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ABSTRACT

Deep neural networks for learning Symmetric Positive Definite (SPD) matrices are
gaining increasing attention in machine learning. Despite the significant progress,
most existing SPD networks use traditional Euclidean classifiers on approximated
spaces rather than intrinsic classifiers that accurately capture the geometry of SPD
manifolds. Inspired by the success of Hyperbolic Neural Networks (HNNs), we
propose Riemannian multiclass logistics regression (RMLR) for the classification
layers in SPD networks. We focus on the metrics pulled back from the Euclidean
space, such as Log-Euclidean Metric (LEM) and Log-Cholesky Metric (LCM),
and introduce a unified framework for building Riemannian classifiers under these
metrics. We first generalize the existing LEM and LCM by the concept of defor-
mation and then design the specific SPD classifiers. Our framework encompasses
the most popular LogEig classifier in existing SPD networks as a special case. The
effectiveness of our method is demonstrated in three applications: radar recogni-
tion, human action recognition, and electroencephalography (EEG) classification.

1 INTRODUCTION

Symmetric Positive Definite (SPD) matrices are commonly encountered in a diverse range of scien-
tific fields, such as medical imaging (Chakraborty et al., 2018; 2020), signal processing (Arnaudon
et al., 2013; Hua et al., 2017; Brooks et al., 2019b;a), elasticity (Moakher, 2006; Guilleminot &
Soize, 2012), question answering (López et al., 2021; Nguyen, 2022a), and computer vision (Huang
& Van Gool, 2017; Harandi et al., 2018; Zhen et al., 2019; Chakraborty, 2020; Zhang et al., 2020;
Chakraborty, 2020; Song et al., 2021; Nguyen, 2021; 2022b; Song et al., 2022b). Despite their
ubiquitous presence, traditional learning algorithms are ineffective in handling the non-Euclidean
geometry of SPD matrices. To address this limitation, several Riemannian metrics have been pro-
posed, including Affine-Invariant Metric (AIM) (Pennec et al., 2006), Log-Euclidean Metric (LEM)
(Arsigny et al., 2005), and Log-Cholesky Metric (LCM) (Lin, 2019). With these Riemannian met-
rics, various machine learning techniques can be generalized into SPD manifolds.

Inspired by the great success of deep learning (Hochreiter & Schmidhuber, 1997; Krizhevsky et al.,
2012; He et al., 2016), several deep networks have been developed on SPD manifolds. Despite their
promising performance, many approaches still rely on Euclidean spaces for classification, such as
tangent spaces (Huang & Van Gool, 2017; Brooks et al., 2019a; Nguyen, 2021; Wang et al., 2021;
Nguyen, 2022a;b; Kobler et al., 2022; Wang et al., 2022; Chen et al., 2023b), ambient Euclidean
spaces (Wang et al., 2020; Song et al., 2021; 2022a), and coordinate systems (Chakraborty et al.,
2018). However, these strategies distort the intrinsic geometry of the SPD manifold, undermining the
effectiveness of SPD neural networks. Recently, motivated by HNNs (Ganea et al., 2018), Nguyen
& Yang (2023) developed three kinds of SPD Multiclass Logistics Regression (MLR) based on the
gyro-structures induced by LEM, LCM and AIM. However, the proposed SPD MLRs in Nguyen
& Yang (2023) rely on the gyro-structures, limiting their generality. Chakraborty et al. (2020) also
introduced an invariant layer for manifold-valued data that mimics the invariant FC layer in CNNs.
However, it is designed for gridded manifold-valued data, which is not the primary data type en-
countered in many other SPD networks. Following the convention of most SPD networks, we only
focus on non-gridded cases.

In fact, SPD MLR can be directly derived under LEM and LCM without the assistance of gyro
structures. More generally, LEM and LCM belong to Pullback Euclidean Metrics (PEMs), which
are metrics pulled back from the Euclidean space. In this paper, we focus on PEMs and propose
a unified framework for building SPD Multiclass Logistics Regression (SPD MLR) under PEMs.
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On the empirical side, we first generalize the existing LEM and LCM into parameterized metric
families through the concept of deformation. We then showcase our SPD MLRs under these gen-
eralized metrics. Besides, our framework encompasses the gyro SPD MLRs induced by LEM and
LCM in Nguyen & Yang (2023). More importantly, our framework also provides an intrinsic expla-
nation for the commonly used LogEig classifier on SPD manifolds, consisting of successive matrix
logarithm, FC, and softmax layers. Finally, extensive experiments demonstrate that our proposed
Riemannian classifiers exhibit consistent performance gains across widely used SPD benchmarks.
The contributions of our work are summarized as follows:

(a) We introduce a general framework for building SPD MLRs under PEMs and design specific
SPD MLRs under two parameterized metric families.

(b) Our framework offers an intrinsic explanation of the most popular LogEig classifier.
(c) Extensive experiments on widely used SPD learning benchmarks demonstrate the superi-

ority of our proposed classifiers over the previous baselines.

Main theoretical results: In Defs. 3.1 and 3.2, we introduce the definitions of the SPD hyperplane
and SPD MLR, respectively. The core idea lies in the computation of marginal distance to the hy-
perplane defined in Eq. (14). As Lem. 3.3 demonstrates, this problem admits a closed-form solution
under any PEM. Consequently, we establish the uniform expression of SPD MLR under any PEM
in Thm. 3.6. Sec. 4.1 details the extension of existing LEM and LCM by the concept of deforma-
tion. Prop. 4.1 shows that the deformed LEM and LCM all belong to PEMs, while their deformation
utility is discussed in Prop. 4.2. Expressions for SPD MLRs under the deformed LEM and LCM are
presented in Cor. 4.3. Finally, our framework also offers an intrinsic explanation for the widely used
LogEig classifier in Prop. 5.1. Due to page limits, all the proofs are placed in App. D.

2 GEOMETRY OF SPD MANIFOLDS

In this section, we briefly review some basic concepts in differential geometry and SPD manifolds.
For in-depth discussions, please refer to Do Carmo & Flaherty Francis (1992); Tu (2011).

We first recap the concept of the pullback metric, which is ubiquitous in differential manifolds.

Definition 2.1 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is a diffeomorphism. Then f can induce a Riemannian metric on M defined
as

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (1)

where p ∈ M, f∗,p(·) is the differential map of f at p, and Vi ∈ TpM. We call f∗g as the pullback
metric by f from N .

Now, we introduce some necessary preliminaries about SPD manifolds. The set of SPD matrices, de-
noted as Sn

++, forms a smooth manifold known as the SPD manifold (Arsigny et al., 2005). Several
successful Riemannian metrics have been established on SPD manifolds, such as LEM (Arsigny
et al., 2005), AIM (Pennec et al., 2006) and LCM (Lin, 2019). Recently, Thanwerdas & Pennec
(2023) generalized LEM and AIM into two-parameter families of metrics, namely (α, β)-AIM and
(α, β)-LEM by the O(n)-invariant inner product on the Euclidean space Sn of symmetric matrices:

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V ) tr(W ), with (α, β) ∈ ST, (2)

where ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}, and V,W ∈ Sn.

