
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Daron Acemoglu. Introduction to modern economic growth. Princeton university press, 2008. 18

Yves Achdou, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll. Income and
wealth distribution in macroeconomics: A continuous-time approach. The review of economic
studies, 89(1):45–86, 2022. 19

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation
with policy gradient methods in markov decision processes. In Conference on Learning Theory,
pp. 64–66. PMLR, 2020. 6

S Rao Aiyagari. Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal of
Economics, 109(3):659–684, 1994. 19

Kenneth Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy. Econo-
metrica: Journal of the Econometric Society, pp. 265–290, 1954a. 2, 20, 21

Kenneth J Arrow. An extension of the basic theorems of classical welfare economics. In Proceedings
of the second Berkeley symposium on mathematical statistics and probability, volume 2, pp.
507–533. University of California Press, 1951. 21

Kenneth J Arrow. Le role des valeurs boursieres pour la repartition la meilleure des risques, econome-
trie, 41-47, english translation as the role of securities in the optimal allocation of risk-bearing.
Review of Economic Studies, 31:91–96, 1964. 21, 22

Kenneth J. Arrow and Gerard Debreu. Existence of an Equilibrium for a Competitive Economy.
Econometrica, 22(3):265–290, 1954b. ISSN 0012-9682. doi: 10.2307/1907353. URL https:
//www.jstor.org/stable/1907353. Publisher: [Wiley, Econometric Society]. 1

Alp E Atakan. Stochastic convexity in dynamic programming. Economic Theory, 22:447–455, 2003a.
33

Alp E. Atakan. Stochastic convexity in dynamic programming. Economic Theory, 22(2):447–455,
2003b. ISSN 09382259, 14320479. URL http://www.jstor.org/stable/25055693.
17

Adrien Auclert, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub. Using the sequence-space
jacobian to solve and estimate heterogeneous-agent models. Econometrica, 89(5):2375–2408,
2021. 18, 19

Marlon Azinovic, Luca Gaegauf, and Simon Scheidegger. Deep equilibrium nets. International
Economic Review, 63(4):1471–1525, 2022. 9, 34

Xiaohui Bei, Jugal Garg, and Martin Hoefer. Tatonnement for linear and gross substitutes markets.
CoRR abs/1507.04925, 2015. 19

Truman Bewley. A difficulty with the optimum quantity of money. Econometrica: Journal of the
Econometric Society, pp. 1485–1504, 1983. 19

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. arXiv
preprint arXiv:1906.01786, 2019. 3, 30

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of political
economy, 81(3):637–654, 1973. 22

Olivier Jean Blanchard and Charles M Kahn. The solution of linear difference models under rational
expectations. Econometrica: Journal of the Econometric Society, pp. 1305–1311, 1980. 20

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. arXiv
preprint arXiv:2105.15183, 2021. 37

10

https://www.jstor.org/stable/1907353
https://www.jstor.org/stable/1907353
http://www.jstor.org/stable/25055693


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax. 37

Simina Brânzei, Nikhil Devanur, and Yuval Rabani. Proportional dynamics in exchange economies.
In Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 180–201, 2021.
19

David Cass. Competitive equilibrium with incomplete financial markets. University of Pennsylvania,
Center for Analytic Research in Economics and . . . , 1984. 18

David Cass. On the" number" of equilibrium allocations with incomplete financial markets. University
of Pennsylvania, Center for Analytic Research in Economics and . . . , 1985. 18

Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash equilibrium. In 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 261–272. IEEE,
2006. 19

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player nash
equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009. 3

David Childers, Jesús Fernández-Villaverde, Jesse Perla, Christopher Rackauckas, and Peifan Wu.
Differentiable state-space models and hamiltonian monte carlo estimation. Technical report,
National Bureau of Economic Research, 2022. 20

Lawrence J Christiano, Martin S Eichenbaum, and Mathias Trabandt. On dsge models. Journal of
Economic Perspectives, 32(3):113–140, 2018. 18

Richard Clarida, Jordi Gali, and Mark Gertler. Monetary policy rules and macroeconomic stability:
evidence and some theory. The Quarterly journal of economics, 115(1):147–180, 2000. 18

James Cloyne, Clodomiro Ferreira, and Paolo Surico. Monetary policy when households have debt:
new evidence on the transmission mechanism. The Review of Economic Studies, 87(1):102–129,
2020. 19

Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the excess
demand function. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pp. 74–83, 2005. 19

Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. Leontief economies encode
nonzero sum two-player games. In SODA, volume 6, pp. 659–667, 2006. 19

John C Cox and Stephen A Ross. The valuation of options for alternative stochastic processes.
Journal of financial economics, 3(1-2):145–166, 1976. 18

John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A simplified approach. Journal
of financial Economics, 7(3):229–263, 1979. 18

John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. An intertemporal general equilibrium
model of asset prices. Econometrica: Journal of the Econometric Society, pp. 363–384, 1985. 18

Michael Curry, Alexander Trott, Soham Phade, Yu Bai, and Stephan Zheng. Learning solutions in
large economic networks using deep multi-agent reinforcement learning. 20

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. 3, 19

Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
for competitive reinforcement learning. Advances in neural information processing systems, 33:
5527–5540, 2020. 2, 5, 30

Constantinos Daskalakis, Dylan J. Foster, and Noah Golowich. Independent Policy Gradient Methods
for Competitive Reinforcement Learning, January 2021. URL http://arxiv.org/abs/
2101.04233. arXiv:2101.04233 [cs]. 24

11

http://github.com/google/jax
http://arxiv.org/abs/2101.04233
http://arxiv.org/abs/2101.04233


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Damek Davis, Dmitriy Drusvyatskiy, Kellie J MacPhee, and Courtney Paquette. Subgradient methods
for sharp weakly convex functions. Journal of Optimization Theory and Applications, 179:962–982,
2018. 30

Gerard Debreu. The coefficient of resource utilization. Econometrica, 19(3):273–292, 1951. ISSN
00129682, 14680262. URL http://www.jstor.org/stable/1906814. 21

Gerard Debreu et al. Representation of a preference ordering by a numerical function. Decision
processes, 3:159–165, 1954. 23

Xiaotie Deng and Ye Du. The computation of approximate competitive equilibrium is ppad-hard.
Information Processing Letters, 108(6):369–373, 2008. 19

N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market equilibrium via a primal-
dual-type algorithm. In The 43rd Annual IEEE Symposium on Foundations of Computer Science,
2002. Proceedings., pp. 389–395, 2002. doi: 10.1109/SFCS.2002.1181963. 19

Peter Diamond. Income taxation with fixed hours of work. Journal of Public Economics, 13(1):
101–110, 1980. 18

Peter A. Diamond. The role of a stock market in a general equilibrium model with technological
uncertainty. The American Economic Review, 57(4):759–776, 1967. ISSN 00028282. URL
http://www.jstor.org/stable/1815367. 18, 22

