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ABSTRACT

Cooperative Multi-Agent Reinforcement Learning (MARL) focuses on develop-
ing strategies to effectively train multiple agents to learn and adapt policies col-
laboratively. Despite being a relatively new area of study, most MARL methods
are grounded in well-established approaches used in single-agent deep learning
tasks due to their proven effectiveness. In this paper, we focus on the exploration
problem inherent to many MARL algorithms. These algorithms frequently intro-
duce new hyperparameters and incorporate auxiliary components, like additional
models, complicating the adaptation process of the underlying RL algorithm to
better fit multi-agent environments. We aim to optimize a deep MARL algorithm
with minimal modifications to the renowned QMIX approach. Our investigation
into the exploitation-exploration dilemma reveals that the performance of cutting-
edge MARL algorithms can be equaled by merely tweaking the ϵ-greedy policy.
This modification depends on the ratio of available joint actions to the number of
agents. Moreover, we enhance the training aspect of the replay buffer to decorre-
late experiences based on recurrent rollouts rather than episodes. The improved
algorithm is not only easy to implement but also aligns with state-of-the-art meth-
ods without adding significant complexity.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) represents an emerging field within artificial intelli-
gence, where the goal is to develop robust strategies for training multiple agents to collaboratively
learn and adapt their policies. Notable examples of MARL’s success include its application in com-
plex tasks such as autonomous driving, where multiple vehicles must coordinate to navigate, as
demonstrated by the Nocturne framework (Vinitsky et al., 2022). Additionally, IMP-MARL pro-
vides a platform for evaluating the scalability of cooperative MARL methods, which are responsible
for planning inspections and repairs of specific system components with the goal of minimizing
maintenance costs (Leroy et al., 2024). MATE addresses target coverage control challenges in real-
world scenarios, presenting an asymmetric cooperative-competitive game featuring two groups of
learning agents, cameras and targets, each with opposing goals (Pan et al., 2022). These successes
highlight MARL’s potential to solve real-world problems that require coordinated actions among
multiple agents.

Despite these successes, even in tasks that are close to real-world applications, MARL algorithms
are often tested in game-like environments. For example, the SMAC (StarCraft Multi-agent Chal-
lenge) and SMAC-v2 simulators are based on the StarCraft II strategy game, where teams of agents
cooperate to defeat enemy groups (Samvelyan et al., 2019; Ellis et al., 2024). Similarly, research in
Google Football demonstrates MARL’s applicability to complex, dynamic tasks (Song et al., 2023).
Although relatively new, MARL methodologies often leverage foundational techniques from single-
agent deep reinforcement learning tasks due to their established success.
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In our paper, we focus on the popular value-based method called QMIX (Rashid et al., 2020b). This
method has become the theoretical and technical foundation for many MARL approaches (Zhang
et al., 2023; Wang et al., 2020). First, we investigate how the exploration strategy of value-based
methods can be improved and propose a simple approach based on the number of available joint
actions. Second, we examine the implementation of experience exploitation, which is often not
well-articulated in the literature. We address the question of how to properly sample collected data
from the replay buffer for methods that use recurrent networks.

To summarize, we make the following contributions:

• We propose a novel exploration strategy for value-based methods, which leverages the
number of available joint actions, improving the exploration-exploitation trade-off.

• We analyze the under-explored area of experience exploitation in value-based MARL meth-
ods, specifically focusing on how to effectively sample data from the replay buffer when
recurrent networks are used.

• We extensively study our proposed modifications on two benchmarks, SMAC and
POGEMA, demonstrating that our approach achieves comparable or even superior results
to state-of-the-art value-based MARL methods.

The paper is organized as follows: Section 2 outlines the background of multi-agent reinforcement
learning field, Section 3 provides a review of related literature, Section 4 describes the methodology,
and Section 5 details the experimental setup and results.

