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A APPENDIX

We organize our appendix as follows. We explain the details of using CafeNet for training and
searching in appendix A.l. In appendix A.2, we give details of our experiments w.r.t. different
datasets. We report the implementation details of our CafeNet with Algorithm 1 in appendix A.3.
Then, we introduce the corresponding relationship between names and references in appendix A.4.
And we explore the efficiency of CafeNet in training one-shot supernet ' A.5. We show the
performance gain of each part of CafeNet in appendix A.6. We examine the effect of FLOPs-sensitive
bins in appendix A.7. We explore more detailed experiments of ImageNet, CIFAR-10, and CelebA
dataset in appendix A.8 and A.9. Then we show the visualization of searched network width in
appendix A.11. In appendix A.12, we visualize the configuration of bins with EfficientNet-BO and
MobileNetV2. In addition, we investigate the effect of min-min optimization with MobileNetV2 and
ResNet50 in appendix A.13. We study the impact of the multi-stage search with evolving bins on
CIFAR-10 dataset in appendix A.14. We provide the estimation of the size of the search space in the
multi-stage search in appendix A.15. Finally, the effect of the smallest bin size 3 in FLOPs-sensitive
bins is shown in appendix A.16.

A.1 TRAINING AND SEARCHING WITH CAFENET

Training with min-min optimization. With the bin-based search space, we can train our CafeNet
in a stochastic setting as Eq.(1), which simply samples a network width ¢ first, and then optimizes
the corresponding sub-network. Nevertheless, in CafeNet, a width is specified more freely by several
sub-networks, and the performance of these sub-networks can be different to a great extent. According
to this, we propose to indicate the performance of width by examining its sub-network with the
best performance. Concretely, during the training of CafeNet, instead of randomly optimizing a
sub-network, we optimize the sub-network with the smallest training loss. For a network width ¢, we
denote its corresponding sub-network set as S, thus for the CafeNet A" with weights T, the training
target of min-min optimization can be written as,

W* = i E Lruin s*;Na 7DT 1

e CGU(C)[ train(Wsg; Ny €, D) an

s.t. sp = argmin Lypqin(ws; N, €, Dy;.), (12)
sSESe

where wy C W, denotes the weights of subnet s. To find the optimal sub-network s7, it needs to
traverse all sub-networks and results in additional computational cost. However, this can be efficiently
implemented by calculating the loss of all networks without backpropagation (i.e., no_grad mode in
PyTorch). And then, we only need to backward once using the target sub-network s;..

Searching with max-max selection. After the CafeNet A\ is trained, we can evaluate each network
width by examining its performance (e.g. classification accuracy) on the validation dataset D,,q;.
Similar to the training of CafeNet, for a network width ¢, we use the sub-network with the highest
performance to indicate its performance. Then the searching amounts to a max-max selection problem

¢* = arg max max Accuracy(w?, W*; N*, Dyar), s.t. FLOPs(c) < Fy,. (13)
ceC $€Se

Note that the inner max also needs to calculate the validation accuracy of all sub-networks. Never-

theless, since searching itself is much faster than the supernet training, the increased computational

cost is subtle and acceptable in real practice.

A.2 DETAILS OF EXPERIMENTAL SETTINGS

In this section, we present the implementation details of our CafeNet w.r.t. experiments on various
datasets. In general, for most networks except EfficientNet-BO, we use a SGD optimizer with
momentum 0.9. While for EfficientNet-BO, we use RMSprop optimizer with epsilon set to 0.001.
The parameters of 3 and « are initialized to 1 and 2, respectively, to determine the search space. For
evolutionary search, we set the population and iteration size to 40 and 50, respectively. Besides, 2k
network width are sampled for a random search. After searching, the optimized network width is
trained from scratch for evaluation.