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016. 37

Jacques H Dreze. Investment under private ownership: optimality, equilibrium and stability. In Allo-
cation under Uncertainty: Equilibrium and Optimality: Proceedings from a Workshop sponsored
by the International Economic Association, pp. 129–166. Springer, 1974. 22

Darrell Duffie. Stochastic equilibria with incomplete financial markets. Journal of Economic Theory,
41(2):405–416, 1987. 18

Darrell Duffie and Wayne Shafer. Equilibrium in incomplete markets: I: A basic model of generic
existence. Journal of Mathematical Economics, 14(3):285–300, 1985. 18

Darrell Duffie and Wayne Shafer. Equilibrium in incomplete markets: Ii: Generic existence in
stochastic economies. Journal of Mathematical Economics, 15(3):199–216, 1986. 18

James Durbin and Siem Jan Koopman. Time series analysis by state space methods, volume 38. OUP
Oxford, 2012. 20

Maria Eskelinen. Monetary policy, agent heterogeneity and inequality: Insights from a three-agent
new keynesian model. 2021. 19

Ky Fan. Fixed-point and minimax theorems in locally convex topological linear spaces. Proceedings
of the National Academy of Sciences of the United States of America, 38(2):121–126, 1952. ISSN
0027-8424. 24, 25

J. Fernández-Villaverde, J.F. Rubio-Ramírez, and F. Schorfheide. Chapter 9 - solution and estimation
methods for dsge models. volume 2 of Handbook of Macroeconomics, pp. 527–724. Elsevier, 2016.
doi: https://doi.org/10.1016/bs.hesmac.2016.03.006. URL https://www.sciencedirect.
com/science/article/pii/S1574004816000070. 18, 19, 20

Jesús Fernández-Villaverde. Computational Methods for Macroeconomics. University of Pennsylva-
nia, 2023. URL https://www.sas.upenn.edu/~jesusfv/teaching.html. Lecture
notes for one-year course on computational methods for economists. 1, 9, 23

Anthony V Fiacco and Jerzy Kyparisis. Convexity and concavity properties of the optimal value
function in parametric nonlinear programming. Journal of optimization theory and applications,
48(1):95–126, 1986. 25

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima
university, series ai (mathematics), 28(1):89–93, 1964. 1, 2

12

http://www.jstor.org/stable/1906814
http://www.jstor.org/stable/1815367
https://www.sciencedirect.com/science/article/pii/S1574004816000070
https://www.sciencedirect.com/science/article/pii/S1574004816000070
https://www.sas.upenn.edu/~jesusfv/teaching.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sjur Flam and Andrzej Ruszczynski. Noncooperative convex games: Computing equilibrium by
partial regularization. Working papers, International Institute for Applied Systems Analysis, 1994.
URL https://EconPapers.repec.org/RePEc:wop:iasawp:wp94042. 3

Yuan Gao and Christian Kroer. First-order methods for large-scale market equilibrium com-
putation. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f75526659f31040afeb61cb7133e4e6d-Abstract.html. 19

Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilibrium. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing, pp. 511–518, 2004. 19

John Geanakoplos. An introduction to general equilibrium with incomplete asset markets. Journal of
mathematical economics, 19(1-2):1–38, 1990. 8, 18, 21, 22

John D Geanakoplos and Herakles M Polemarchakis. Walrasian indeterminacy and keynesian
macroeconomics. The Review of Economic Studies, 53(5):755–779, 1986. 18

Denizalp Goktas and Amy Greenwald. Exploitability minimization in games and beyond. In Advances
in Neural Information Processing Systems, 2022. 4

Denizalp Goktas, David C Parkes, Ian Gemp, Luke Marris, Georgios Piliouras, Romuald Elie,
Guy Lever, and Andrea Tacchetti. Generative adversarial equilibrium solvers. arXiv preprint
arXiv:2302.06607, 2023a. 4

Denizalp Goktas, Jiayi Zhao, and Amy Greenwald. Tâtonnement in homothetic Fisher markets. arXiv
preprint arXiv:2306.04890, 2023b. 19, 20

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.
cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. 9

Bruce C Greenwald and Joseph E Stiglitz. Externalities in economies with imperfect information and
incomplete markets. The quarterly journal of economics, 101(2):229–264, 1986. 18

Jiequn Han, Yucheng Yang, et al. Deepham: A global solution method for heterogeneous agent
models with aggregate shocks. arXiv preprint arXiv:2112.14377, 2021. 19, 20

Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585:357–362, 2020. doi: 10.1038/s41586-020-2649-2. 37

Oliver D Hart. On the optimality of equilibrium when the market structure is incomplete. Journal of
economic theory, 11(3):418–443, 1975. 22

Tom Hennigan, Trevor Cai, Tamara Norman, Lena Martens, and Igor Babuschkin. Haiku: Sonnet for
JAX, 2020. URL http://github.com/deepmind/dm-haiku. 37

Kevin XD Huang and Jan Werner. Asset price bubbles in arrow-debreu and sequential equilibrium.
Economic Theory, 15:253–278, 2000. 1, 22

Gur Huberman. A simple approach to arbitrage pricing theory. Journal of Economic Theory, 28(1):
183–191, 1982. 18

Mark Huggett. The risk-free rate in heterogeneous-agent incomplete-insurance economies. Journal
of economic Dynamics and Control, 17(5-6):953–969, 1993. 19

13

https://EconPapers.repec.org/RePEc:wop:iasawp:wp94042
https://proceedings.neurips.cc/paper/2020/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f75526659f31040afeb61cb7133e4e6d-Abstract.html
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://github.com/deepmind/dm-haiku


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science and Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55. 37

Kamal Jain, Vijay V Vazirani, and Yinyu Ye. Market equilibria for homothetic, quasi-concave utilities
and economies of scale in production. In SODA, volume 5, pp. 63–71, 2005. 19, 20

Kenneth L Judd. Projection methods for solving aggregate growth models. Journal
of Economic Theory, 58(2):410–452, December 1992. ISSN 0022-0531. doi: 10.
1016/0022-0531(92)90061-L. URL https://www.sciencedirect.com/science/
article/pii/002205319290061L. 33

Jinill Kim and Sunghyun Henry Kim. Spurious welfare reversals in international business cycle
models. journal of International Economics, 60(2):471–500, 2003. 19

Robert G King, Charles I Plosser, and Sergio T Rebelo. Production, growth and business cycles:
Technical appendix. Computational Economics, 20:87–116, 2002. 20

Finn E Kydland and Edward C Prescott. Time to build and aggregate fluctuations. Econometrica:
Journal of the Econometric Society, pp. 1345–1370, 1982. 18, 20

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pp. 6083–6093. PMLR, 2020. 2, 5,
30

John Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets. In Stochastic optimization models in finance, pp. 131–155. Elsevier, 1975. 22