2 BACKGROUND

This paper addresses the problem of multi-agent cooperative tasks, formalized as decentralized par-
tially observable Markov decision process (Dec-POMDP) tuple G = ⟨S,A,U, P, r, Z,O, n, γ⟩.
State s ∈ S describes the complete state of the environment at the moment. At each timestep each
agent a ∈ A ≡ 1, ..., n chooses an action ua ∈ U ; chosen actions of all agents form a joint action
u ∈ U ≡ Un. These actions result in environment transition to a new state according to the transi-
tion function P (s′|s, u) : S×U×S → [0, 1], at each timestep t. The rewards are given according to
the reward function r(s,u) : S × S → R, which is shared by all agents, and γ ∈ [0, 1) is a discount
factor.

At each timestep, each agent a receives an individual observation za ∈ Z according to the ob-
servation function O(s, a) : S × A → Z. Each agent maintains an action-observation history
τa ∈ T ≡ (Z × U)∗, on which the agent’s policy πa(ua|τa) : T × U → [0, 1] is conditioned. The
joint policy π associated with an action-value function Qπ(st,ut) = Est+1:∞,ut+1:∞[Rt|st,ut],
where Rt =

∑∞
i=0 γ

irt+i represents the discounted return. The training objective is to find the
optimal action-value function.

DQN (Mnih et al., 2015) is a popular algorithm for single-agent tasks, which learns agent’s action-
value function. For multi-agent tasks, we learn the joint action-value function Qtot(τ t,ut, θ), where
τ ∈ T is a joint action-observation history and θ are network parameters. During learning, the replay
buffer D, consisted of tuples (τ t,ut, rt, τ t+1), is utilized. Thus, the network parameters θ will be
learned by the TD error:

L(θ) = E(τ t,ut,rt,τ t+1)∼D

[
r + γmax

ut+1

Qtot(τ t+1, at+1, θ
−)

]2
, (1)

where θ− are the parameters of the target network that are periodically updated with θ.

One of the core issues of cooperative MARL is that simultaneous learning of multiple agents induces
non-stationarity of the environment. That leads to the problem that decentralized learning of multiple
agents is unstable. As a solution, the centralized training with decentralized execution (CTDE)
approach was introduced. According to this approach, the execution is decentralized, which means
that each agent a chooses actions according to its local action-observation history τa. Despite that,
the training is centralized, and during training the learning algorithm has the access to the state s
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of the environment. In order to allow each agent a to participate in a decentralized execution, it is
important to assert that:

argmax
u

Qπ(s,u) = (argmax
u1

Q1(τ
1, u1)... argmax

un
Qn(τ

n, un)) (2)

One of the polular methods to solve the problem is QMIX (Rashid et al., 2020b). This method is a
variant of DQN (Mnih et al., 2015) for multiagent tasks, and is based on the ideas of VDN (Sunehag
et al., 2018). QMIX uses the mixing network during training to enforce (2). Weights of the mixing
network are produced by a hypernetwork based on the current state s, and are non-negative. The
mixing network learns the joint action-value function Qtot(τ ,u). The usage of non-negative weights
of the mixing networks enforces that ∂Qtot

∂Qa
>= 0,∀a ∈ A, which also guarantees (2).

3 RELATED WORK

The exploration-exploitation dilemma in MARL is closely related to similar challenges in deep RL.
Many techniques originally developed for single-agent settings have been adapted for MARL. For
instance, curiosity-driven exploration, a method that enhances the exploration process, has been ef-
fectively integrated into MARL to manage complexities arising from multiple interacting agents.
Additionally, tools such as replay buffers and recurrent neural networks are employed to better han-
dle and utilize data collected during agent interactions. However, while these adaptations improve
exploration and data utilization, they do not directly address the non-stationarity problem inherent in
MARL. Below, we provide an overview of such techniques in single-agent RL and their application
in MARL, highlighting their strengths and limitations in the multi-agent context.