In this study, we focus on (α, β)-LEM and LCM. We first make some notations and then summarize
all the necessary Riemannian operators in Tab. 1. Given SPD matrices P,Q ∈ Sn

++ along with
tangent vectors V,W ∈ TPSn

++, we introduce the following notations. Specifically, the Riemannian
metric at P is represented as gP (·, ·), while LogP (·) denotes the Riemannian logarithm at P . ΓP→Q

signifies the parallel transport along the geodesic connecting P and Q. The matrix exponential
and logarithmic functions are denoted as mexp(·) and mlog(·), respectively. In addition, Chol(·)
denotes the Cholesky decomposition, with L = CholP andK = CholQ representing the Cholesky
factors of P and Q. The differentials of mlog and Chol−1 at P and L are respectively denoted as
mlog∗,P and (Chol)−1

∗,L. ⌊·⌋ refers to the strictly lower part of a square matrix, and Dlog(L) denotes
a diagonal matrix comprised of the logarithm of the diagonal elements of L.
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Table 1: Riemannian operators of (α, β)-LEM and LCM on SPD manifolds.

Name gP (V,W ) LogP Q ΓP→Q(V )

(α, β)-LEM ⟨mlog∗,P (V ),mlog∗,P (W )⟩(α,β) (mlog∗,P )
−1 [mlog(Q)−mlog(P )] (mlog∗,Q)

−1 ◦mlog∗,P (V )

LCM
∑

i>j ṼijW̃ij +
∑n

j=1 ṼjjW̃jjL
−2
jj (Chol−1)∗,L

[
⌊K⌋ − ⌊L⌋+ D(L)Dlog(D(L)−1D(K))

]
(Chol−1)∗,K

[
⌊Ṽ ⌋+ D(K)D(L)−1D(Ṽ )

]

Following the terminology in Chen et al. (2023a), we define the pullback metrics from Euclidean
spaces by diffeomorphisms as the Pullback Euclidean Metrics (PEMs). Chen et al. (2023a) demon-
strated that both LEM and LCM are PEMs. We recall an excerpt from Theorem 4.2 of Chen et al.
(2023a), covering the properties of PEMs on SPD manifolds.

Theorem 2.2 (Pullback Euclidean Metrics (PEMs)). Let S1, S2 ∈ Sn
++, ϕ : Sn

++ → Sn is a
diffeomorphism. We define the following operations,

S1 ⊙ϕ S2 = ϕ−1(ϕ(S1) + ϕ(S2)), (3)

gϕS(V1, V2) = ⟨ϕ∗,S(V1), ϕ∗,S(V2)⟩,∀S ∈ Sn
++,∀Vi ∈ TSSn

++, (4)

where ϕ∗,S : TSSn
++ → Tϕ(S)Sn is the differential map of ϕ at S, and ⟨·, ·⟩ is the standard Frobe-

nius inner product. Then, we have the following conclusions: {Sn
++,⊙ϕ} is an Abelian Lie group,

{Sn
++, g

ϕ} is a Riemannian manifold, and gϕ is a bi-invariant metric, called Pullback Euclidean
Metric (PEM). The associated geodesic distance is

dϕ(S1, S2) = ∥ϕ(S1)− ϕ(S2)∥F, (5)

where ∥ · ∥F is the norm induced by ⟨·, ·⟩. The Riemannian operators are as follows

ExpS1
V = ϕ−1(ϕ(S1) + ϕ∗,S1V ), (6)

LogS1
S2 = ϕ−1

∗,ϕ(S1)
(ϕ(S2)− ϕ(S1)), (7)

ΓS1→S2(V ) = ϕ−1
∗,ϕ(S2)

◦ ϕ∗,S1(V ), (8)

where V ∈ TS1
Sn
++ is a tangent vector, ExpS1

is the Riemannian exponential at S1, and ϕ−1
∗ are

the differential maps ϕ−1.

3 SPD MLR ON SPD MANIFOLDS

This section first reformulates the Euclidean MLR. Then, we deal with SPD MLR under arbitrary
PEM on SPD manifolds.

3.1 REFORMULATION OF EUCLIDEAN MLR
Lebanon & Lafferty (2004) first reformulated the Euclidean MLR from the perspective of distances
to margin hyperplanes. Hyperbolic MLR was designed based on this reformulation (Ganea et al.,
2018). Nguyen & Yang (2023) further proposed three gyro SPD MLRs based on the gyro-structures
induced by AIM, LEM, and LCM. We now briefly review the reformulation of Euclidean MLR.

Given C classes, MLR in Rn computes the follwoing softmax probabilities:

∀k ∈ {1, . . . , C}, p(y = k | x) ∝ exp ((⟨ak, x⟩ − bk)) , where bk ∈ R, x, ak ∈ Rn. (9)

As shown in (Lebanon & Lafferty, 2004, Sec. 5) and (Ganea et al., 2018, Sec. 3.1), Eq. (9) can be
reformulated as

p(y = k | x) ∝ exp(sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
)), pk, x ∈ Rn, and ak ∈ Rn\{0}, (10)

Ha,p = {x ∈ Rn : ⟨a, x− p⟩ = 0}, where a ∈ Rn\{0}, and p ∈ Rn, (11)

where Ha,p is referred to a hyperplane.

In geometry, Logp x is the natural generalization of the directional vector p⃗x = x − p starting at p
and ending at x. The Riemannian metric at p can also replace the inner product. More detail can be
found in Pennec et al. (2006, Table 1). Therefore, the MLR in Eq. (10) and hyperplane in Eq. (11)
can be readily generalized into SPD manifolds {Sn

++, g}.

3



Under review as a conference paper at ICLR 2024

Definition 3.1 (SPD hyperplanes). Given P ∈ Sn
++, A ∈ TPSn

++\{0}, we define the SPD hyper-
plane as

H̃A,P = {S ∈ Sn
++ : gP (LogP S,A) = ⟨LogP S,A⟩P = 0}, (12)

where P and A are referred to as shift and normal matrices, respectively.

It can be proven that on geodesic complete manifolds, the SPD hyperplanes are submanifolds
(App. C). Nevertheless, we still follow the nomenclature of Ganea et al. (2018); Lebanon & Lafferty
(2004) and call H̃A,P SPD hyperplane.

Definition 3.2 (SPD MLR). SPD MLR is defined as

p(y = k | S) ∝ exp(sign(⟨Ak,LogPk
(S)⟩Pk

)∥Ak∥Pk
d(S, H̃Ak,Pk

)), (13)

where Pk ∈ Sn
++, Ak ∈ TPk

Sn
++\{0}, ⟨·, ·⟩Pk

= gPk
, and ∥ · ∥Pk

is the norm on TPk
Sn
++ induced

by g at Pk, and H̃Ak,Pk
is a margin hyperplane in Sn

++ as defined in Eq. (12). d(S, H̃Ak,Pk
) denotes

the margin distance between S and SPD hyperplane H̃Ak,Pk
, which is formulated as:

d(S, H̃Ak,Pk
)) = inf

Q∈H̃Ak,Pk

d(S,Q), (14)

where d(S,Q) is the geodesic distance induced by g.