Mingrui Liu, Hassan Rafique, Qihang Lin, and Tianbao Yang. First-order Convergence Theory for
Weakly-Convex-Weakly-Concave Min-max Problems, July 2021. URL http://arxiv.org/
abs/1810.10207. arXiv:1810.10207. 4

John B Long Jr and Charles I Plosser. Real business cycles. Journal of political Economy, 91(1):
39–69, 1983. 18

Lee Hsien Loong and Richard Zeckhauser. Pecuniary externalities do matter when contingent claims
markets are incomplete. The Quarterly Journal of Economics, 97(1):171–179, 1982. 18

Robert E Lucas Jr. Asset prices in an exchange economy. Econometrica: journal of the Econometric
Society, pp. 1429–1445, 1978. 18

Robert E Lucas Jr and Edward C Prescott. Investment under uncertainty. Econometrica: Journal of
the Econometric Society, pp. 659–681, 1971. 18

Michael Magill and Martine Quinzii. Infinite horizon incomplete markets. Econometrica: Journal of
the Econometric Society, pp. 853–880, 1994. 1, 2, 6, 22

Michael Magill and Martine Quinzii. Theory of incomplete markets, volume 1. Mit press, 2002. 18,
22

Michael Magill and Wayne Shafer. Incomplete markets. Handbook of mathematical economics, 4:
1523–1614, 1991. 22

Lilia Maliar, Serguei Maliar, John Taylor, and Inna Tsener. A tractable framework for analyzing a
class of nonstationary markov models. Technical report, National Bureau of Economic Research,
2015. 20

Lilia Maliar, Serguei Maliar, and Pablo Winant. Deep learning for solving dynamic economic
models. Journal of Monetary Economics, 122:76–101, September 2021. ISSN 0304-3932. doi:
10.1016/j.jmoneco.2021.07.004. URL https://www.sciencedirect.com/science/
article/pii/S0304393221000799. 34

Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory. Number
9780195102680 in OUP Catalogue. Oxford University Press, 1995. ISBN ARRAY(0x4cf9c5c0).
URL https://ideas.repec.org/b/oxp/obooks/9780195102680.html. 22

14

https://www.sciencedirect.com/science/article/pii/002205319290061L
https://www.sciencedirect.com/science/article/pii/002205319290061L
http://arxiv.org/abs/1810.10207
http://arxiv.org/abs/1810.10207
https://www.sciencedirect.com/science/article/pii/S0304393221000799
https://www.sciencedirect.com/science/article/pii/S0304393221000799
https://ideas.repec.org/b/oxp/obooks/9780195102680.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Eric Maskin and Jean Tirole. Markov perfect equilibrium: I. observable actions. Journal of Economic
Theory, 100(2):191–219, 2001. 3, 17

R Mehra and EC Prescott. Recursive competitive equilibria and capital asset pricing. Essays in
Financial Economics, 1977. 2, 8

Franco Modigliani and Merton H Miller. The cost of capital, corporation finance and the theory of
investment. The American economic review, 48(3):261–297, 1958. 22

Jan Mossin. Equilibrium in a capital asset market. Econometrica: Journal of the econometric society,
pp. 768–783, 1966. 22

Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear
programming. Mathematical Programming, 39:117–129, 1987. 8

John F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950a. ISSN 00129682,
14680262. URL http://www.jstor.org/stable/1907266. 3

John F. Nash. Equilibrium points in <i>n</i>-person games. Proceedings of the National Academy
of Sciences, 36(1):48–49, 1950b. doi: 10.1073/pnas.36.1.48. URL https://www.pnas.org/
doi/abs/10.1073/pnas.36.1.48. 3

David MG Newbery and Joseph E Stiglitz. The theory of commodity price stabilization. A study in
the economics of risk. 1982. 18

Juan Carlos Parra-Alvarez. Solution Methods and Inference in Continuous-time Dynamic Equilibrium
Economies:(with Applications in Asset Pricing and Income Fluctuation Models): a PhD Thesis
Submitted to School of Business and Social Sciences, Aarhus University, in Partial Fulfilment of
the Requirements of the PhD Degree in Economics and Business. Department of Economics and
Business, Aarhus University, 2015. 20

Edward C. Prescott and Rajnish Mehra. Recursive competitive equilibrium: The case of homogeneous
households. Econometrica, 48(6):1365–1379, 1980. ISSN 00129682, 14680262. URL http:
//www.jstor.org/stable/1912812. 2, 8

Roy Radner. Competitive equilibrium under uncertainty. Econometrica: Journal of the Econometric
Society, pp. 31–58, 1968. 22

Roy Radner. Existence of equilibrium of plans, prices, and price expectations in a sequence of
markets. Econometrica: Journal of the Econometric Society, pp. 289–303, 1972. 1, 22

Roy Radner. Rational expectations equilibrium: Generic existence and the information revealed by
prices. Econometrica: Journal of the Econometric Society, pp. 655–678, 1979. 22

Stephen A Ross. Options and efficiency. The Quarterly Journal of Economics, 90(1):75–89, 1976. 18

Thomas J Sargent and Lars Ljungqvist. Recursive macroeconomic theory. Massachusetss Institute of
Technology, 2000. 1, 19, 22

Maxime Sauzet. Projection Methods via Neural Networks for Continuous-Time Models, December
2021. URL https://papers.ssrn.com/abstract=3981838. 34

M. J. P. Selby. Economica, 57(227):413–415, 1990. ISSN 00130427, 14680335. URL http:
//www.jstor.org/stable/2554945. 18

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953. 2

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014. 29

Joseph E Stiglitz. Self-selection and pareto efficient taxation. Journal of public economics, 17(2):
213–240, 1982. 18

15

http://www.jstor.org/stable/1907266
https://www.pnas.org/doi/abs/10.1073/pnas.36.1.48
https://www.pnas.org/doi/abs/10.1073/pnas.36.1.48
http://www.jstor.org/stable/1912812
http://www.jstor.org/stable/1912812
https://papers.ssrn.com/abstract=3981838
http://www.jstor.org/stable/2554945
http://www.jstor.org/stable/2554945


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Nancy L Stokey. Recursive methods in economic dynamics. Harvard University Press, 1989. 19

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–20696.
PMLR, 2022. 5

Masayuki Takahashi. Equilibrium points of stochastic non-cooperative n-person games. Journal of
Science of the Hiroshima University, Series AI (Mathematics), 28(1):95–99, 1964. 1, 2

John B Taylor and Michael Woodford. Handbook of macroeconomics, volume 1. Elsevier, 1999. 1,
22, 23

Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands, 1995. 37

Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pp. 265–280, 1945. 4

Leon Walras. Elements de l’economie politique pure, ou, Theorie de la richesse sociale. F. Rouge,
1896. 1, 20

Jan Werner. Equilibrium in economies with incomplete financial markets. Journal of Economic
Theory, 36(1):110–119, 1985. 18

LLM USAGE DISCLOSURE

In accordance with ICLR guidelines on the responsible use of large language models (LLMs), we
note that LLMs were used exclusively for refining language and improving formatting. They were not
used to generate research ideas, mathematical content, theoretical results, or experimental findings.
The authors are solely responsible for the accuracy and integrity of all scientific contributions in this
work.