3.1 EXPLORATION IN MARL.

The exploration problem is a well-studied topic in reinforcement learning. Bootstrapped DQN (Os-
band et al., 2016) learns several separate Q-value functions, and at the beginning of each episode
samples one of these functions. Then, the agent follows the greedy policy for that sampled function.
This way, the method allows the agent to use temporally-extended exploration during the whole
episode. ϵz-greedy (Dabney et al., 2020) modifies the ϵ-greedy method, and instead of sampling
single actions, it samples options of actions, which agent follows for the number of steps that is
sampled according to the distribution z. Another approach is to use an intrinsic reward to direct the
exploration process. ICM (Pathak et al., 2017) adopts an inverse model to extract features out of
inputs that ignore uncontrollable aspects of the environment, and then uses the prediction error of
these features as an intrinsic reward. VIME (Houthooft et al., 2016) uses Bayesian neural networks
to approximate environment dynamics and then maximizes the information gain about the agent’s
belief of environment dynamics. VDM (Bai et al., 2021) models the stochasticity in dynamics to
enhance predictions and computes the intrinsic reward using the environmental state-action transi-
tions probabilities. RND (Burda et al., 2018) computes the exploration bonus based on state novelty,
which is estimated by distilling a fixed randomly initialized network into another one. SMM (Lee
et al., 2019) learns a policy to match its state marginal distribution with a target state distribution.
NGU (Badia et al., 2019) computes intrinsic reward based on two components: exploration bonus
for lifelong novelty, which is computed using RND, and episodic novelty bonus. To compute the
episodic novelty bonus, it uses episodic memory, which contains all the visited states in the current
episode. Then, it encourages the agent to visit as many different states as possible during a single
episode. Agent57 (Badia et al., 2020), being based on NGU, also learns a family of policies with
different degrees of exploration and exploitation. It uses an adaptive meta-controller to choose from
these policies, which allows to control the intensity of exploration during the training process. In-
stead of exploring novel states, SMiRL (Berseth et al., 2020) tries to minimize a surprise from new
states, thus developing behavior that decreases entropy. Such an approach allows the learning agent
to develop meaningful skills in unstable environments, where unexpected events happen on their
own.

Generally, multi-agent methods try to adopt existing single-agent approaches for exploration.
LIIR (Du et al., 2019) uses an individual intrinsic reward for each agent, which allows the agents
to be stimulated differently. The parameters of intrinsic rewards are learned using the centralized
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critic to maximize the team reward. EMC (Zheng et al., 2021) utilizes a curiosity module, which is
trained to predict individual Q-values of agents. These prediction errors are used as additional in-
trinsic rewards. Wang et al. (Wang et al., 2019) introduce two methods that are based on measuring
of the interactions between agents to compute intrinsic rewards: EITI uses the mutual information
between agents’ trajectories, and EDTI quantifies the influence of an agent on expected returns of
other agents. MAVEN (Mahajan et al., 2019) uses a latent variable, which is generated by a hier-
archical policy, to perform coordinated exploration in different modes. Then, MAVEN maximizes
the mutual information between the observed trajectories to achieve diverse behavior. CMAE (Liu
et al., 2021) utilizes restricted space exploration and shared goals. It first explores goals from a
low-dimensional restricted space and then trains exploration policies to reach these goals, which
represent under-explored states. This method showed significant improvement in sparse-reward en-
vironments. SMMAE (Zhang et al., 2023) enhances exploration in two different ways. Firstly, it
introduces an intrinsic reward based on SMM. Secondly, it uses adaptive exploration, and bases
each agent’s probabilities of choosing random actions on correlation between agents. It predicts the
actions of each agent based on other agents’ observations to measure the correlation between them
and increases the probability of choosing random actions if the correlation is too high.