Difference with the gyro SPD MLR: Although the gyro SPD MLR introduced in Nguyen & Yang
(2023) and our method both extend the Euclidean MLR into SPD manifolds, there exist two main
differences:

1. The mathematical techniques employed are different. Nguyen & Yang (2023) adopted
gyro structures to reformulate Eqs. (10) and (11). However, their gyro structures are in-
duced by the Riemannian metrics. Also, the gyro inner product and gyro norm (Nguyen
& Yang, 2023, Def. 2.15) are defined by the inner product and norm in the tangent space
at the identity matrix, i.e.,TISn

++. In contrast, our approach directly applies Riemannian
geometry to reformulate Euclidean MLR.

2. The margin distance in Eq. (14) are calculated differently. The margin distance in gyro
SPD MLR shares the same expression as our Eq. (14), except that the distance in the right-
hand side is gyro distance, which is defined by the distance on TISn

++. To bypass the opti-
mization problem in Eq. (14), Nguyen & Yang (2023) introduced the pseudo-gyrodistance
and pointed out that under the specific LEM and LCM, the pseudo-gyrodistance is equal to
the margin distance. In contrast, we directly use the geodesic distance, which is the most
natural descriptor for characterizing the distance on manifolds.

3.2 SPD MLRS UNDER PEMS

Recalling that for our SPD MLR in Def. 3.2, under most Riemannian metrics on SPD manifolds,
all the involved operators in Eq. (13) have close form expressions, except the margin distance in
Eq. (14). Therefore, the only difficulty lies in the calculation of the margin distance. This subsection
follows the notations in Thm. 2.2 and proposes a general expression for SPD MLRs under PEMs.

We chose PEMs as our starting metrics mainly because of its extensive inclusion and easy computa-
tion. Several Riemannian metrics, including LEM, LCM, and their variants Thanwerdas & Pennec
(2023; 2022), all end up as PEMs. Besides, due to the fast and simple calculation of PEMs, the
margin distance under the PEM has a closed-form expression, while other metrics like AIM would
be complicated to obtain the distances to hyperplanes.

We start by calculating the margin distance in Eq. (14) under a given PEM.

Lemma 3.3. Under a Riemannian metric g which belongs to PEMs, the margin distance defined in
Eq. (14) has a closed-form solution:

d(S, H̃Ak,Pk
)) = d(ϕ(S), Hϕ∗,Pk

(Ak),ϕ(Pk)) =
|⟨ϕ(S)− ϕ(Pk), ϕ∗,Pk

(Ak)⟩|
∥Ak∥Pk

, (15)

where | · | is the absolute value.
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Putting Eq. (15) into Eq. (13), we obtain our SPD MLR under a given PEM:

p(y = k | S) ∝ exp(⟨Ak,LogPk
(S)⟩Pk

) = exp(⟨ϕ(S)− ϕ(Pk), ϕ∗,Pk
(Ak)⟩), (16)

where S, Pk ∈ Sn
++ and Ak ∈ TPk

Sn
++\{0}. When Pk is fixed, Ak ∈ TPk

Sn
++ indeed lies in a

Euclidean space. However, Pk would vary during training, making Ak non-Euclidean. To remedy
this issue, we propose two solutions. The first one is the parallel transportation from a fixed tangent
space, writing Ak = ΓQ→Pk

(Ãk) with Ãk ∈ TQSn
++ as a Euclidean parameter. This is the solution

also adopted by HNNs (Ganea et al., 2018), where the tangent point is the zero vector. Alternatively,
one can also rely on the differential of a Lie group translation, which is widely used in differential
manifolds (Tu, 2011, § 20). Since the Lie groups associated with PEMs are Abelian, we only
consider the left translation in the paper. We have the following two lemmas to show the relation
between the parallel transport and the differential of left translation.

Lemma 3.4. Under a given PEM, any parallel transportation is equivalent to the differential map
of a left translation and vice versa.

Lemma 3.5. Given two fixed SPD matrices Q1, Q2 ∈ Sn
++, we have the following equivalence for

parallel transportations under a PEM,

∀Ã1,k ∈ TQ1Sn
++,∃!Ã2,k ∈ TQ2Sn

++, s.t.ΓQ1→Pk
(Ã1,k) = ΓQ2→Pk

(Ã2,k). (17)

Lem. 3.4 indicates that under PEMs, the above two solutions are equivalent, while Lem. 3.5 implies
that anchor points can be arbitrarily chosen. Therefore, without loss of generality, we generate Ak

from the tangent space at the identity matrix I by parallel transportation, i.e.,Ak = ΓI→Pk
(Ãk) with

Ãk ∈ TISn
++

∼= Sn. Together with Eq. (8), Eq. (16) can be further simplified.

Theorem 3.6 (SPD MLR under a PEM). Under any PEM, SPD MLR and SPD hyperplane is

p(y = k | S) ∝ exp(⟨ϕ(S)− ϕ(Pk), ϕ∗,I(Ãk)⟩), (18)

H̃Ãk,Pk
= {S ∈ Sn

++ : ⟨ϕ(S)− ϕ(Pk), ϕ∗,I(Ãk)⟩ = 0}, (19)

where Ãk ∈ TISn
++/{0} ∼= Sn is a symmetric matrix, and Pk ∈ Sn

++ is an SPD matrix.

4 SPD MLRS UNDER THE DEFORMED LEM AND LCM

In this section, we first generalize the existing LEM and LCM by the idea of deformation, and then
we showcase our SPD MLR in Thm. 3.6 under these generalized metrics.

4.1 DEFORMED LEM AND LCM ON SPD MANIFOLDS

Inspired by the deforming utility of the matrix power function (Thanwerdas & Pennec, 2019; 2022),
this subsection introduces the deformed (α, β)-LEM and LCM. We define (θ, α, β)-LEM as the
pullback metric of (α, β)-LEM by matrix power function (·)θ and scaled by 1

θ2 . Similarly, (θ)-LCM
is the pullback metric of LEM by matrix power function (·)θ and scaled by 1

θ2 . As both the standard
LEM and LCM are PEMs, it can be expected that (θ, α, β)-LEM and (θ)-LCM are also PEMs.

Proposition 4.1. For all θ ̸= 0 and (α, β) ∈ ST, (θ, α, β)-LEM and (θ)-LCM belongs to PEMs.

The parameter θ in (θ, α, β)-LEM and (θ)-LCM also serves as deformation. We have the following
proposition for the deforming utility of θ in these two metrics.