A PRELIMINARIES AND FULL DEFINITIONS

A.1 PRELIMINARIES

Notation. We use caligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to
denote matrices (e.g., X ), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote
scalar quantities (e.g., x), and uppercase letters to denote random variables (e.g., X). We denote the
ith row vector of a matrix (e.g., X ) by the corresponding bold lowercase letter with subscript i (e.g.,
xi). Similarly, we denote the jth entry of a vector (e.g., p or xi) by the corresponding lowercase
letter with subscript j (e.g., pj or xij). We denote functions by a letter determined by the value of
the function, e.g., f if the mapping is scalar valued, f if the mapping is vector valued, and F if the
mapping is set valued.

We denote the set {1, . . . , n} by [n], the set {0, 1, . . . , n} by [n∗], the set of natural numbers by N,
and the set of real numbers by R. We denote the positive and strictly positive elements of a set using
a + or ++ subscript, respectively, e.g., R+ and R++.

For any n ∈ N, we denote the n-dimensional vector of zeros and ones by 0n and 1n, respectively.
We let ∆n = {x ∈ Rn+ |

∑n
i=1 xi = 1} denote the unit simplex in Rn, and ∆(A) denote the

set of all probability distributions over a given set A. We also define the support of a probability
density function f ∈ ∆(X ) as supp(f) .= {x ∈ X : f(x) > 0}. Finally, we denote the orthogonal
projection operator onto a set C by ΠC , i.e., ΠC(x)

.
= argminy∈C ∥x− y∥2.

We define the subdifferential of a function f : X ×Y → R w.r.t. variable x at a point (a, b) ∈ X ×Y
by Dxf(a, b)

.
= {h | f(x, b) ≥ f(a, b) +hT (x−a)}, and we denote the derivative operator (resp.

partial derivative operator w.r.t. x) of a function g : X × Y → Z by ∂g (resp. ∂xg).
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Terminology. Fix any norm ∥·∥. Given A ⊂ Rd, the function f : A → R is said to be ℓf-
Lipschitz-continuous iff ∀x1,x2 ∈ X , ∥f(x1)− f(x2)∥ ≤ ℓf ∥x1 − x2∥. If the gradient of f is
ℓ∇f -Lipschitz-continuous, f is called ℓ∇f -Lipschitz-smooth.

We require notions of stochastic convexity related to stochastic dominance of probability measures
(Atakan, 2003b). Given non-empty and convex parameter and outcome spacesW and O respectively,
a conditional probability distribution w 7→ p(· | w) ∈ ∆(O) is said to be stochastically convex
(resp. stochastically concave) in w ∈ W if for all continuous, bounded, and convex (resp. concave)
functions v : O → R, λ ∈ (0, 1), and w′,w† ∈ W s.t. sw = λw′ + (1 − λ)w†, it holds that
EO∼p(·| sw) [v(O)] ≤ (resp. ≥) λEO∼p(·|w′) [v(O)] + (1− λ)EO∼p(·|w†) [v(O)].

For X ⊆ Rd, we say f is (c, µ)–gradient dominated over X if there exist constants c > 0 and µ ≥ 0
such that minx′∈X f(x′) ≥ f(x) + minx′∈X

[
c⟨∇f(x), x′ − x⟩ + µ/2 ∥x− x′∥22

]
,∀x ∈ X . The

function is said to be gradient dominated with degree one if µ = 0 and gradient dominated with
degree two if µ > 0.

A.2 OMITTED FORMAL DEFINITIONS FROM SECTION 2

A history h ∈ Hτ .
= (S × A)τ × S of length τ ∈ N is a sequence of states and action profiles

h = ((s(t),a(t))τ−1
t=0 , s

(τ)) s.t. a history of length 0 corresponds only to the initial state of the
game. For any history h = ((s(t),a(t))τ−1

t=0 , s
(τ)) of length τ ∈ N, we denote by h:τ ′ the first

τ ′ ∈ [τ∗] steps of h, i.e., h:τ ′ = ((s(t),a(t))τ
′−1
t=0 , s

(τ ′)). Overloading notation, we define the
history space H .

=
⋃∞
τ=0Hτ . For any player i ∈ [n], a policy πi : H → Ai is a mapping from

histories of any length to i’s space of (pure) actions. We define the space of all (deterministic)
policies as Pi

.
= {πi : H → Ai}. A Markov policy (Maskin & Tirole, 2001) πi is a policy s.t.

πi(s
(τ)) = πi(h:τ ), for all histories h ∈ Hτ of length τ ∈ N+, where s(τ) denotes the final state of

history h. As Markov policies are only state-contingent, we can compactly represent the space of all
Markov policies for player i ∈ [n] as Pmarkov

i
.
= {πi : S → Ai}.

Given a policy profile π ∈ P and a history h ∈ Hτ , the discounted history distribution that
originates at state s is defined as νπ ,τs (h) = 1s(s

(0))
∏τ−1
t=0 γ

tp(s(t+1) | s(t),a(t))1{π(h:t)}(a
(t)).

Furthermore, the discounted history distribution given initial state distribution µ is defined as
ν
π ,τ
µ (h) = ES∼µ

[
ν
π ,τ
S (h)

]
. Next, we define the set of all realizable trajectories of length τ under

policy π as Hπ ,τ
µ

.
= supp(ν

π ,τ
µ ), i.e., the set of all histories that occur with non-zero probability

given initial state distribution µ, and we let Hπ
µ

.
= Hπ ,∞

µ and νπµ
.
= ν

π ,∞
µ . We can now write

H =
(
S(0), (A(t), S(t+1))τ−1

t=0

)
to denote a history h ∈ Hπ ,τ

µ sampled from ν
π ,τ
µ .

Now, given a policy profile π ∈ P , we define the state-value function vπ : S → Rn and the
action-value function qπ : S ×A → Rn, respectively, as

vπ (s)
.
= EH∼νπ

s

[ ∞∑
t=0

r(S(t), A(t))

]
(1)

= EH∼νπ
µ

[ ∞∑
t=0

r(S(t), A(t)) | S(0) = s

]
(2)

=

∫
H∈Hπ

µ :S(0)=s

∞∑
t=0

r(S(t), A(t)) ν
π ,τ
µ (H ) dH (3)

qπ (s,a)
.
= r(s,a) + ES′∼ p(S′|s,a) [v

π (S′)] (4)

Finally, we define the discounted state-visitation distribution δ
π
µ (s)

.
=∑∞

τ=0

∫
h∈Hπ,τ

µ :s(τ)=s
ν
π ,τ
µ (h) and the (expected) payoff of policy profile π as u(π)

.
=

ES∼µ [v
π (S)] = ES∼δπµ [r(S,π(S))].
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B RELATED WORK