ImageNet and CIFAR-10 dataset. we set weight decay to 10~ for ResNet50 (same setting is also
adopted for ResNet34 and ResNet18) and VGGNet while 5 x 10~ for MobileNetV2. The learning
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rate is decayed with cosine strategy from 0.1 to 10~° for MobileNetV2 and ResNet50 with 300
training epochs and a mini-batch size of 256. Besides, for ResNet50, we adopt the strategy of random
erasing with a probability of 0.4. For VGGNet, we train for 400 epochs with batch size 128, and the
learning rate is decayed by step strategy from 0.1 and divided by 10 at 150-th, 225-th, 300-th epoch.
For EfficientNet-B0, the learning rate is initialized to 0.13 and decayed by 0.96 for every 3 epochs.
We train EfficientNet-BO for 300 epochs, of which the first 5 are warm-up epochs, and the weight
decay is set to 1 x 1072,

CelebA dataset. We set the training epochs to 15 (10) for MobileNetV2 and ResNet18 with learning
rate annealed from 0.1 to 10~° by cosine strategy, and the batch size of these two networks are set to
64.

MS COCO dataset. We conduct object detection experiments using two popular frameworks Faster
R-CNN with Feature Pyramid Networks (FPN) (Lin et al., 2017a) and RetinaNet (Lin et al., 2017b)
on MS COCO dataset (Everingham et al., 2010). The trainval35k split is used for training and we
report the mean Average Precision (mAP) on minival split. We train all the models using SGD for 12
epochs from ImageNet pretrained weights, and the initial learning rate is set to 0.08 with batch size
256, which decays 0.1 at 8-th and 11-th epoch.

A.3 ALGORITHM OF CAFENET

The details about CafeNet are presented in Algorithm 1. In specific, we search network width on
CIFAR-10 dataset with 3 stages while others with 1 stage.

Algorithm 1 Locally free weight sharing for network width search

Input: The number of multi-stage M. The training epochs of supernet /. The smallest bin size 3
and the bin evloving speed «. Searching methods .A. Training dataset D,,.. Validation dataset
Dval-

1: while stage < M do

2:  initialize the supernet A/ and bins groups.

3:  while epochs < £ do

4 randomly assign the training and backwards path

5 updating the corresponding path of bin groups with dataset Dy,..
6:  end while

7. update 8 =0/«

8: end while
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: search the optimized network width within supernet A" by searching methods A (as illustrated in
section 3.3).

10: train the optimized network width from scratch for evaluation.

Output: the optimized network width with evaluation results

A.4 INDEX AND LITERATURE

In order to simplify the correspondence between names and references in all tables, we have listed
the names used and their corresponding papers as follows:

Table 7: The names used in tables and their corresponding papers.

Names papers Names papers Names papers
ResNet (He et al., 2016) AutoSlim (Yu & Huang, 2019) Rethinking (Liu et al., 2019b)
MetaPruning (Liu et al., 2019a) MIL (Dong et al., 2017) LEGR (Chin et al., 2019)
PF (Lietal., 2016) GBN (You et al., 2019) CNN-FCF (Lietal., 2019)
SFP (He et al., 2018a) LEGR (Chin et al., 2019) FPGM (He et al., 2019a)
TAS (Dong & Yang, 2019) GS (Ye et al., 2020) AutoPruner (Luo & Wu, 2018)
CGNet (Hua et al., 2019) MobileNetV2 (Sandler et al., 2018) NA (Chen et al., 2020)
MFP (He et al., 2019b) AMC (He et al., 2018b) DMCP (Guo et al., 2020)
MuftNet (Chen et al., 2019) DCP (Zhuang et al., 2018) FBS (Gaoetal., 2018)
VGGNet (Simonyan & Zisserman, 2014) GAL (Lin et al., 2019) Sliming (Liu et al., 2017)
PS (Wang et al., 2019) AOFP (Ding et al., 2019)
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A.5 THE EFFICIENCY OF CAFENET IN TRAINING ONE-SHOT SUPERNET N/

To investigate the searching efficiency of CafeNet, we examine the time cost of training 1 epoch with
different radius r. As shown in Table 8, the training time of CafeNet raised with an increase of r,
which is because r represents the preset allowed offset for free channels, thus increasing the times
of forwarding for each batch of information. However, since CafeNet involves multi-times forward
and once backward and the time cost of forwarding is much shorter than the backward, the overall
training efficiency will not be greatly affected. To balance the performance and search efficiency, we
set r = 1 for all experiments with CafeNet.