Proposition 4.2 (Deformation). (θ, α, β)-LEM interpolates between (α, β)-LEM (θ → 0) and
(α, β)-LEM (θ = 1). θ-LCM interpolates between g̃-LEM (θ = 0) and LCM (θ = 1), with g̃-
LEM defined as

⟨V,W ⟩P = g̃(mlog∗,P (V ),mlog∗,P (W )),∀P ∈ Sn
++,∀V,W ∈ TPSn

++, (20)

where g̃(V1, V2) = 1
2 ⟨V1, V2⟩ −

1
4 ⟨D(V1),D(V2)⟩, D(Vi) is a diagonal matrix consisting of the

diagonal elements of Vi, and mlog∗,P is the differential map at P .
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Figure 1: Conceptual illustration of SPD hyperplanes induced by (θ, α, β)-LEM and (θ)-LCM. In
each subfigure, the black dots are symmetric positive semi-definite (SPSD) matrices, denoting the
boundary of S2

++, while the blue, red, and yellow dots denote three SPD hyperplanes.

4.2 SPD MLRS UNDER THE DEFORMED LEM AND LCM
Since both (θ, α, β)-LEM and (θ)-LCM are PEMs, the SPD MLRs under these two families of
metrics can be directly obtained by Thm. 3.6.

Corollary 4.3 (SPD MLRs under the deformed LEM and LCM). The SPD MLRs under
(θ, α, β)-LEM is

p(y = k | S) ∝ exp
[
θ2⟨mlog(S)−mlog(Pk), Ãk⟩(α,β)

]
, (21)

where Ãk ∈ TISn
++

∼= Sn and Pk ∈ Sn
++. The SPD MLRs under (θ)-LCM is

p(y = k | S) ∝ exp

[
sgn(θ)⟨⌊K̃⌋ − ⌊L̃⌋+

√
|θ|

[
Dlog(K̃)−Dlog(L̃)

]
, ⌊Ãk⌋+

√
|θ|
2 D(Ãk)⟩

]
, (22)

where K̃ = Chol(Sθ), L̃ = Chol(P θ
k ), and D(Ãk) denotes a diagonal matrix with diagonal ele-

ments of Ãk.

S2
++ can be visualized in R3 by the condition that ∀P =

(
x y
y z

)
∈ S2 is positive definite iff

x, z > 0 ∧ xz > y2. Fig. 1 illustrates SPD hyperplanes induced by (θ, α, β)-LEM and (θ)-LCM.

Remark 4.4. Our SPD MLR incorporates the gyro SPD MLRs induced by LEM and LCM pre-
sented in Nguyen & Yang (2023). For (θ, α, β)-LEM, when (θ, α, β) = (1, 1, 0), (θ, α, β)-LEM
becomes the standard LEM. Our SPD MLR in Eq. (21) becomes the gyro SPD MLR induced by
LEM (Nguyen & Yang, 2023, Thm. 2.23). For (θ)-LCM, when θ = 1, the (θ)-LCM becomes the
standard LCM. Our SPD MLR in Eq. (22) becomes the gyro SPD MLR induced by LCM (Nguyen
& Yang, 2023, Thm. 2.24). However, our framework does not require gyro structures and directly
builds SPD MLR based on the Riemannian metric.

5 UNDERSTANDING THE EXISTING LOGEIG CLASSIFIER

Many of the existing SPD neural networks (Huang & Van Gool, 2017; Brooks et al., 2019a; Nguyen
et al., 2019; Wang et al., 2021; Nguyen, 2021; Wang et al., 2022; Chen et al., 2023b) rely on a
Euclidean MLR in the codomain of matrix logarithm, i.e.,matrix logarithm followed by an FC layer
and a softmax layer. For simplicity, we call this classifier as LogEig MLR. The existing explanation
of LogEig MLR is approximating manifolds by tangent space. However, the widely used LogEig
MLR can be geometrically explained as a particular case of our approach.

When (θ, α, β) = (1, 1, 0) for (θ, α, β)-LEM, the SPD MLR in Eq. (21) is very similar to the LogEig
MLR. However, due to the nonlinearity of mlog(·) and the non-Euclideanness of SPD parameter
Pk, SPD MLR cannot be hastily viewed as equivalent to LogEig MLR. Nevertheless, under special
circumstances, Eq. (21) is equivalent to a LogEig MLR.

Proposition 5.1. Endowing SPD manifolds with the standard LEM, optimizing SPD parameter Pk

in (21) by LEM-based RSGD and Euclidean parameter Ak by Euclidean SGD, the LEM-based SPD
MLR is equivalent to a LogEig MLR with parameters in FC layer optimized by Euclidean SGD.

Prop. 5.1 implies that optimized by LEM-based RSGD, the LEM-based SPD MLR is equivalent to
the Euclidean MLR in the codomain of matrix logarithm. Nevertheless, a substantial body of prior
works underscores the theoretical and empirical superiority of the AIM-based optimization over its
LEM-based counterpart (Sra & Hosseini, 2015; Han et al., 2021). Therefore, we also adopt the
AIM-based optimizer in this paper to update the involved SPD parameters.
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6 EXPERIMENTS

In this section, we implement the proposed two families of SPD MLRs to SPD neural networks.
Note that our SPD MLRs are architecture-agnostic and can be applied to any existing SPD neural
network. This paper focuses on two network architectures, SPDNet (Huang & Van Gool, 2017)
and TSMNet+SPDDSMBN (Kobler et al., 2022). SPDNet is the most classic SPD neural network.
Following previous works (Huang & Van Gool, 2017; Brooks et al., 2019a), we evaluate our SPD
MLRs under this architecture for radar recognition on the Radar dataset (Brooks et al., 2019a) and
human action recognition on the HDM05 (Müller et al., 2007). TSMNet+SPDDSMBN is the SOTA
Riemannian approach to EEG classification, which is the improved version of SPDNetBN (Brooks
et al., 2019a) for transfer learning on EEG tasks. We evaluate our SPD MLRs under this baseline
for EEG classification on the Hinss2021 dataset (Hinss et al., 2021).

Baseline models: SPDNet (Huang & Van Gool, 2017) mimics the conventional densely connected
feedforward network, consisting of three basic building blocks

BiMap layer: Sk =W k⊤Sk−1W k, with W k semi-orthogonal, (23)

ReEig layer: Sk = Uk−1 max(Σk−1, ϵIn)U
k−1⊤, with Sk−1 = Uk−1Σk−1Uk−1⊤, (24)

LogEig layer: Sk = mlog(Sk−1). (25)

where max() is element-wise maximization. BiMap, ReEig, and LogEig mimic transforma-
tion, non-linear rectified activation, and classification. The architecture of TSMNet+SPDDSMBN
(Kobler et al., 2022) can be explained as ftc → fsc → fBiMap → fReEig → fSPDDSMBN →
fLogEig , where ftc and fsc denote temporal and spatial convolution, and fSPDDSMBN denotes
SPD domain-specific momentum batch normalization, which is a SPD batch normalization layer for
domain adaptation. For simplicity, we abbreviate TSMNet+SPDDSMBN as TSMNet.