3.2 EXPERIENCE EXPLOITATION IN MARL

While classic algorithms during training process replay whole episode sequences, it may create
number of practical issues because of varying episode length and correlated states in trajectories. To
solve this issue, R2D2 (Kapturowski et al., 2018) trains on sequences of transitions of fixed length,
which overlap by half of their length and never cross boundaries of the episode. Though that method
allows to overcome some issues, which are created by learning on the whole episodes, it also creates
an issue of necessity to properly initialize hidden recurrent states during training. R2D2 introduces
two strategies to solve this issue: storing the recurrent state in replay buffer, and using ”burn-in”
phase during training, i.e. using the first half of the training sequence only for initialization of the
recurrent states, and apply the training objective to the second half of the sequence.

Number of methods also utilizes prioritized experience replay (Schaul et al., 2015). Ape-X (Horgan
et al., 2018) suggests to use the absolute TD error for experience priorities. R2D2 (Kapturowski
et al., 2018) and R2D3 (Paine et al., 2019) use the mixture of the maximum absolute TD error and
the mean TD error in the sequence.

Most works focused on modifying experience replay consider single-agent domain, though some
works adopt this concept for multi-agent tasks. MAC-PO (Mei et al., 2023) only uses weights for
weighted error, and sample training transitions with uniform distribution. (Wang & Zhang, 2019)
adopts prioritized for multi-agent task and sets priorities for each transition – and trains on mini-
batch of transitions without recurrency. Number of methods, like QMIX (Rashid et al., 2020b)
and its derivatives (Mahajan et al., 2019; Wang et al., 2020; Zhang et al., 2023), sample for train-
ing uniformly full episodes . So far, by our knowledge, there are no works considering modifying
experience replay so that fixed-length sequences would be used for training, with or without priori-
tization.

4 METHOD

This section outlines the key methodological advancements introduced in our research to enhance
exploration and training efficiency in reinforcement learning. We first present a novel modification
to the traditional ϵ-greedy policy, where the exploration probability is dynamically adjusted based
on the count of available joint actions.

Following this, we describe our enhanced replay buffer strategy designed to improve the training
process’s efficiency and stability. Instead of relying on full episodes, we utilize overlapping se-
quences of fixed length, allowing for more effective learning across episode boundaries.

Modification of ϵ-greedy policy. As ϵ-greedy policy uses a constant value of a probability of
choosing random actions ϵ, it may be hard to adapt the exploration degree to the current environment
situation. The number of available to agents actions may vary in some environments, and the number
of agents may change during the episode as well. The varying number of the available joint actions
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leads to the necessity of dynamically adaptation of the exploration extent in order to properly explore
environment states.

In contrast to ϵ-greedy policy, where a constant value of ϵ is used, we compute the exploration
probability ϵ using the available actions count. We assume that the more joint actions U are available,
the more intense exploration it is required to find the optimal strategy. According to that reasoning,
we introduce the following way to compute the value of ϵt:

ϵt = tanh(α ·
√
log(|Ut|)) (3)

where |Ut| is a count of the available joint actions at the step t; α is a constant hyperparameter.

Also, we set minimum and maximum boundaries ϵmin and ϵmax, so that ϵt would always stay in
reasonable limits.

Scaling the value of ϵt on available joint actions count may allow adapt exploration intensity to
the current state. In some environments, like SMAC (Samvelyan et al., 2019), number of actions,
available to agents, may greatly vary.

Replay buffer enhancement. Replay buffer D consists of a fixed number of episodes’ steps D.
Instead of training on full episodes, we train using sequences of steps of fixed length m, in order
to decrease the dependency of the learning process on the episodes length. These sequences aren’t
restricted by episodes boundaries and may contain steps of different episodes. At the beginning
of each train iteration, recurrent state is initialized to zero. The first half of each sequence is used
for the initialization of the recurrent state, and the training objective is only applied to the second
half of a sequence. If a sequence contains parts of different episodes, at the step of switching
between episodes the recurrent state is zero initialized again. Also, to decrease dependency on the
environment, we run train iterations after the constant number of rollout time-steps performed.