Table 8: The elficiency of CafeNet in training one-shot supernet V.

CIFAR-10 ImageNet
Local free | MobileNetV2 | VGGNet Local free | MobileNetV2 | ResNet50
r=0 51.3s 61.6s r=0 428.4s 748.1s
r=1 61.1s 72.4s r=1 520.6s 954.3s
r=2 95.2s 109.7s r=2 832.5s 1569.6s
r=3 203.6s 258.4s r=3 1872.3s 3584.9s

A.6 PERFORMANCE GAIN OF EACH PART IN CAFENET

To investigate the performance gain of each part in CafeNet, we conduct experiments to search for
0.5x FLOPs MobileNetV2 and 0.5 x FLOPs VGGNet on CIFAR-10 dataset and report their Top-1
accuracy. Since min-min optimization and max-max selection are always used simultaneously, for
clarity, we abbreviate them as min-min optimization. As shown in Table 9, with evolutionary search,
CafeNet can enjoy a performance gain of 0.91% (0.74%) accuracy on MobileNetV2 (VGGNet).
Besides, similar results can also be obtained through the greedy search, which exactly shows that our
CafeNet can boost to search for a decent network width.

Table 9: Performance of searched 0.5 x FLOPs MobileNetV2 and VGGNet on CIFAR-10 dataset
with different supernets and searching methods.

supernet searching models
FLOPs—_sensmve ] Locally free min-min multi-stage | greedy | evolutionary MobileNetV2 | VGGNet
bins weight sharing pattern optimization search search search
v 94.27% 93.49%
v v 94.51% 93.65%
v v v v 94.76% 93.89%
v 94.53% 93.62%
v v 94.71% 93.74%
v v v v 95.03% 93.95%
v v v v v 95.44% 94.36%

A.7 EFFECT OF FLOPS-SENSITIVE BINS

Our proposed FLOPs-sensitive bins aim to reduce the search space by allowing the FLOPs to distribute
more evenly over layers for the search unit. To explore the effect of FLOPs-sensitive bins as a search
unit compared with the uniform unit (uniform channel group), we search for network width under
these two search units on CIFAR-10 dataset with MobileNetV2 and VGGNet, as shown in Table
10. In detail, compared with the uniform unit, higher accuracy under various FLOPs budgets can be
achieved by leveraging FLOPs-sensitive bins.

Table 10: Performance comparison of two forming search unit methods, i.e., baseline uniform groups,
and FLOPs-sensitive bins.

VGGNet MobileNetV2
FLOPs | Uniform groups | FLOPs-sensitive bins || FLOPs | Uniform groups | FLOPs-sensitive bins
189M 94.12% 94.36 % 188M 95.37% 95.56 %
154M 93.87% 94.23 % 144M 95.12% 95.44 %
115M 93.64% 94.01 % 44M 94.99% 95.31%
76M 93.25% 93.67 % 28M 93.62% 94.11%
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A.8 MORE DETAILED RESULTS OF IMAGENET DATASET FOR TABLE 1

To explore the effectiveness of CafeNet, we also implement our algorithm on ResNet34 and ResNet18
with the same training strategy as ResNet50. The original ResNet34 and ResNet18 has 21.8M, 11.7M
and 3.6G, 1.8G FLOPs with 74.9%, 71.5% Top-1 accuracy, respectively. The detailed results are
reported in Table 11, our 0.75x FLOPs ResNet34 and ResNet18 can achieve close performance to
the origin model. Besides, under the tiny FLOPs budget (i.e., 10% FLOPs), CafeNet can outperform

the unform baseline by a large margin.

Table 11: Performance comparison of ResNet50, ResNet34, ResNet18 and MobileNetV2 on Ima-

geNet. References of baseline methods are summarized in appendix A.4.