Datasets and preprocessing: Radar dataset (Brooks et al., 2019a) contains 3,000 synthetic radar
signals. Following the protocol in Brooks et al. (2019a), each signal is split into windows of length
20, resulting in 3,000 covariance matrices of the size 20 × 20 equally distributed in 3 classes.
HDM05 dataset (Müller et al., 2007) consists of 2,273 skeleton-based motion capture sequences
executed by different actors. Each frame can be represented as a 93× 93 covariance matrix. In line
with Brooks et al. (2019a), we remove some under-represented clips and trim the dataset down to
2086 instances scattered throughout 117 classes. Hinss2021 dataset (Hinss et al., 2021) is a recently
released competition dataset containing EEG signals for mental workload estimation. The dataset
is employed for two tasks, namely inter-session and inter-subject classification, which are treated as
domain adaptation problems. Recently, geometry-aware methods (Yair et al., 2019; Kobler et al.,
2022) have demonstrated promising performance in EEG classification. We follow the Python im-
plementation1 of Kobler et al. (2022) for data preprocessing. In detail, the python package MOABB
(Jayaram & Barachant, 2018) and MNE (Gramfort, 2013) are used to preprocess the datasets. The
applied steps include resampling the EEG signals to 250/256 Hz, applying temporal filters to extract
oscillatory EEG activity in the 4 to 36 Hz range, extracting short segments ( ≤ 3s) associated with a
class label, and finally obtaining 40× 40 SPD covariance matrices.

Implementation Details: The original classification in SPDNet and TSMNet is conducted by the
LogEig MLR (matrix logarithm+FC+softmax). To ensure a fair comparison, we substitute their
LogEig classifiers with our intrinsic SPD MLRs. We use the standard cross-entropy loss as the
training objective and optimize the parameters with the Riemannian AMSGrad optimizer (Bécigneul
& Ganea, 2018). The network architectures are represented as [d0, d1, . . . , dL], where the dimension
of the parameter in the i-th BiMap layer is di×di−1. For the Radar and HDM05 datasets, we adopt a
learning rate of 1e−2, a batch size of 30, and a maximum training epoch of 200. For the Hinss2021
dataset, in line with Kobler et al. (2022), we apply a learning rate of 1e−3 with a weight decay of
1e−4, a batch size of 50, and a training epoch of 50. For better comparison, we also implement
the AIM-based gyro SPD MLR Nguyen & Yang (2023) to SPDNet and TSMNet, which is named
SPDNet+Gyro-AIM or TSMNet+Gyro-AIM. All experiments use an Intel Core i9-7960X CPU with
32GB RAM and an NVIDIA GeForce RTX 2080 Ti GPU.

Evaluation Methods: In line with the previous work (Huang & Van Gool, 2017; Kobler et al.,
2022), we use accuracy as the scoring metric for the Radar and HDM05 datasets, and balanced

1https://github.com/rkobler/TSMNet
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Table 2: Results of SPDNet with and without SPD MLRs on the Radar and HDM05 datasets.

(a) Radar dataset.

Methods [20,16,8] [20,16,14,12,10,8]

SPDNet 92.88±1.05 93.47±0.45
SPDNet+Gyro-AIM 94.53±0.95 94.32±0.94

SPDNet+(θ, α, β)-LEM
(1,1,0) 93.55±1.21 94.60±0.70

(0.5,1,1) 95.29±0.61 95.31±0.75

SPDNet+(θ)-LCM
(1) 93.49±1.25 93.93±0.98

(1.5) 93.07±1.08 94.64±0.91

(b) HDM05 dataset.

Methods [93,30] [93,70,30] [93,70,50,30]

SPDNet 57.42±1.31 60.69±0.66 60.76±0.80
SPDNet+Gyro-AIM 58.07±0.64 60.72±0.62 61.14±0.94

SPDNet+(θ, α, β)-LEM
(1,1,0) 56.97±0.61 60.69±1.02 60.28±0.91

(0.5,1.0,1/30) 59.30±0.63 62.84±0.50 63.06±0.76
SPDNet+(θ)-LCM (1) 48.55±2.35 47.61±1.82 49.10±1.94

accuracy (i.e.,the average recall across classes) for the Hinss2021 dataset. Ten-fold experiments on
the Radar and HDM05 datasets are carried out with randomized initialization and split, while on
the Hinss2021 dataset, models are fit and evaluated with a randomized leave 5% of the sessions
(inter-session) or subjects (inter-subject) out cross-validation scheme.

Hyper-parameters: We implement the SPD MLRs induced by both the parameterized metrics
(LEM and LCM) and deformed metrics ((θ, α, β)-LEM and (θ)-LCM). Therefore, in our SPD
MLRs, we have a maximum of three hyper-parameters, i.e.,θ, α, β, where (α, β) are associated with
O(n)-invariance and θ controls deformation. For (α, β) in (θ, α, β)-LEM, recalling Eq. (2), α is
a scaling factors, while β measures the relative significance of traces. As scaling is less important
(Thanwerdas & Pennec, 2019), we set α = 1. We select the value of β from the candidate set
{1, 1/n, 1/n2, 0,−1/n + ϵ,−1/n2}, where n is the dimension of input SPD matrices in SPD MLRs2.
These chosen values for β allow for amplifying, neutralizing, or suppressing the trace components,
depending on the characteristics of the datasets. For the deformation factor θ, we roughly select
its values around the deformation boundary. Specifically, for (θ, α, β)-LEM, (θ, α, β) = (0.5, 1, 0)
is known as the inverse Euclidean metric. Therefore, the candidate values of θ in (θ, α, β)-LEM
consist of {0.25, 0.5, 0.75, 1, 1.25, 1.5}. For (θ)-LCM, θ is select from the set {0.5, 1, 1.5}.

6.1 EXPERIMENTAL RESULTS

For each family of SPD MLRs, we report two representative baselines: the standard SPD MLR
induced from the standard metric (θ = 1, α = 1, β = 0), and the one induced from the deformed
metric with selected hyper-parameters. If the standard SPD MLR is already saturated, we only report
the results of the standard ones. In Tabs. 2 and 3, we denote (θ, α, β)-LEM as the baseline model
endowed with the SPD MLR induced by (θ, α, β)-LEM. So does (θ)-LCM.

Radar: In line with Brooks et al. (2019a), we evaluated our classifiers on the Radar dataset under
two network architectures: [20, 16, 8] for the 2-layer configuration and [20, 16, 14, 12, 10, 8]
for the 5-layer configuration. The 10-fold results (mean±std) are presented in Tab. 2a. Generally
speaking, our SPD MLRs achieve superior performance against the vanilla LogEig MLR. Among
all SPD MLRs, the ones induced by (0.5,1,1)-LEM achieve the best performance on this dataset.
Although the SPD MLRs induced by standard LEM and LCM are slightly worse than the AIM-
based gyro SPD MLR, our SPD MLRs with proper parameters achieve comparable or even better
performance than the AIM-based gyro SPD MLR. Moreover, for both (θ, α, β)-LEM and (θ)-LCM,
the associated SPD MLRs with proper deformation factor θ outperform the standard SPD MLRs
induced by the standard metrics, demonstrating the effectiveness of our parameterization.