Beyond the works mentioned earlier, our paper is close to two literature on stochastic economies,
one in financial economics which theoretical and focuses on understanding mathematical properties
of general equilibrium competitive equilibrium in incomplete markets Duffie (1987); Selby (1990);
Duffie & Shafer (1985; 1986), and another one in macroeconomics which focuses on the computation
of sequential or recursive competitive equilibrium in incomplete stochastic economies to simulate
various macroeconomic issues; see, for instance, Kydland & Prescott (1982) and Lucas Jr & Prescott
(1971).5

Financial economics Regarding the literature in financial economics, we refer the reader to the
survey work of Magill & Quinzii (2002), and mention here only a few of some the influential models
for the development of stochastic economies. Following the initial interest of the early 1970, the
literature on stochastic economies in financial economics mostly focused on stochastic economies
with two time-periods up to the end of the 1980s. In the early 1980s, there was an explosion of
option pricing studies and arbitrage pricing in the early 1980s (See, for example, Cox & Ross
(1976); Ross (1976) Cox et al. (1979), Cox et al. (1985), and Huberman (1982).] By the mid-1980s,
the theory of stochastic economies made great strides, with two influential papers, Cass (1984;
1985) showing that existence of a general equilibrium could be guaranteed if all the assets promise
delivery in fiat money, and he showed that with such financial assets there could be a multiplicity of
equilibrium. In contrast, our existence result does not assume the existence of fiat money. Almost
simultaneously Werner (1985) also gave a proof of existence of equilibrium with financial assets,
and Geanakoplos & Polemarchakis (1986) showed the same for economies with real assets that
promise delivery in the same consumption good.Duffie (1987) then extended the existence results
for purely financial assets to arbitrary finite horizon stochastic economies. As stochastic economies
with incomplete asset markets have been shown to not satisfy a first welfare theorem of economics,
following preliminary insight from Diamond (1967) the literature turned its attention definine notions
of constrained efficiency. Successive refinements of the definition were given by Diamond (1980),
Loong & Zeckhauser (1982), Newbery & Stiglitz (1982), Stiglitz (1982), and Greenwald & Stiglitz
(1986) with a mostly accepted definition of constrained efficiency becoming becoming clear by the
late 1980, with Geanakoplos (1990) eventually proving that sequential competitive equilibrium are is
constrained efficient inefficient.

Macroeconomics The literature on stochastic economies in macroeconomics is known under
the name of dynamic stochastic general equilibrium (DSGE) models. Stochastic economies have
received interest in macroeconomics after Lucas Jr’s (1978) seminal work, in which he derived a
recursive competitive equilibrium in closed form in a stochastic economy with one commodity and
and one consumer allowing him to analyze asset prices in his model. Unfortunately, beyond Lucas’
simpler model, it became apparent that analyzing the solutions of stochastic economies required
the use computation. One of the earliest popular stochastic economy models in economics which
was solved via computational methods is the Real Business Cycle (RBC) model Kydland & Prescott
(1982); Long Jr & Plosser (1983). The RBC model is a parameterized stochastic economy whose
parameters are calibrated to accurately model the US economy. RBC models are characterized by
demand generated by a representative infinitely-lived agent, with supply generated exogeneously by
a standard (or Solow) growth model Acemoglu (2008), or by a representative firm. These models
have fallen out of favor, because some of their assumptions were invalidated by data (see, for
example, Section 2 of Christiano et al. (2018)). They were replaced by a class of DSGE models
known as Representative Agent New Keynesian (RANK) models (see, for instance, Clarida et al.
(2000)). As RBC and RANK models derive their modelling assumptions from two different schools
of macroeconomic thought (i.e., the New Keynesian and New Classical schools, respectively),from a
mathematical and computational perspective they can be seen as the same, as both are characterized
by a representative consumer and an exogenous growth model, or a representative firm.

Following the financial crisis of 2008, these representative-agent models, too, fell out of favor, and
the literature turned to modeling heterogeneity, because of its importance in understanding inequality,

5Since the 90s, a sizable body of work in financial economics (see for instance Fernández-Villaverde et al.
(2016); Auclert et al. (2021) has considered computational approaches to solving general equilibrium models of
financial markets; however, much of this work can be seen as extension of the macroeconomics literature.
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in particular across consumers. Heterogeneous agent new Keynesian models (HANK) are stochastic
economies which are built on top Bewley-Huggett-Aiyagari models Bewley (1983); Huggett (1993);
Aiyagari (1994), and are characterized by demand and supply generated by an infinite population of
agents with differing characteristics. These models are mathematically and computationally much
more different than the RBC and RANK models and have been shown to be possible to model as
single population mean-field games Achdou et al. (2022), i.e., games with an infinite population
of players. More recently, a new class of stochastic economies called Many Agent New Keynesian
(MANK) has emerged. This class of models bridges the gap between the infinite population regime
of heterogeneous agent models and the single agent regime of representative agent models. These
models are characterized by a demand and a supply generated by multiple consumers and firms, but
are arguably more interpretable Eskelinen (2021) (see, for instance, Cloyne et al. (2020); Eskelinen
(2021)) and have shown to approximate the solutions of heterogeneous agent models effectively when
the number of agents in the economy is large enough Han et al. (2021). That is MANK models are
sufficiently expressive to capture a range of models, corresponding to RANK at one extreme, and to
HANK at the other. Ignoring the stylized details of the aforementioned stochastic economies, all of
them feature static markets, linked over time, often although not always, by incomplete financial asset
markets, and differ in the number and heterogeneity of the agents, firms and good in the economy, as
well as the types of transitions they employ, whether it be transition functions which model aggregate
shocks (i.e., transitions functions which change the state of each consumer and firm in the economy
in the same way) or idiosyncratic shock (i.e. transition function which model transition the state of
each consumer in the economy in distinct way). The infinite horizon Markov exchange economy that
we develop in this paper corresponds to a many agent stochastic economy model, and can be coupled
with either the New Keynesian or New Classical paradigm to capture most of the models proposed in
the literature.

Computation of competitive equilibrium The study of the computational complexity of competi-
tive equilibria was initiated by Devanur et al. (2002), who provided a polynomial-time method for
computing competitive equilibrium in a special case of the Arrow-Debreu (exchange) market model,
namely Fisher markets, when buyers utilities are linear. Jain et al. (2005) subsequently showed that a
large class of Fisher markets with homogeneous utility functions could be solved in polynomial-time
using interior point methods. Gao & Kroer (2020) studied an alternative family of first-order methods
for solving Fisher markets, assuming linear, quasilinear, and Leontief utilities, as such methods can be
more efficient when markets are large. More recently, Goktas et al. (2023b) showed that tâtonnement
converges to competitive equilibrium in homothetic Fisher markets, assuming bounded elasticity of
Hicksian demand.