ResNet50 ResNet34
Methods FLOPs Param| Top-1 Top-5 Methods FLOPs Param| Top-1 Top-5
AutoSlim 3.0G  23.IM| 76.0% - Rethinking 2.79G - 72.9% -
MetaPruning 3.0G - 76.2% - MIL 2.75G - 73.0% -
LEGR 3.0G - 76.2% - PF 2.79G - 72.1% -
3G Uniform 3.0G 19.IM| 759%  93.0% Uniform 2.7G - 722%  90.9%
Random 3.0G - 752%  92.5% 27G Random 2.7G - 71.6%  90.8%
CafeNet-R 3.0G  22.6M| 771% 94.3% ’ CafeNet-R | 2.7G 18.6M| 74.4%  92.0%
CafeNet-E 3.0G  23.8M| 774% 94.5% CafeNet-E 279G 204M| 74.8% 92.3%
GBN 24G  31.8M| 762% 92.8% CNN-FCF 217G I5S9M| 73.6%  91.5%
SFP 2.4G - 74.6%  92.1% CafeNet-R | 2.5G 193M| 74.0% 91.9%
LEGR 2.4G - 75.7%  92.7% CafeNet-E 25G  202M| 74.5% 92.1%
FPGM 2.4G - 75.6%  92.6% FPGM 2.2G - 72.5% -
TAS 2.3G - 76.2%  93.1% SFP 2.2G - 71.8%  90.3%
MetaPruning | 2.0G - 75.4% - CNN-FCF 2.2G 12.6M| 72.8%  91.0%
e AutoSlim 20G  20.6M| 75.6% - GS 2.1G - 72.9% -
Uniform 2.0G 133M| 751%  92.7% 1.8G Uniform 1.8G - 71.6%  90.3%
Random 2.0G - 74.6%  92.2% ’ Random 1.8G - 71.1%  89.9%
CafeNet-R 2.0G 19.IM| 76.5%  93.1% CafeNet-R 1.8G 172M| 731%  91.4%
CafeNet-E 2.0G 18.4M| 76.9% 93.3% CafeNet-E 1.8G 16.9M| 73.4% 91.5%
AutoPruner 1.4G - 73.1% 91.3% CGNet 1.8G - 71.3% -
MetaPruning 1.0G - 73.4% - CNN-FCF 1.7G 9.6M | 71.3% 90.2%
AutoSlim 1.0G - 74.0% - CNN-FCF 12G 71IM | 69.7%  89.3%
G Uniform 1.0G 6.6M | 73.1% 91.8% CGNet 1.2G - 70.2% -
Random 1.0G - 722%  91.4% Uniform 0.9G - 69.5%  89.4%
CafeNet-R 1.0G 11.2M| 749% 92.3% Random 0.9G - 69.1%  88.9%
CafeNet-E 1.0G 12M 75.3% 92.6% 1G- CafeNet-R | 0.9G 10.1IM| 71.8%  89.5%
AutoSlim 570M - 72.2% - CafeNet-E 09G 98M | 721% 89.8%
Uniform 570M  4.0M | 71.6%  90.6% Uniform 0.36G - 59.9%  82.3%
570M | Random 570M - 69.4%  90.3% Random 0.36G - 56.2%  80.6%
CafeNet-R 570M  11.3M| 72.7%  90.9% CafeNet-R | 036G 3.5M | 63.3% 85.2%
CafeNet-E 570M  120M| 733% 91.2% CafeNet-E 036G 3.6M | 64.0% 85.4%
MobileNetV2 ResNet18
Methods FLOPs Param| Top-1 Top-5 Methods FLOPs Param| Top-1 Top-5
MetaPruning | 217M - 71.2% - TAS 1.2G - 69.2%  89.2%
LEGR 210M - 71.4% - MIL 1.2G - 66.3%  86.9%
AutoSlim 20TM 4.1M | 73.0% - 1.2G Uniform 1.2G  85M | 68.8% 88.5%
200M | Uniform 217 27M | 709%  89.4% ’ Random 1.2G - 68.4%  88.1%
Random 217 - 70.3%  89.1% CafeNet-R 1.2G 11.5M| 70.8%  89.8%
CafeNet-R 217 3.0M | 733% 91.1% CafeNet-E 1.2G 11.3M| 71.2%  89.9%
CafeNet-E 217 33M | 734% 91.2% NA 1.17G - 69.4%  88.71%
LEGR 150M - 70.8% - SFP 1.05G - 67.1%  87.8%
TAS 150M - 70.9% - MFP 1.05G - 68.3%  88.3%
AMC 150M - 70.8% - DMCP 1.04G - 69.2% -
LEGR 150M - 69.4% - FPGM 1.04G - 68.4%  88.5%
150M | MuffNet 149M - 63.7% - DCP 0.96G - 67.4%  87.6%
Uniform 150M  2.0M | 693% 83.9% 1G CGNet 0.94G - 68.8% -
Random 150M - 68.8%  88.7% MFP 0.9G - 67.1%  87.5%
CafeNet-R 150M  27M | 71.9%  90.0% FBS 0.9G - 68.2%  88.2%
CafeNet-E 150M  3.0M | 724% 90.4% Uniform 09G 6.0M | 67.1% 87.5%
MetaPruning 105M - 65.0% - Random 0.9G - 66.7%  87.1%
Uniform 105M  15M | 65.1%  89.6% CafeNet-R | 09G 97M | 69.6% 83.8%
Random 105M - 63.9%  89.2% CafeNet-E 0.9G 102M| 69.8%  89.0%
CafeNet-R 106M 22M | 68.2% 88.2% Uniform 450M  29M | 61.6% 83.6%
CafeNet-E 106M  2.IM | 68.7%  88.5% Random 450M - 59.8%  82.3%
100M | MuffNet 50M - 50.3% - CafeNet-R | 450M 5.0M | 65.2% 86.0%
MetaPruning 43M - 58.3% - 0.45G- CafeNet-E 450M  5.8M | 65.6% 86.2%
Uniform S50M  09M | 59.7% 82.0% ’ Uniform 180M  L.IM | 53.7%  71.5%
Random 50M - 574%  812% Random 180M - 51.6%  76.9%
CafeNet-R 50M 1M | 64.3% 85.2% CafeNet-R 180M  19M | 57.8% 81.7%
CafeNet-E 50M 1.6M | 64.9% 85.4% CafeNet-E 180M  2.0M | 584% 81.9%
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A.9 MORE DETAILED RESULTS OF CIFAR-10 AND CELEBA DATASET FOR TABLE 4 AND 5