HDM05: Following Huang & Van Gool (2017), three architectures are evaluated on this dataset:
[93, 30], [93. 70, 30] and [93, 70, 50, 30]. On this dataset, the SPD MLR under the standard
LCM are already saturated. Besides, the SPD MLRs based on (θ)-LCM exhibit considerably slower
convergence. The models fail to converge even after 500 training epochs. Consequently, we report
the results after 500 epochs of training for LCM-based SPD MLR. The slow convergence of LCM-
based SPD MLR could be attributed to the specific characteristics of the HDM05 dataset, which
might interact differently with the (θ)-LCM metric compared to (θ, α, β)-LEM. Nevertheless, the
SPD MLR induced by (0.5, 1, 1/30)-LEM achieves the best performance. Interestingly, although
our SPD MLR induced by standard LEM is slightly inferior to AIM-based gyro SPD MLR, the
SPD MLR based on (0.5, 1, 1/30)-LEM consistently achieves better performance. This phenomenon
demonstrates the advantage of our framework’s versatility.

2The purpose of including a small positive constant ϵ ∈ R+ is to ensure O(n)-invariance, i.e.,(α, β) ∈ ST.
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Table 3: Results comparison of TSMNet with and without SPD MLRs on the Hinss2021 dataset.

(a) Inter-session

Methods Balanced Acc.

SPDDSMBN 53.83±9.77
SPDDSMBN+Gyro-AIM 53.36±9.92

SPDDSMBN+(θ, α, β)-LEM
(1,1,0) 53.51±10.02

(0.5,1,0.05) 55.26±8.93

SPDDSMBN+(θ)-LCM
(1) 55.71±8.57

(1.5) 56.43±8.79

(b) Inter-subject

Methods Balanced Acc.

SPDDSMBN 49.68±7.88
SPDDSMBN+Gyro-AIM 50.65±8.13

SPDDSMBN+(θ, α, β)-LEM
(1,1,0) 51.41±7.98

(1.25,1,0) 52.52±6.83

SPDDSMBN+(θ)-LCM
(1) 52.93±7.76

(0.5) 54.14±8.36

Hinss2021: Following Kobler et al. (2022), we adopt the architecture of [40,20]. The results
(mean±std) of leaving 5% out cross-validation are presented in Tab. 4. Once again, our intrinsic
classifiers demonstrate improved performance compared to the baseline in the inter-session and
inter-subject scenarios. More interestingly, different from the performance on the HDM05 dataset,
SPD MLRs based on (θ)-LCM achieve the best performance (increase 2.6% for inter-session and
4.46% for inter-subject), indicating that this metric can faithfully capture the geometry of data in the
Hinss2021 dataset. This finding highlights the adaptability and versatility of our framework, as it
can effectively leverage different Riemannian metrics based on the intrinsic geometry of the data.

Table 4: Training efficiency (s/epoch).

Methods Radar HDM05
Hinss2021

inter-session inter-subject

Baseline 1.36 1.95 0.18 8.31
MLR-Gyro-AIM 1.75 31.64 0.38 13.3

MLR-LEM 1.5 4.7 0.24 8.35
MLR-LCM 1.35 3.29 0.18 10.13

Model Efficiency: We adopt the deepest architectures, namely [20, 16, 14, 12, 10, 8] for the
Radar dataset, [93, 70, 50, 30] for the HDM05 dataset, and [40, 20] for the Hinss2021 dataset. For
simplicity, we focus on the SPD MLRs induced by standard metrics, i.e.,LEM and LCM. We also
implement AIM-based gyro SPD MLR. The average training time (in seconds) per epoch is reported
in Tab. 4. In general, when compared to the AIM-based gyro SPD MLR, LEM- and LCM-based
SPD MLRs exhibit superior efficiency, especially when dealing with a larger number of classes.
Notably, the HDM05 dataset comprises 117 classes, where the LEM- and LCM-based SPD MLRs
require only one-ninth of the training time compared to the AIM-based gyro SPD MLR. This dis-
crepancy can be attributed to the computational complexity of AIM, which involves more matrix
decompositions, incurring higher computational costs. In contrast, due to the rapid computation of
PEMs, the PEM-based SPD MLR is more computationally efficient. This contrast becomes more
obvious when dealing with a huge number of classes, as each class necessitates an SPD parameter,
entailing additional Riemannian computations.

7 CONCLUSION

In this paper, we provide a general framework for building SPD MLR under any PEM. We extend the
existing LEM and LCM into parameterized families of metrics and showcase our framework under
these metrics. Our framework also provides an intrinsic explanation for the widely used LogEig
classifier. The consistent superior performance in extensive experiments also supports our claims.
As a future avenue, our framework can also be readily applied to other kinds of PEMs.

Limitations: To develop the SPD MLR based on margin distance to the hyperplane, we only
construct SPD MLRs under PEMs, including standard and deformed LEM and LCM. In future
work, we aim to extend and develop efficient SPD MLRs to other metrics, such as AIM. We note
that though Nguyen & Yang (2023) has implemented AIM-based SPD MLR, their margin distance
is pseudo-gyrodistance, which does not really solve Eq. (14).
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A NOTATIONS

For better understanding, we briefly summarize all the notations used in this paper in Tab. 5.

Table 5: Summary of notations.

Notation Explanation

{M, g} or abbreviated as M A Riemannian manifold
TPM The tangent space at P ∈ M

gp(·, ·) or ⟨·, ·⟩P The Riemannian metric at P ∈ M
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM
LogP The Riemannian logarithmic map at P
ExpP The Riemannian exponential map at P
ΓP1→P2 The Riemannian parallel transportation along the geodesic connecting P1 and P2

Ha,p The Euclidean hyperplane
H̃Ã,P The SPD hyperplane
⊙ A Lie group operation

{M,⊙} A Lie group
P−1
⊙ The group inverse of P under ⊙
LP The Lie group left translation by P ∈ M
f∗,P The differential map of the smooth map f at P ∈ M
f∗g The pullback metric by f from g
Sn
++ The SPD manifold
Sn The Euclidean space of symmetric matrices
⟨·, ·⟩ The standard Frobenius inner product
∥ · ∥F The standard Frobenius norm
ST ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}

⟨·, ·⟩(α,β) The O(n)-invariant Euclidean inner product
mlog Matrix logarithm
Chol Cholesky decomposition

Dlog(·) The diagonal element-wise logarithm
⌊·⌋ The strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix
ΠP The tangential projection at P mapping a Euclidean gradient into a Riemannian one
∇P f The Euclidean gradient of f w.r.t. P

B BRIEF REVIEW OF RIEMANNIAN MANIFOLDS

Intuitively, manifolds are locally Euclidean spaces. Differentials are the generalization of classical
derivatives. For more details on smooth manifolds, please refer to Tu (2011); Lee (2013). Rie-
mannian manifolds are the manifolds endowed with Riemannian metrics, which can be intuitively
viewed as point-wise inner products. When manifolds are endowed with Riemannian metrics, var-
ious Euclidean operators can find their counterparts in manifolds. A plethora of discussions can be
found in Do Carmo & Flaherty Francis (1992).