Devising algorithms for the computation of competitive equilibrium in general Arrow-Debreu markets
is still an active area of research. While the computation of competitive equilibrium is PPAD-hard in
general Chen & Deng (2006); Daskalakis et al. (2009), the computation of competitive equilibrium in
Arrow-Debreu markets with Leontief buyers is equivalent to the computation of Nash equilibrium in
bimatrix games Codenotti et al. (2006); Deng & Du (2008), and hence PPAD-hard as well, there exist
polynomial-time algorithms to compute competitive equilibrium in special cases of Arrow-Debreu
markets, including markets whose excess demand satisfies the weak gross substitutes condition
Codenotti et al. (2005); Bei et al. (2015) and Arrow-Debreu markets with buyers whose utilities are
linear Garg & Kapoor (2004); Brânzei et al. (2021) or satisfy constant elasticity of substitution, which
gives rise to weak gross substitute demands Brânzei et al. (2021).

Solution methods in macroeconomics. As stochastic economies can be analytically intractable to
solve without restrictive assumptions, such as homogeneous consumers (e.g., representative agent
new Keynesian models models, for a survey, see Sargent & Ljungqvist (2000)), researchers have
attempted to solve them via dynamic programming. These methods often discretize the continuous
state and action spaces, and then apply variants of value and policy iteration Stokey (1989); Sargent
& Ljungqvist (2000); Auclert et al. (2021). Unfortunately, this approach is unwieldy when applied
to incomplete markets with multiple commodities and/or heterogeneous consumers Fernández-
Villaverde et al. (2016). As a result, many of these methods lack optimality guarantees, and thus
might not produce correct solutions, which may lead to drastically different policy recommendations,
as inaccurate solutions to stochastic economies have been known to cause spurious welfare reversal
Kim & Kim (2003). Perhaps even more importantly, while static markets afford efficient, i.e.,
polynomial-time, algorithms for computing competitive equilibrium under suitable assumption (see,
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for instance Jain et al. (2005) or Goktas et al. (2023b) for a more recent survey), to the best of
our knowledge, there is no known class of stochastic economies (excluding the special case of
static economies) for which the computation of a sequential or recursive competitive equilibrium is
polynomial-time. Yet the macroeconomics literature speaks to the need for efficient methods to solve
these models, or at least better understand the trade-offs between the speed and accuracy of proposed
solution techniques Fernández-Villaverde et al. (2016).

We describe only a few of the most influential computational approaches to solving stochastic
economies in macroeconomics, and refer the reader to Fernández-Villaverde et al. (2016) for a
detailed survey. Durbin & Koopman 2012 developed an extended path algorithm. The idea was
to solve, for a terminal date sufficiently far into the future, the path of endogenous variables using
a shooting algorithm. Recently, Maliar et al. (2015) extended this idea, developing the extended
function path (EFP) algorithm, applicable to models that do not admit stationary Markov equilibria.
Kydland & Prescott (1982) exploit the fact that their model admits a Pareto-optimal recursive
equilibrium, and thus they solve the social planner’s problem, instead of solving for an equilibrium.
To do so, they rely on a linear quadratic approximation, and exploit the fast algorithms known to
solve that class of optimization problems. King et al. (2002) (in the widely disseminated technical
appendix, not published until 2002), building on Blanchard & Kahn (1980)’s approach, linearized
the equilibrium conditions of their model (optimality conditions, market clearing conditions, etc.),
and solved the resulting system of stochastic linear difference equations. More recently, a growing
literature has been applying deep learning methods in attempt to stochastic economies (see, for
instance, Curry et al.; Han et al. (2021); Childers et al. (2022)). There also exists a large literature in
macroeconomics on solution methods in continuous rather than discrete time, which is out of the
scope of this paper. We refer the interested reader to Parra-Alvarez (2015).

C HISTORICAL BACKGROUND AND EARLY MODELS

C.1 DEVELOPMENT OF GENERAL EQUILIBRIUM MODELS

In 1896, Léon Walras formulated a mathematical model of markets as a system for resource allocation
comprising supply and demand functions that map values for resources, called prices, to quantities of
resources—ceteris paribus, i.e., all else being equal. Walras argued that any market would eventually
settle into a steady state, which he called competitive (nowadays, also called Walrasian) equilibrium,
as a collection of prices and associated supply and demand such that the demand is feasible, i.e., the
demand for each resource is less than or equal to its supply, and Walras’ law holds, i.e., the value
of the supply is equal to the value of the demand. Unlike in Walras’ model, real-world markets do
not exist in isolation but are part of an economy. Indeed, the supply and demand of resources in one
market depend not only on prices in that market, but also on the supply and demand of resources in
other markets. If every market in an economy is simultaneously at a competitive equilibrium, Walras’
law holds for the economy as a whole; this steady state, now a property of the economy, is called a
general equilibrium.

Beyond Walras’ early forays into competitive equilibrium analysis, foremost to the development
of the theory of general equilibrium was the introduction of a broad mathematical framework for
modeling economies, which is known today as the Arrow-Debreu competitive economy Arrow &
Debreu (1954a). In this same paper, Arrow & Debreu developed their seminal game-theoretic model,
namely (quasi)concave pseudo-games, and proved the existence of generalized Nash equilibrium in
this model. Since this game-theoretic model is sufficiently rich to capture Arrow-Debreu economies,
they obtained as a corollary the existence of general equilibrium in these economies.

In their model, Arrow & Debreu posit a set of resources, modeled as commodities, each of which
is assigned a price; a set of consumers, each choosing a quantity of each commodity to consume in
exchange for their endowment; and a set of firms, each choosing a quantity of each commodity to
produce, with prices determining (aggregate) demand, i.e., the sum of the consumptions across all
consumers, and (aggregate) supply, i.e., the sum of endowments and productions across all consumers
and firms, respectively. This model is static, as it comprises only a single period model, but it is
nonetheless rich, as commodities can be state and time contingent, with each one representing a good
or service which can be bought or sold in a single time period, but that encodes delivery opportunities
at a finite number of distinct points in time. Following Arrow & Debreu’s seminal existence result, the
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literature slowly turned away from static economies, such as Arrow-Debreu competitive economies,
which do not explicitly involve time and uncertainty.

Arrow & Debreu’s model fails to provide a comprehensive account of the economic activity observed
in the real world, especially that which is designed to account for time and uncertainty. Chief
among these activities are asset markets, which allow consumers and firms to insure themselves
against uncertainty about future states of the world. Indeed, while static economies with state- and
time-contingent commodities can implicitly incorporate time and uncertainty, the assumption that a
complete set of state- and time-contingent commodities are available at the time of trade is highly
unrealistic. Arrow (1964) thus proposed to enhance the Arrow-Debreu competitive economy with
assets (or securities or stocks),6 i.e., contracts between two consumers, which promise the delivery
of commodities by its seller to its buyer at a future date. In particular, Arrow introduced an asset
type nowadays known as the numéraire Arrow security, which transfers one unit of a designated
commodity used as a unit of account—the numéraire—when a particular state of the world is
observed, and nothing otherwise. As the numéraire is often interpreted as money, assets which deliver
only some amount of the numéraire, are called financial assets.