To examine the hyperparameters setting with CIFAR-10 and CelebA dataset, we also explore the
searching results from two vanilla baselines named Random and Uniform, as described in Section 4.
The detailed results on CIFAR-10 dataset and CelebA dataset are reported in Table 12 and Table 13,
respectively. Besides, for CelebA dataset, the layer widths of fully-connection(FC) layers are not
implemented to be searched and keep the same as (Sener & Koltun, 2018), since they only takes a
tiny amount of FLOPs to the network.

Table 12: Performance comparison of MobileNetV2 and VGGNet on CIFAR-10 dataset.

MobileNetV2 VGGNet

Groups Methods FLOPs  Parameters Accuracy Groups Methods FLOPs  Parameters Accuracy
DCP 218M 1.7M 94.75% GAL 190M - 93.80%

Uniform 188M 1.4M 94.57% DCP 199M 10.4M 94.16%

200M Random 188M - 94.20% Sliming 199M 10.4M 93.80%
CafeNet-R 188M 1.4M 95.44% Uniform 189M 9.5M 93.37%
CafeNet-E 188M 1.5M 95.56 % 200M Random 189M - 93.06%

MuffNet 175M - 94.71% CafeNet-R 189M 8.3M 94.27%

Uniform 144M 1.IM 94.28% CafeNet-E 189M 8.0M 94.36 %

144M Random 144M - 93.76% PS 156M - 93.63%
CafeNet-R 144M 1.2M 95.28% Uniform 154M 7. M 93.11%
CafeNet-E 144M 1.1IM 95.44% Random 154M - 92.86%