Definition B.1 (Riemannian Manifolds). A Riemannian metric on M is a smooth symmetric co-
variant 2-tensor field on M, which is positive definite at every point. A Riemannian manifold is a
pair {M, g}, where M is a smooth manifold and g is a Riemannian metric.

The main paper relies on pullback isometry to study SPD manifolds. This idea is a natural general-
ization of bijection from set theory.

Definition B.2 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is smooth. Then the pullback of a tensor field g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (26)

where p is an arbitrary point in M, f∗,p(·) is the differential map of f at p, and V1, V2 are tangent
vectors in TpM. If f∗g is positive definite, it is a Riemannian metric on M, called the pullback
metric defined by f .

Definition B.3 (Isometries). If {M, g} and {M̃, g̃} are both Riemannian manifolds, a smooth map
f :M → M̃ is called a (Riemannian) isometry if it is a diffeomorphism that satisfies f∗g̃ = g.

If two manifolds are isometric, they can be viewed as equivalent. Riemannian operators in these two
manifolds are also closely related.
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A Lie group is a manifold with a smooth group structure. It is a combination of algebra and geome-
try.

Definition B.4 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation
⊙ such that m(x, y) 7→ x⊙ y and i(x) 7→ x−1

⊙ are both smooth, where x−1
⊙ is the group inverse of

x.

The exponential & logarithmic maps and parallel transportation are also crucial for Riemannian ap-
proaches in machine learning. To bypass the notation burdens caused by their definitions, we review
the geometric reinterpretation of these operators, introduced in Pennec et al. (2006); Do Carmo &
Flaherty Francis (1992). In detail, in a manifold M, geodesics correspond to straight lines in Eu-
clidean space. A tangent vector −→xy ∈ TxM can be locally identified to a point y on the manifold
by geodesic starting at x with initial velocity of −→xy, i.e. y = Expx(

−→xy). On the other hand, the
logarithmic map is the inverse of the exponential map, generating the initial velocity of the geodesic
connecting x and y, i.e.,−→xy = Logx(y). These two operators generalize the idea of addition and
subtraction in Euclidean space. For the parallel transportation Γx→y(V ), it is a generalization of
parallelly moving a vector along a curve in Euclidean space. we summarize the reinterpretation in
Tab. 6.

Table 6: Reinterpretation of Riemannian Operators.

Operations Euclidean spaces Riemannian manifolds

Straight line Straight line Geodesic
Subtraction −→xy = y − x −→xy = logx(y)

Addition y = x+−→xy y = expx(
−→xy)

Parallelly moving V → V Γx→y(V )

At last, we briefly review the Riemannian gradient. It is a natural generalization of the Euclidean
gradient.

Definition B.5 (Riemannian gradient). The Riemannian gradient ∇̃f of a smooth function f ∈
C∞(M) is a smooth vector field over M, satisfying

⟨∇̃pf, V ⟩p = V (f),∀p ∈ M, V ∈ TpM (27)

C SPD HYPERPLANES AS SUBMANIFOLDS OF SPD MANIFOLDS

Proposition C.1. SPD hyperplanes (as defined in Eq. (12)) under any geometrically complete Rie-
mannian metric g are submanifolds of SPD manifolds.

This claim can be proven by either definition (Tu, 2011, Def. 9.1) or the constant rank level set
theorem (Tu, 2011, Thm. 11.2). We focus on the latter.

Proof. Consider any P ∈ Sn
++ and A ∈ TPSn

++. Define the function f(S) = ⟨LogP S,A⟩P :

Sn
++ → R. For the SPD hyperplane H̃A,P , we have H̃A,P = f−1(0). Due to geodesically complete-

ness, LogP is globally defined, and f is therefore well-defined. We can rewrite f as a composition,
i.e., f = h ◦ LogP , where h(·) = ⟨·, A⟩P is a linear map.

Since LogP is a diffeomorphism, and h(·) is a linear map, the rank of f is globally constant. So
there exists a neighbourhood (e.g., the whole SPD manifold) of f−1(0), where the rank of f is
constant. According to the constant rank level set theorem (Tu, 2011, Thm. 11.2), we can obtain the
claim.

15



Under review as a conference paper at ICLR 2024

D PROOFS FOR THE LEMMAS, PROPOSITIONS, THEOREMS, AND
COROLLARIES STATED IN THE PAPER

D.1 PROOF OF LEM. 3.3

Proof. By Thm. 2.2, we have the following,

⟨LogP Q,A⟩P = ⟨ϕ∗,Pϕ−1
∗,ϕ(P )(ϕ(Q)− ϕ(P )), ϕ∗,PA⟩ (28)

= ⟨ϕ(Q)− ϕ(P )), ϕ∗,PA⟩ (29)

Therefore, the SPD hyperplane H̃Ak,Pk
corresponds to the Euclidean hyperplane Hϕ∗,Pk

(Ak),ϕ(Pk),
due to the isometry of ϕ. Furthermore, the distances to margin hyperplanes are equivalent to the
following,

inf
ϕ(Q)

∥ϕ(S))− ϕ(Q)∥F (30)

s.t.⟨ϕ(Q)− ϕ(Pk), ϕ∗,Pk
Ak⟩ = 0. (31)

The problem above is the familiar Euclidean distance from a point to a hyperplane. By simple
computation, one can obtain the results.

D.2 PROOF OF LEM. 3.4

Proof. For simplicity, we abbreviate ⊙ϕ and gϕ as ⊙ and g. By abuse of notation, we further denote
Q ⊙ P−1

⊙ as QP−1, where P−1
⊙ is the inversion of P under ⊙. According to Thm. 2.2, {Sn

++,⊙}
is an Abelian group, g is bi-invariant Riemannian metric. By Lin (2019, Lem. 6), any parallel
transportation can be expressed by a differential of left translation,

ΓP→Q = LQP−1∗,P ,∀P,Q ∈ Sn
++. (32)

D.3 PROOF OF LEM. 3.5

Proof. Due to the geodesic completeness of Sn
++, the existence interval of any geodesic is R. Par-

allel transportation along geodesic thus exists for all t ∈ R. Through Picard’s uniqueness in ODE
theories, one can obtain the results.

D.4 PROOF OF THM. 3.6

Proof.

Ak = ΓI→Pk
(Ãk) (33)

= ϕ−1
∗,ϕ(Pk)

◦ ϕ∗,I(Ak) (34)

One can obtain the results by putting Eq. (34) into Eq. (16).