Formally, Arrow considered a two-step stochastic exchange economy. In the initial state, consumers
can buy or sell numéraire Arrow securities in a financial asset market. Following these trades, the
economy stochastically transitions to one of finitely many other states in which consumers receive
returns on their initial investment and participate in a spot market, i.e., a market for the immediate
delivery of commodities, modeled as a static exchange economy—which, for our purposes, is better
called an exchange market.7 A general equilibrium of this economy is then simply prices for financial
assets and commodities, which lead to a feasible allocation of all resources (i.e., financial assets and
spot market commodities) that satisfies Walras’ law.

Arrow (1964) demonstrated that the general equilibrium consumptions of an exchange economy with
state- and time-contingent commodities can be implemented by the general equilibrium spot market
consumptions of a two-step stochastic economy with a considerably smaller, yet complete set of
numéraire Arrow securities, i.e., a set of securities available for purchase in the first period that allow
consumers to transfer wealth to all possible states of the world that can be realized in the second
period. In conjunction with the welfare theorems Debreu (1951); Arrow (1951), this result implies
that economies with complete financial asset markets, i.e., economies with such a complete set of
securities, achieve a Pareto-optimal allocation of commodities by ensuring optimal risk-bearing via
financial asset markets; and conversely, any Pareto-optimal allocation of commodities in economies
with time and uncertainty can be realized as a competitive equilibrium of a complete financial asset
market.

Arrow’s contributions led to the development of a new class of general equilibrium models, namely
stochastic economies (or dynamic stochastic general equilibrium—DSGE—models) Geanakoplos
(1990).8 At a high-level, these models comprise a sequence of world states and spot markets,
which are linked across time by asset markets, with each next state of the world (resp. spot market)
determined by a stochastic process that is independent of market interactions (resp. dependent only
on their asset purchase) in the current state. Mathematically, the key difference between a static and a
stochastic economy is that consumers in a stochastic economy face a collection of budget constraints,
one per time-step, rather than only one. Indeed, Arrow (1964)’s proof that general equilibrium
consumptions in stochastic complete economies are equivalent to general equilibrium consumptions
in static state- and time-contingent commodity economies relies on proving that the many budget
constraints in a complete stochastic economy can be reduced to a single one.

6Some authors (e.g., Geanakoplos (1990)) distinguish between assets, stocks, and securities, instead defining
securities (resp. stocks) as those assets which are defined exogenously (resp. endogenously), e.g., government
bonds (resp. company stocks). As this distinction makes no mathematical difference to our results, and is only
relevant to stylized models, we make no such distinction.

7An (Arrow-Debreu) exchange economy is simply an (Arrow-Debreu) competitive economy without firms.
Historically, for simplicity, it has become standard practice not to model firms, as most, if not all, results extend
directly to settings with firms. In line with this practice, we do not model firms, but note that our results and
methods also extend directly to settings that include firms.

8As these models incorporate both time and uncertainty, they are often referred to as dynamic stochastic
general equilibrium models. Nonetheless, we opt for the stochastic economy nomenclature, because, as we
demonstrate in this paper, these economies can be seen as instances of (generalized) stochastic games.
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Stochastic economies were introduced to model arbitrary finite time horizons Radner (1968) and a
variety of risky asset classes (e.g., stocks Diamond (1967), risky assets Lintner (1975), derivatives
Black & Scholes (1973), capital assets Mossin (1966), debts Modigliani & Miller (1958) etc.),
eventually leading to the emergence of stochastic economies with incomplete asset markets Magill &
Shafer (1991); Magill & Quinzii (2002); Geanakoplos (1990), or colloquially, (incomplete) stochastic
economies.9 Unlike in Arrow’s stochastic economy, the asset market is not complete in such
economies, so consumers cannot necessarily insure themselves against all future world states.

The archetypal stochastic economy is the Radner stochastic exchange economy, deriving its name
from Radner’s proof of existence of a general equilibrium in his model Radner (1972). Radner’s
economy is a finite-horizon stochastic economy comprising a sequence of spot markets, linked
across time by asset markets. At each time period, a finite set of consumers observe a world
state and trade in an asset market and a spot market, modeled as an exchange market. Each asset
market comprises assets, modelled as time-contingent generalized Arrow securities, which specify
quantities of the commodities the seller is obliged to transfer to its buyer, should the relevant state
of the economy be realized at some specified future time.10 Consumers can buy and sell assets,
thereby transferring their wealth across time, all the while insuring themselves against uncertainty
about the future. The canonical solution concept for stochastic economies, Radner equilibrium
(also called sequential competitive equilibrium11 Mas-Colell et al. (1995), rational expectations
equilibrium Radner (1979), and general equilibrium with incomplete markets Geanakoplos (1990)),
is a collection of history-dependent prices for commodities and assets, as well as history-dependent
consumptions of commodities and portfolios of assets, such that, for all histories, the aggregate
demand for commodities and the aggregate demand for assets (i.e., the total number of assets bought)
are feasible and satisfy Walras’ law.

In spite of substantial interest in stochastic economies among microeconomists throughout the
1970s, the literature eventually trailed off, perhaps due to the difficulty of proving existence of a
general equilibrium in simple economies with incomplete asset markets that allow assets to be sold
short Geanakoplos (1990), or to the lack of a second welfare theorem Dreze (1974); Hart (1975).
Financial and macroeconomists stepped up, however, with financial economists seeking to further
develop the theoretical aspects of stochastic economies (see, for instance, Magill & Quinzii (2002)),
and macroeconomists seeking practical methods by which to solve stochastic economies in order
to determine the impact of various policy choices (via simulation; see, for instance, Sargent &
Ljungqvist (2000)).

Infinite horizon stochastic economies are one of the new and interesting directions in this more recent
work on stochastic economies. Infinite horizon models come with one significant difficulty that has
no counterpart in a finite horizon model, namely the possibility for agents to run a Ponzi scheme via
asset markets, in which they borrow but then indefinitely postpone repaying their debts by refinancing
them continually, from one period to the next. From this perspective infinite horizon models represent
very interesting objects of study, not only theoretically; it has also been argued that they are a better
modeling paradigm for macroeconomists who employ simulations Magill & Quinzii (1994), because
they facilitate the modeling of complex phenomena, such as asset bubbles Huang & Werner (2000),
which can be impacted by economic policy decisions.

Magill & Quinzii (1994) introduced an extension of Radner’s model to an infinite horizon setting,
albeit with financial assets, and presented suitable assumptions under which a sequential compet-
itive equilibrium is guaranteed to exist in this model. Progress on the computational aspects of
stochastic economies has been slow, however, and mostly confined to finite horizon settings (see,
Sargent & Ljungqvist (2000) and Volume 2 of Taylor & Woodford (1999) for a standard survey, and

9While many authors have called these models incomplete economies Geanakoplos (1990); Magill & Quinzii
(2002); Magill & Shafer (1991), these models capture both incomplete and complete asset markets. In contrast,
we refer to stochastic economies with incomplete or complete asset markets as stochastic economies, adding the
(in)complete epithet only when necessary to indicate that the asset market is (in)complete.