AutoSlim 88M 1.5SM 93.20% CafeNet-R 154M 3.4M 94.09 %

AutoSlim 59M 0.7M 93.00% CafeNet-E 154M 3.1M 94.23%

44M MuffNet 45M - 93.12% AOFP 124M - 93.84%
Uniform 44M 0.3M 92.72% 100M+ | Uniform 115M 5.9M 92.95%

Random 44M - 92.24% Random 115M - 92.77%
CafeNet-R 44M 0.4M 95.16% CafeNet-R 115M 2.4M 93.87%
CafeNet-E 44M 0.4M 95.31% CafeNet-E 115M 2.1M 94.01%

AutoSIim 28M 0.3M 92.00% CGNets 92M - 92.88%

Uniform 28M 0.3M 91.87% Uniform 76M 3.9M 92.32%

28M Random 28M - 91.36% 76M Random 76M - 91.67%
CafeNet-R 28M 0.2M 93.87% CafeNet-R 76M 22M 93.36 %
CafeNet-E 28M 0.2M 94.11% CafeNet-E 76M 1.4M 93.67 %

Table 13: Performance comparison of MobileNetV2 and ResNet18 on CelebA dataset.

MobileNetV2 ResNet18
Methods FLOPs  Parameters Accuracy Methods FLOPs  Parameters | Accuracy
Uniform 162M - 91.97% Uniform 1G - 92.03%
Random 162M - 91.76% Random 1G - 91.84%
CafeNet-R 162M 1.7M 92.12% CafeNet-R 1G 1.7M 92.17%
CafeNet-E 162M 1.8M 92.19% CafeNet-E 1G 1.8M 92.25%
Uniform 106M - 91.92% Uniform 619M - 91.93%
Random 106M - 91.63% Random 619M - 91.67%
CafeNet-R 106M 1.2M 92.09% CafeNet-R | 619M 0.4M 92.13%
CafeNet-E 106M 1.2M 92.16% CafeNet-E | 619M 0.5M 92.18%
Uniform 51M - 91.73% Uniform 316M - 91.79%
Random 5IM - 91.52% Random 316M - 91.62%
CafeNet-R | S5IM 0.6M 92.03% CafeNet-R | 316M 3.1M 92.07%
CafeNet-E | 5IM 0.5M 92.13% CafeNet-E 316M 3.4M 92.16%
Uniform 21IM - 91.63% Uniform 130M - 91.66%
Random 2IM - 91.42% Random 130M - 91.51%
CafeNet-R | 2IM 0.2M 91.71% CafeNet-R 130M 1.2M 91.83%
CafeNet-E | 2IM 0.2M 91.85% CafeNet-E 130M 1.0M 91.92%
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Classification results for all 40 labels on CelebA dataset. As shown in Fig.3, our searched network
width has better performance in comparing to the uniform baseline, especially for small FLOPs
budget and labels that are difficult to be classified.
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(a) Performance of 50% FLOPs MobileNetV2 w.r.t.40 labels on CelebA dataset.
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(b) Performance of 10% FLOPs MobileNetV2 w.r.t.40 labels on CelebA dataset.

Figure 3: Performance of 50% MobileNetV2 w.r.t.40 labels on CelebA dataset. The blue bar refers to
the performance of network width searched by CafeNet, while the red bar indicates the performance
gap in comparison to the uniform baseline.
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A.10 MORE EXPERIMENTAL RESULTS WITH ALIGNED TRAINING RECIPES OF AUTOSLIM YU
& HUANG (2019)

To examine the performance of our searched network width, we retrain the searched width of
MobileNetV2 and ResNet50 with aligned training recipes of AutoSlim Yu & Huang (2019). In detail,
we report the retraining results of width with similar FLOPs to AutoSlim in Table 14.

Table 14: Performance of MobileNetV2 and ResNet50 with aligned training recipes of AutoSlim Yu
& Huang (2019).

