0.003 0.703 ±0.003 0.797 ±0.002 0.002 ±0.000 9.503 ±0.065

T2M [2] 0.457 ±0.002 0.639 ±0.003 0.740 ±0.003 1.067 ±0.002 9.188 ±0.002

MDM [7] 0.320 ±0.005 0.498 ±0.004 0.611 ±0.007 0.544 ±0.044 9.559 ±0.086

MotionGPT [5] 0.492 ±0.003 0.681 ±0.003 0.778 ±0.002 0.232 ±0.008 9.528 ±0.071
MoMask [4] 0.521 ±0.002 0.713 ±0.002 0.807 ±0.002 0.045 ±0.002 —

Our Method 0.445 ±0.002 0.692 ±0.006 0.775 ±0.005 0.437 ±0.698 8.335 ±0.025

Table 2. Comparison of our method with state-of-the-art text-to-motion models on the HumanML3D dataset. Metrics reported are R-
Precision (higher is better), FID (lower is better), and Diversity (closer to Real Motion is better).

on the XZ-plane is included to precisely follow the pre-156
dicted trajectory. This study further confirms our model’s157
ability to accurately predict motion sequences that follow158
precise trajectories over long-term durations.159

C.3. Additional Uncertainty Qualitative Compari-160
son161

In Figs. 4, 5, 6, and 7, we present additional results of our162
Uncertainty Parameters for visual comparison and evalua-163
tion. As shown in these figures, the ”Mode Divergence”164
index is the only one that exhibits a notable increase over165
time, correlating closely with the error, particularly when166
the divergence between the prediction and ground truth be-167
comes pronounced (see Figs. 4 and 7). In contrast, the168
”Predicted Variance” shows less temporal variation, while169
the ”Mean Fluctuations” appear somewhat more unstable.170
These findings align with our previous analysis using the171
Sparsification Plot in Fig. ??.172

C.4. Additional Accuracy Quantitative Compari-173
son174

Table 1 presents additional comparative results between175
our method and the retrained MDM [7], evaluated using176
NPSS [1] and MPJPE metrics. These results further validate177
our contributions, highlighting improved accuracy, particu-178
larly in longer-term predictions.179

To fairly benchmark our method against Text2Motion180
baselines, despite our distinct motion-conditioned frame-181
work, we evaluated our model using generic metrics (R-182
Precision, Diversity, and FID) and present the results in Ta-183
ble 2.184

We argue that our lower R-Precision results compared185
to the latest benchmarks (MoMask [4] and MotionGPT [5])186

reflects our model’s prioritization of initial motion condi- 187
tioning over textual alignment, confirming insights from our 188
first ablation study (section ??). Similarly, reduced Diver- 189
sity arises naturally from constraining motions to coherent 190
continuations of initial segments, which is advantageous in 191
Human-Robot Collaboration settings where accuracy and 192
confidence are prioritized over variability. 193

Finally, the Frechet Inception Distance (FID) metric is 194
intended to evaluate the overall quality of generated mo- 195
tions by measuring the distributional difference between 196
high-level features of the generated motions and those of 197
real motions. We argue that as described by Guo et al. [2], 198
the pretrained motion feature extractor used for computing 199
FID was trained using a contrastive loss to produce ge- 200
ometrically close feature vectors for matched text-motion 201
pairs. Hence, the motion encoder is specifically optimized 202
for motions conditioned solely on text descriptions and may 203
not accurately capture the features of motions generated by 204
models conditioned on both text and an initial motion seg- 205
ment (motion prequel). 206
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Figure 3. Qualitative Comparisons on Path Following. Ground-truth in red; Predictions in blue

4



CVPR
#8409

CVPR
#8409

CVPR 2025 Submission #8409. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person is jogging back and forth from where he has
standing”; Ground-truth in red; Predictions in blue
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Figure 5. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person walks in a circle, clockwise.”; Ground-truth
in red; Predictions in blue

Figure 6. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person walks around in a circle.”; Ground-truth in
red; Predictions in blue
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Figure 7. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person is doing a acrobatic dance.”; Ground-truth
in red; Predictions in blue
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