The process of insertion of data in replay buffer is described in Algorithm 1. As we sample a new
episode of length T , we need to store it in replay bufferD. The maximum amount of transitions that
we store in D is D, so, if the size of D exceeds that limit, we remove the oldest transitions.

Algorithm 1: Inserting transitions in replay buffer
Input: List of transitions D, buffer size D
Output: List of transitions D

1 Sample transition tuples ρ←
{(

st, rt
{(

zat , u
a
t , z

a
t+1

)
|a = 1, ..., n

})
|t = 0, ..., T − 1

}
2 for each step t = 0, ..., T − 1 do
3 if size(D) = D then
4 D ← D[1 :] // Pop oldest index
5 end
6 D ← concat(D, ρt)
7 end

We sample training sequences following the Algorithm 2. As we train the network on batches of
size B, we uniformly choose B starting indices. Then, for each sampled index i we put in batch B a
sequence which consists of m transitions starting from index i up to index i+m. If the value i+m
exceeds the capacity ofD, we select in the sequence transitions from i up to the last transition stored
in D, and select the rest of transitions starting from the index 0 to fill the sequence up to the size m.

5 EXPERIMENTS

In this section, we present our experimental results on SMAC (Samvelyan et al., 2019) and
POGEMA (Skrynnik et al., 2024a) benchmarks. As we study the effectiveness of QMIX (Rashid
et al., 2020b) method with the proposed modifications of the exploration policy and replay buffer, we
consider the version of QMIX with both of the modifications, QMIX with only replay buffer modi-
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Algorithm 2: Sample transitions from replay buffer
Input: List of transitions D, sequence size m, batch size B
Output: Batch of transitions B

1 B ← () // Initialize batch as an empty list
2 while size(B) < B do
3 i ∼ U(0, size(D)− 1) // Randomly sample starting index of a

sequence
4 if i+m < size(D) then
5 b← D[i : i+m]
6 else
7 b← concat(D[i :],D[: size(D)− i])
8 end
9 B ← concat(B, b)

10 end

fication, and QMIX with only exploration policy modification. The source code of these methods is
available at 1.

5.1 COMPARISON ON SMAC

To study the impact of the modified exploration policy and replay buffer modification, we experiment
on different SMAC (Samvelyan et al., 2019) scenarious, and compare results with QMIX (Rashid
et al., 2020b) and SMMAE (Zhang et al., 2023). Here, SMMAE is a specialized approach that
enhances the exploration abilities of QMIX.

We also conduct ablation experiments to study the impact of each algorithm modifications sepa-
rately. SMAC benchmark is focused on micromanagement task of the popular game StarCraft II,
where each unit is controlled by a different agent in order to defeat the opponent army controlled by
a game’s build-in scripted AI. The game is considered won if agents managed to kill every enemy
unit within the time limit, and the quality metrics is win rate. Initially, following SMMAE Zhang
et al. (2023), we selected three scenarios for the experiments on SMAC: 6h vs 8z, 2c vs 64zg, and
corridor. However, for 6h vs 8z, we observed that the agent learned to exploit the reward system.
The enemies had shields that regenerated over time, and under the standard settings in SMAC, agents
were rewarded for regeneration of enemies’ shields as if it were damage. As a result, it was more
advantageous for agents to damage the shields and then retreat out of the enemies’ line of sight,
which lead to low win rate. As it was a known issue, which wasn’t planned to be fixed2, we decided
to replace the map 6h vs 8z with a map MMM2, which is also considered to be ”super-hard”. Fig-
ure 1 includes screenshots of the selected maps. The version of StarCraft II used for the evaluation
is SC2.4.10 (B75689).

Among the chosen scenarios the total number of actions of each agent varied from 18 to 70, and
number of agents varied from 2 to 10. Given that, the maximum theoretical amount of unique joint
actions is 1810, though in actual experiments lots of actions are often unavailable.