D.5 PROOF OF PROP. 4.1

Proof. As shown by Chen et al. (2023a), both LEM and LCM are PEMs. As the pullback of LCM,
(θ)-LCM is therefore PEM. Besides, Thanwerdas & Pennec (2023) also indicates that (α, β)-LEM
is isometric to the standard LEM. As the pullback of (α, β)-LEM, (θ, α, β)-LEM is hence PEM.

D.6 PROOF OF PROP. 4.2

Proof. Let us first review a well-known fact of deformed metrics from Thanwerdas & Pennec
(2022). Let θ-g be the deformed metric on SPD manifolds pulled back from g by the power function
(·)θ and scaled by 1

θ2 . Then when θ tends to 0, for all P ∈ Sn
++ and all V ∈ TPSn

++, we have

(θ-g)P (V, V ) → gI(mlog∗,P (V ),mlog∗,P (V )). (35)

By Eq. (35), we can readily obtain the results.
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D.7 PROOF OF COR. 4.3

Proof. We only need to distinguish the pullback maps of (θ, α, β)-LEM and (θ)-LCM. Denoting
ϕ(S) = 1

|θ|S
θ, then we have:

ϕ(I) =
1

|θ|
I, (36)

ϕ∗,I(A) = sgn(θ)(A),∀A ∈ TISn
++. (37)

Next, we begin to derive the pullback maps one by one.

(θ, α, β)-LEM: We define the following map

ψLEM = ϕ ◦mlog ◦ f (38)

where f : Sn → Sn is the linear isometry between the standard Frobenius inner product and the
O(n)-invariant inner product ⟨·, ·⟩(α,β). Then ψLEM pulls back the standard Euclidean metric on Sn

to (θ, α, β)-LEM on Sn
++. Putting Eqs. (37) and (38) into Eq. (18), we can obtain the results.

(θ)-LCM: Denoting ψLCM = ϕ◦Chol ◦Dlog, then ψLCM pulls back the standard Euclidean metric
on the Euclidean space Ln of lower triangular matrices to the (θ)-LCM on Sn

++. Putting ψLCM and
Eq. (38) into Eq. (18), we can obtain the results3.

D.8 PROOF OF PROP. 5.1
To prove Prop. 5.1, we first present two lemmas about the general cases under PEMs.

One can observe that Eq. (18) and Eq. (19) are very similar to a Euclidean MLR. However, since
ϕ is normally non-linear and Pk is an SPD parameter, Eq. (18) cannot hastily be identified with
a Euclidean MLR. However, under some special circumstances, SPD MLR can be reduced to the
familiar Euclidean MLR. To show this result, we first present the Riemannian Stochastic Gradient
Descent (RSGD) under PEMs. General RSGD (Bonnabel, 2013) is formulated as

Wt+1 = ExpWt
(−γtΠWt

(∇W f |Wt
)) (39)

where ΠWt
denotes the projection mapping Euclidean gradient ∇W f |Wt

to Riemannian gradient,
and γt denotes learning rate. We have already obtained the formula for the Riemannian exponential
map as shown in Eq. (7). We proceed to formulate Π.

Lemma D.1. For a smooth function f : Sn
++ → R on Sn

++ endowed with any kind of PEMs, the
projection map ΠP : Sn → TPSn

++ at P ∈ Sn
++ is

ΠP (∇P f) = ϕ−1
∗,P (ϕ

−∗
∗,P )(∇P f), (40)

where ϕ−∗
∗,P is the adjoint operator of ϕ−1

∗,P , i.e.,⟨V1, ϕ−1
∗,PV2⟩P = ⟨ϕ−∗

∗,PV1, V2⟩P , for all Vi ∈
TPSn

++.

Proof. Given any smooth function f : Sn
++ → R, denote its Riemannian gradient at P as ∇̃P f ∈

TPSn
++. Then we have the following,

⟨∇̃P f, V ⟩P = V (f),∀V ∈ TPSn
++. (41)

By Eq. (4) and canonical chart, we have

⟨ϕ∗,P ∇̃P f, ϕ∗,PV ⟩ = ⟨∇P f, V ⟩,∀V ∈ TPSn
++

∼= Sn, (42)

where ∇P f is the Euclidean gradient. By the arbitrary of V , we have

ϕ∗∗,Pϕ∗,P ∇̃P f = ∇P f, (43)

where ϕ∗∗,P is the adjoint operator of the linear homomorphism ϕ∗,P w.r.t. ⟨, ⟩.

We can describe the special case we mentioned with the above lemma.

3The differential of Cholesky decomposition is presented in Lin (2019, Prop. 4)
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Lemma D.2. Supposing the differential map ϕ∗,I is the identity map, and Pk in Eq. (18) is optimized
by PEM-based RSGD, then Eq. (18) can be reduced to a Euclidean MLR in the codomain of ϕ
updated by Euclidean SGD.

Proof. Define a Euclidean MLR in the codomain of ϕ as

p(y = k | S) ∝ exp(⟨ϕ(S)− P̄k, Āk)⟩), with P̄k, Āk ∈ Sn. (44)

We call this classifier ϕ-EMLR.

Define the SPD MLR under the PEM induced by ϕ is

p(y = k | S) ∝ exp(⟨ϕ(S)− ϕ(Pk), Ãk⟩), with Pk ∈ Sn
++, Ãk ∈ Sn. (45)

Supposing the SPD MLR and ϕ-EMLR satisfying P̄k = ϕ(Pk). Other settings of the network are
all the same, indicating the Euclidean gradients satisfying

∂L

∂P̄k
=

∂L

∂ϕ(Pk)
. (46)

The updates of P̄k in the ϕ-EMLR is

P̄ ′
k = P̄k − γ

∂L

∂P̄k
. (47)

The updates of Pk in the SPD MLR is

P ′
k = ExpPk

(−γΠPk
(∇Pk

f)) (48)

= ϕ−1(ϕ(Pk)− γϕ−∗
∗,Pk

∂L

∂Pk
) (49)

Therefore ϕ(P ′
k) satisfies

ϕ(P ′
k) = ϕ(Pk)− γϕ−∗

∗,Pk

∂L

∂Pk
(50)

= ϕ(Pk)− γϕ−∗
∗,Pk

ϕ∗∗,Pk

∂L

∂ϕ(Pk)
(51)

= ϕ(Pk)− γ
∂L

∂ϕ(Pk)
(52)

= P̄ ′
k (53)

Eq. (51) comes from the Euclidean chain rule of differential. Let Y = ϕ(X), then we have

∂L

∂Y
: dY =

∂L

∂Y
: ϕ∗,X dX = ϕ∗∗,X

∂L

∂Y
: dX, (54)

where : means Frobenius inner product.

The equivalence of Āk and Ãk is obvious. By natural induction, the claim can be proven.

Now, We can directly prove Prop. 5.1 by Lem. D.2.
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