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Fig. 1. Overview of the whole GAN diffeomorphic registration architecture. The Generator takes as input the
concatenated source and target images, and outputs a stationary or time dependant velocity field. The velocity
field is then feed to the integration layer (which depends on the diffeomorphism parameterization) and outputs
the final transformation with which the warped image is calculated. Finally, the Discriminator is given the
concatenated warped and target images, and the Energy loss is calculated.

Model MSErel DSC % of |Jϕ−1 | < 0 % of |Jϕ−1 | > 10

QS 0.190± 0.013 0.575± 0.097 < 0.001 < 0.001
VM-II (Disp) 0.144± 0.010 0.583± 0.102 1.16± 0.13 0.04± 0.001
VM-II (SVF) 0.227± 0.009 0.555± 0.102 < 0.001 0.01± 0.003

SVF-GAN (proposed) 0.224± 0.015 0.576± 0.096 < 0.001 < 0.001
EPDiff-GAN 0.235± 0.017 0.557± 0.097 < 0.001 < 0.001

SVF-Ablation 0.272± 0.021 0.545± 0.101 < 0.001 < 0.001
EPDiff-Ablation 0.265± 0.021 0.545± 0.100 < 0.001 < 0.001

SVF-Unet 0.307± 0.011 0.521± 0.103 < 0.001 < 0.001
EPDiff-Unet 0.394± 0.018 0.498± 0.100 < 0.001 < 0.001

Table 1. Evaluation in NIREP of benchmark deeplearning methods, proposed methods and ablation tests.
All measures show the mean and standard deviation across the 15 registrations. From left to right, : Deep
learning model used for registration, relative mean squared error, DICE score, percentage of negative jacobian
determinants, percentage of jacobian determinants higher than 10. Deep learning methods, from top to bottom:
Quicksilver (QS), Voxelmorph II both displacement (DISP) and stationary velocity field parameterization
versions (SVF) , proposed SVF-GAN, proposed EPDiff-GAN, ablation test SVF without GAN, ablation test
EPDiff without GAN, SVF-GAN with Unet registration architecture and EPDiff-GAN with Unet registration
architecture.
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