Following (Zhang et al., 2023), we use in our experiments QMIX with Adam (Kingma, 2014)
optimizer with default hyperparameters. ϵ anneal time is 50000 steps, and the exploration hyperpa-
rameter α is set to 0.04 for corridor and 0.02 for 2c vs 64zg and MMM2. A detailed implementation
description is provided in Appendix B.

The results of the experiments on SMAC are shown in Figure 2. On a super-hard scenario corridor
poor QMIX results compared to other algorithms indicate that additional exploration significantly
increases learning performance. SMMAE and QMIX with adaptive ϵ achieve similar results, and
QMIX with both modifications has slightly better performance. On a hard scenario 2c vs 64zg a re-
play buffer modification results in worse learning performance, meanwhile QMIX, QMIX with mod-
ified exploration policy and SMMAE achieve the similar results. On a super-hard scenario MMM2

1https://github.com/tolyan3212/re-qmix
2https://github.com/oxwhirl/smac/issues/72
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(a) corridor (b) 2c vs 64zg (c) MMM2

Figure 1: Screenshot examples of SMAC scenarios from the StarCraft II game, which are used in
experiments. In all scenarios, the red units are controlled by RL agents, while the blue units are
controlled by the game’s built-in AI. The RL agents are trained jointly during learning but make
independent decisions during testing, following the centralized training, decentralized execution
paradigm. In the corridor scenario, the RL-controlled zealots must coordinate their movement to-
wards the lower left corner of the map, where a narrow corridor is located. This positioning allows
them to defeat a large number of zerg units. In the 2c vs 64zg scenario, the RL agents control two
Colossus, exploiting the units’ ability to traverse high ground to defeat a large number of zergs. In
the MMM2 scenario, a group of 2 Marauders, 7 Marines, and 1 Medivac, controlled by RL agents,
attempt to defeat a larger group consisting of 3 Marauders, 8 Marines, and 1 Medivac.
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Figure 2: Comparison of the mean test win rate of proposed modifications and other MARL algo-
rithms on SMAC. QMIX-RB-P stands for QMIX with replay buffer and exploration policy modifi-
cations; QMIX-RB stands for QMIX with replay buffer modification, and QMIX-P stands for QMIX
with exploration policy modification. Plots show the mean and 95% confidence interval across five
runs. For the corridor scenario, algorithms with enhanced exploration – QMIX-P, QMIX-RB-P and
SMMAE – have better performance compared with QMIX; replay buffer modification also improves
the results, and the best performance is achieved by QMIX-RB-P. For the 2c vs 64zg scenario, re-
play buffer modification leads to worse performance, and the other algorithms have similar results.
For the MMM2 scenario, QMIX-RB-P has the steepest learning curve, but the final performance of
the algorithms is almost identical.

an algorithm with both exploration policy and replay buffer modifications has slightly steeper learn-
ing curve, though the final winning rates of algorithms are almost identical.

Comparison of the proposed algorithm with SMMAE, wich uses additional attention-based and VAE
modules to enhance exploration, shows that it’s possible to achieve the similar exploration effective-
ness with a simple in terms of computation and implementation modification of ϵ-greedy policy. We
also conducted additional experiments with state-of-the-art MARL algorithms, QPLEX(Wang et al.,
2020) and WQMIX(Rashid et al., 2020a), the results of which are presented in Appendix A.

5.2 COMPARISON ON POGEMA

POGEMA (Skrynnik et al., 2024a) is a grid-like multi-agent pathfinding environment, where mul-
tiple agents are supposed to move to their goals in order to get a collective reward, which is given
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when any of agent steps on a goal. Additional small rewards are given when agents shorten the dis-
tance to their goals, as in (Skrynnik et al., 2024b). The task of decentralized multi-agent pathfinding
is particularly challenging, as highlighted by several specialized methods (Andreychuk et al., 2024;
Wang et al., 2023; Skrynnik et al., 2024c; 2023; Sartoretti et al., 2019).