ResNet50
Methods FLOPs Parameters | Top-1 | Top-5
AutoSlim | 3.0G 23.1M 76.0% -
CafeNet-R | 3.0G 22.6M 76.2% | 93.1%
CafeNet-E | 3.0G 23.8M 76.4% | 93.3%
AutoSlim | 1G - 74.0% -
CafeNet-R | 1G 11.2M 74.2% | 91.9%
CafeNet-E | 1G 12M 74.5% | 92.1%
AutoSlim | 570M - 72.2% -
CafeNet-R | 570M 11.3M 72.1% | 90.7%
CafeNet-E | 570M 12M 72.6% | 91.0%
MobileNetV?2
AutoSlim | 207TM 4.1M 73.0% -
CafeNet-R | 217M 3.0M 73.1% | 90.9%
CafeNet-E | 217M 3.3M 73.2% | 91.1%
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As Table 14 shows, with similar FLOPs and the same training recipes, CafeNet can search the width
with higher accuracy, which proves the effectiveness of our method.
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A.11 VISUALIZATION OF SEARCHED NETWORK WIDTH

For intuitively understanding, we visualize our searched networks with ImageNet dataset, as shown
in Fig.4. For clarity, we show the retained ratio of network width from the original model. Note
that, EfficientNet-B0, ResNet50, and MobileNetV2 have SE block, skipping, or depthwise layers;
we merged these layers, which are required to have the same network width for visual clarity. For
EfficientNet-BO, we also did not show the channel of the SE block because these layers are fixed
during the network width search.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(a) Network width of searched EfficientNet-BO on ImageNet dataset.
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(c) Network width of searched ResNet50 on ImageNet dataset.

Figure 4: Visualization of Pruned models.

For ImageNet dataset, from Fig.4, we can see that layer width in skipping layers are more inclined
to be preserved, which means skipping layers are very useful for classification. Besides, with a
large FLOPs budget, width in the 1x 1 convolution layers shrink more than in 3x 3 convolution
layers, which means 1x 1 convolution may contribute less to classification performance. However,
we observe an opposite phenomenon for width pruned from small FLOPs budgets, which implies
the network is forced to use more 1x 1 convolution layers to extract information from feature maps
instead of 3x 3 convolution layers.
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A.12 VISUALIZATION OF BINS

For intuitively understanding of FLOPs-sensitive bins, as shown in Fig.5, we visualize the number
of channels contained in each bin (bin size) and the number of bins in each layer (bin number)
with MobileNetV2 and VGGNet. Similar to the visualization of the searched network width, we
merged the SE blocks, skipping, and depthwise layers for clarity. To make the bins from all layers
have a similar contribution to FLOPs, the number of bins varies significantly between layers. For
EfficientNet-BO0, the size of bin changes according to the different selected blocks (i.e., blocks with
3 %3 or 5x5 convolution kernel size), i.e., the convolution of 3x3 or 5x5, and the size of bin becomes
larger at the middle and the end of the network. For MobileNetV2, since only 3 x3 convolution is
involved, the bin size changes more regularly, and the number of bins gradually increases from the
front to the end of the network.
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Figure 5: Visualization of bin size and bin number of CafeNet.

A.13 EFFECT OF MIN-MIN OPTIMIZATION IN EQ.(11)~(13)

To train the supernet, we investigate random optimization and min-min optimization with 50%
FLOPs MobileNetV2 and ResNet50 on ImageNet dataset, for instance. In detail, based on the
trained supernet, we use the evolution search to obtain the optimized network width and record 1000
network width for both random optimization and min-min optimization, and report the results by
a statistical distribution histogram, as shown in Fig.6. During sampling, the average performance
of network width with our min-min optimization achieved 62.4% (52.7%) Top-1 accuracy with
ResNet50 (MobileNetV2), which is 1.4% (1.3%) better than results from random optimization. In
addition, width with the best performance is trained from scratch for evolution, as shown in Table 15.

Table 15: Performance comparison of weights updating methods.

0.5xResNet50 0.5xMobileNetV2
Method | Sampling | CafeNet || Method | Sampling | CafeNet
Random 67.14% 76.34% Random 56.22% 71.97%
min-min | 68.56% | 76.92% || min-min | 58.37% | 72.43%

In Table 15, we record the accuracy of Top-1 performance network width in supernet as Sampling,
and than we training from scratch the width to report its Top-1 accuracy as CafeNet.
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Figure 6: Histogram of Top-1 accuracy of network width trained from min-min optimization and
random optimization by evolutionary w.r.t. MobileNetV2 and ResNet50.