We consider the LifeLong scenario, where when an agent accomplishes its goal, a new goal is set
for it. There are obstacles present on the map, and agents cannot pass through a cell occupied
by another agent, which necessitates adopting cooperative behavior to maximize rewards. We use
random generated maps for training, which means that the agents’ training goal is not to memorize
the map, but to be able to adapt to a new layout and find the way to the goal on an unknown map.
The quality metric used is throughput, i.e., the ratio of the number of the accomplished goals (by all
agents) to the episode length.
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(a) POGEMA results. (b) POGEMA environment.

Figure 3: (a) Comparison of the mean average throughput on POGEMA with large episodes. QMIX-
RB stands for QMIX with replay buffer modification; QMIX-ET stands for QMIX with early train-
ing start. Plots show the mean and 95% confidence interval across five runs. QMIX-RB starts
quickly improving its performance from the beginning of training, achieving the best results. QMIX-
ET has a steeper learning curve compared to QMIX, but it still takes a lot of time to achieve com-
petitive results. Please note that the average throughput can exceed 1.0. (b) Illustration of a random
POGEMA map with a size of 16 × 16 and a population of 16 agents. The agents are represented
as colored filled circles, and their targets are shown as circles of the same color. Each agent has a
single, unique target.

To further study the impact of the replay buffer modification, we conduct experiments on POGEMA
environment with large episode length of 1000 steps and with batch size 64. The goal of that ex-
periment is to simulate the situation, when the environment’s episodes are very large and contain
an amount of information which is hard to process during the training. We compared QMIX with
proposed replay buffer modification with other two versions of QMIX: one is a usual QMIX im-
plementation, where training starts when enough episodes are sampled to form a full batch of the
given size. The second version of QMIX has no restrictions on the start of training, so that training
starts right after the first episode was sampled, but with each next sampled episode the batch size is
increased up to 64.

For this experiment, we do not consider the exploration policy modification as it depends on the
current number of available actions, which is constant for POGEMA environment – this means that
the usage of the modified exploration policy would still result in a constant value of ϵ.

The results of that comparison are shown in Figure 3. While QMIX with early training start has
steeper learning curve than QMIX, the results of QMIX with modified replay buffer are signifi-
cantly superior. These results indicate that proposed replay buffer modification may decrease the
dependency on the environment and it’s episodes length, which simplifies the selection of some
hyperparameters such as batch size.
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6 CONCLUSION AND LIMITATIONS

In this paper, we have explored the impact of a modified exploration policy and replay buffer mod-
ification in the context of cooperative MARL, using the SMAC and POGEMA environments as
benchmarks. Our results demonstrate that these modifications can significantly enhance the perfor-
mance of the QMIX algorithm without introducing substantial complexity. Our enhancements offer
a streamlined alternative to complex MARL methods, achieving results comparable to state-of-the-
art methods with minimal alterations to the original algorithm, thereby simplifying the adaptation
process for diverse multi-agent environments.

A potential limitation of our work is the lack of formal theoretical guarantees regarding the explo-
ration component. This could be addressed by framing the exploration process as a multi-armed
bandit problem, where the number of available arms changes at each time step. While this theoreti-
cal perspective could provide more rigorous guarantees, fully developing it within the scope of this
paper would be challenging.
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Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning Rep-
resentations, 2019.
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A ADDITIONAL SMAC EXPERIMENTS

We also conducted comparison of the proposed modifications with state-of-the-art value-based
MARL algorithms, as QPLEX (Wang et al., 2020) and WQMIX (Rashid et al., 2020a), which are
not enhance idea of QMIX further in other way.

The results are presented in Figure 4. The implementation of QPLEX algorithm used in experi-
ments was provided by the repository 3, and the implementation of WQMIX was provided by the
repository 4.