A.14 EFFECT OF MULTI-STAGE SEARCH WITH EVOLVING BINS

To examine the effect of multi-stage search with evolving bins, we report the Top-1 accuracy of
MobileNetV2 on CIFAR-10 dataset with different training stages and the bin evolving speed « in
Section 3.4, the results are summarized in Table 16. In detail, for CIFAR-10 dataset, our algorithm
achieves superior performance with o set to 2 and searching in 3 stages, which indicates bin evolving
strategy can lead to better results comparing with searching in one stage. However, when « is
increased to 4, the performance of the searching results decreases a bit, which may be due to the
larger search space that limits the ability of evolutionary search.

Table 16: Performance of 50% FLOPs MobileNetV2 and VGGNet on CIFAR-10 dataset with
different training stages and bin evolving speed «.

Number of training stages | Bin evolving speed @ | VGGNet | MobileNetV?2

1 - 93.95% 95.03%
2 1 94.22% 95.31%
2 2 94.29% 95.41%
2 4 94.18% 95.29%
3 1 94.29% 95.36%
3 2 94.36% 95.44%
3 4 94.21% 95.31%

A.15 ESTIMATION OF THE SIZE OF SEARCH SPACE IN MULTI-STAGE SEARCH

Note that by leveraging the multi-stage searching strategy, we can further reduce the search space
by following the searching "from coarse-grained to fine-grained" with evolving bins "from large
to small". In this way, we directly investigate how the search space is reduced by the multi-stage
searching strategy. We compare the search space of supernet under different training stages, bin size
B, and bin evolving speed « in Table 17. To fairly compare the results with different training stages,
we set the size of the bin unit to be the same in Table 17. And the search space is defined as the
product of the number of bins in all layers.

s L j
Channel]
Bipoce = 2 =5 (14)
j=1i=1 i
Where C' hannelf represents the total channels at layer 7 in stage j, and bZ indicates the bin size of

layer 7 in stage j. We examine the search space of 0.5x FLOPs MobileNetV2 on ImageNet dataset,
as shown in Table 17.
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Table 17: Search space of 0.5x FLOPs MobileNetV2 on ImageNet dataset.

0.5x MobileNetV2
Stages | Binsize 5 | Evolve speed o | Search space | Percent
1.5x 10?7 1
2.0x 1019 1.3x 1078
4.8x 1010 3.0x 10717
6.2x 1019 3.9x 10717
7.3x 103 4.6x10~2*

S WO~
L SR ST
NSRS IR (SR

In detail, our search space reduced by more than 1/(1.3 x 10~®) times from the original size (with
one stage) by searching more than or equal to 2 stages. As a result, our proposed multi-stages search
method can effectively reduce the search space.

A.16 EFFECT OF SMALLEST BIN SIZE 3 IN FLOPS-SENSITIVE BINS

As formulated in Eq.(9), the total number of bins within each layer relies on the smallest bin size
[. To examine the effect of § w.r.t. bin numbers and its corresponding performance, we perform
experiments with MobileNetV2 on ImageNet dataset under 50% FLOPs budget, as shown in Table
18. In detail, the performance of searched network width first increases when 3 goes large but a little
decreased after /3 surpasses 0.5, which may result from that a very small 3 induces a too huge search
space thus is harmful to searching algorithms to find the optimized network width.

Table 18: Performance of ResNet50 and MobileNetV2 on ImageNet dataset w.r.t. different smallest
bin size 5 for FLOPs-sensitive bins.

MobileNetV?2 ResNet50
Smallest bin size 3 | Top-1 Top-5 Smallest bin size 3 | Top-1 Top-5
4 72.22% | 90.22% 4 76.43% | 93.01%
2 72.32% | 90.25% 2 76.73% | 93.17%
1 72.40% | 90.38% 1 76.91% | 93.33%
0.5 72.34% | 90.29% 0.5 76.82% | 93.24%
0.25 72.28% | 90.31% 0.25 76.67% | 93.14%
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