According to the results, the corridor map proved to be challenging for both QPLEX and WQMIX
algorithms to solve during the training period. QPLEX showed competitive results on the 2c vs 64zg
map but underperformed on the MMM2 scenario. OW-QMIX performed similarly to QMIX-RB-P
on MMM2 and had a steep learning curve on the 2c vs 64zg map, although its final results on that
map were worse than those of QPLEX and QMIX-P. Overall, CW-QMIX demonstrated slightly
lower performance compared to the other algorithms.

In summary, while algorithms such as QPLEX and WQMIX may outperform QMIX with the pro-
posed modifications on certain scenarios, their performance is less stable across various scenarios,
and these methods struggle to succeed in more challenging scenarios, such as the corridor.
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Figure 4: Comparison of the mean test win rate of proposed modifications with state-of-the-art
MARL algorithms QPLEX and WQMIX on SMAC. QMIX-RB-P stands for QMIX with replay
buffer and exploration policy modifications; QMIX-RB stands for QMIX with replay buffer modi-
fication, and QMIX-P stands for QMIX with exploration policy modification. Plots show the mean
and 95% confidence interval across five runs. The corridor scenario proved to be too challenging for
the QPLEX and WQMIX algorithms. In the 2c vs 64zg scenario, CW-QMIX performed relatively
close to QMIX-RB and QMIX-RB-P, and QMIX-P with QPLEX showed the best results. In the
MMM2 scenario, QPLEX showed the worst results, CW-QMIX has a slightly worse performance
compared to QMIX-RB and QMIX-P, while QMIX-RB-P and OW-QMIX achieved the best results.

B IMPLEMENTATION DETAILS

We use the QMIX (Rashid et al., 2020b) algorithm as the base method for the proposed modi-
fications. Our implementation is based on PyMARL (Samvelyan et al., 2019). Following SM-
MAE (Zhang et al., 2023), we changed RMSProp (Tieleman, 2012) optimizer with Adam (Kingma,
2014) optimizer with default hyper-parameters.

At the beginning of training, we linearly anneal ϵ from 1.0 to 0.05 over 50,000 steps. For methods
without the replay buffer modification, the buffer size is set to 5,000 episodes, and after sampling
a new episode from the environment, we select a batch of 32 episodes for training. For methods
with the replay buffer modification, for every 128 steps sampled from the environment, we select
a batch of 64 sequences for training. Each sequence is 128 steps long, with 64 steps used for the
“burn-in” phase and the remaining 64 steps used for training. In the POGEMA (Skrynnik et al.,

3https://github.com/wjh720/QPLEX
4https://github.com/hijkzzz/pymarl2
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2024a) environment, the replay buffer size is set to 1,000 episodes or 800,000 steps. The agents’
network architecture is the same as that of QMIX, with a GRU (Chung et al., 2014) recurrent layer
having a 64-dimensional hidden state. The target network is updated every 200 training episodes for
methods without the replay buffer modification, and every 10,000 steps for methods with the replay
buffer modification. The complete hyper-parameters setup is shown in Table 1.

Table 1: The hyper-parameters of proposed modifications and base version of QMIX algorithm.

Hyper-parameter Value

Sequence length 128 steps
Length of a burn-in phase 64 steps
ϵ anneal time 50000 steps
ϵ finish 0.05
Learning rate 0.001
α 0.02 (0.04 for corridor)
γ 0.99
GRU hidden size 64
Mixing network size 32
Mixer’s hypernet layers 2
Mixer’s hypernet hidden size 64
Optimizer Adam

Improved Replay Buffer (w/ RB)

Size for SMAC 200000 steps
Size for POGEMA 800000 steps
Target update interval 10000 steps

Default Replay Buffer (w/o RB)

Size for SMAC 5000 episodes
Size for POGEMA 1000 episodes
Target update interval 200 episodes
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