10Here, Arrow securities are “generalized” in the sense that they can deliver different quantities of many
commodities at different states of the world, rather than only one unit of a commodity at only one state of the
world. Although Arrow (1964) considered only numéraire securities, his theory was subsequently generalized to
generalized Arrow securities Geanakoplos (1990).

11This terminology does not contradict the economy being at a competitive equilibrium, but rather indicates
that at all times, the spot and asset markets are at a competitive equilibrium, hence implying the overall economy
is at a general equilibrium.
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Fernández-Villaverde (2023) for a more recent entry-level survey of computational methods used by
macroeconomists). Indeed, demands for novel computational methods for solving macroeconomic
models, and theoretical frameworks in which to understand their computational complexity, have been
repeatedly shared by macroeconomists Taylor & Woodford (1999). This gap in the literature points
to a novel research opportunity; however, it is challenging for non-macroeconomists to approach
these problems with their computational tools.

C.2 STATIC EXCHANGE ECONOMIES

A static exchange economy (or market12) (n,m, d,X , E, T , r,E ,Θ), abbreviated by (E ,Θ) when
clear from context, comprises a finite set of n ∈ N+ consumers and m ∈ N+ commodities. Each
consumer i ∈ [n] arrives at the market with an endowment of commodities represented as vector
ei = (ei1, . . . , eim) ∈ Ei, where Ei ⊂ Rm is called the endowment space.13 Any consumer i can sell
its endowment ei ∈ Ei at prices p ∈ ∆m, where pj ≥ 0 represents the value (resp. cost) of selling
(resp. buying) a unit of commodity j ∈ [m], to purchase a consumption xi ∈ Xi of commodities in
its consumption space Xi ⊆ Rm.14 Every consumer is constrained to buy a consumption with a cost
weakly less than the value of its endowment, i.e., consumer i’s budget set—the set of consumptions i
can afford with its endowment ei ∈ Ei at prices p ∈ ∆m—is determined by its budget correspondence
Bi(ei,p)

.
= {xi ∈ Xi | xi · p ≤ ei · p}.

Each consumer’s consumption preferences are determined by its type-dependent preference relation
⪰i,θi

on Xi, represented by a type-dependent utility function xi 7→ ri(xi;θi), for type θi ∈ Ti that
characterizes consumer i’s preferences within the type space Ti ⊂ Rd of possible preferences.15

The goal of each consumer i is thus to buy a consumption xi ∈ Bi(ei,p) that maximizes its utility
function xi 7→ ri(xi;θi) over its budget set Bi(ei,p).
We denote any endowment profile (resp. type profile and consumption profile) as E

.
=

(e1, . . . ,en)
T ∈ E (resp. Θ .

= (θ1, . . . ,θn)
T ∈ T and X

.
= (x1, . . . ,xn)

T ∈ X ). The ag-
gregate demand (resp. aggregate supply) of a consumption profile X ∈ X (resp. an endowment
profile E ∈ E) is defined as the sum of consumptions (resp. endowments) across all consumers, i.e.,∑
i∈[n] xi (resp.

∑
i∈[n] ei).

Definition 3 (Arrow-Debreu Equilibrium). An Arrow-Debreu (or Walrasian or competitive) equi-
librium (ADE) of an exchange economy (E ,Θ) is a tuple (X∗,p∗) ∈ X × ∆m, which consists
respectively of a consumption profile and prices p ∈ ∆m s.t.: 1. each consumer i’s equilibrium
consumption maximizes its utility over its budget set: x∗

i ∈ argmaxxi∈Bi(ei,p
∗) ri(xi;θi); 2. the

consumption profile is feasible, meaning aggregate demand is less than or equal to aggregate supply:,∑n
i=1 x

∗
i −

∑n
i=1 ei ≤ 0m; 3. Walras’ law holds, so that the cost of the aggregate demand is equal

to the value of the aggregate supply: p∗ · (
∑n
i=1 x

∗
i −

∑n
i=1 ei) = 0.

12Although a static exchange “market” is an economy, we prefer the term “market” for the static components
of an infinite horizon Markov exchange economy, a dynamic exchange economy in which each time-period
comprises one static market among many.

13Commodities are assumed to include labor services. Further, for any consumer i and endowment ei ∈ Ei,
eij ≥ 0 denotes the quantity of commodity j in consumer i’s possession, while eij < 0 denotes consumer i’s
debt, in terms of commodity j.

14We note that, for any labor service j, consumer i’s consumption xij is negative and restricted by its
consumption space to be lower bounded by the negative of i’s endowment, i.e., xij ∈ [−eij , 0]. This modeling
choice allows us to model a consumer’s preferences over the labor services she can provide. More generally, the
consumption space models the constraints imposed on consumption by the “physical properties” of the world.
That is, it rules out impossible combinations of commodities, such as strictly positive quantities of a commodity
that is not available in the region where a consumer resides, or a supply of labor that amounts to more than 24
labor hours in a given day.

15In the sequel, we will be assuming, for any consumer i with any type θi ∈ Ti, the type-dependent utility
function xi 7→ ri(xi;θi) is continuous, which implies that it can represent any type-dependent preference
relation ⪰i,θi

on Rm that is complete, transitive, and continuous Debreu et al. (1954).
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D OMITTED ASSUMPTIONS, RESULTS, AND PROOFS

D.1 OMITTED ASSUMPTIONS, RESULTS, AND PROOFS FROM SECTION 2

Before proceed to the assumptions, results and proofs, we present the algorithm we use, namely, Two
time-scale stochastic simultaneous GDA (TTSSGDA) (Daskalakis et al., 2021):

Algorithm 1 Two time-scale simultaneous SGDA

Inputs:M, (π ,ρ,RΩ,RΣ), ηω , ησ ,ω
(0),σ(0), T

Outputs: (ω(t),σ(t))Tt=0

1: Build gradient estimator Ĝ associated withM
2: for t = 0, . . . , T − 1 do
3: h ∼ νω , h′ ∼×i∈[n]

ν(σi(ω−i),ω−i)

4: ω(t+1) ← ω(t) − ηω Ĝω (ω
(t),σ(t);h,h′)

5: σ(t+1) ← σ(t) + ησ Ĝσ (ω
(t),σ(t);h,h′)

6: return (ω(t),σ(t)Tt=0

.
Assumption 1 (Existence). For all i ∈ [n], assume 1. Ai is convex; 2. Xi(s, ·) is upper- and lower-
hemicontinuous, for all s ∈ S; 3. Xi(s,a−i) is non-empty, convex, and compact, for all s ∈ S and
a−i ∈ A−i; and 4. for any policy π ∈ P , ai 7→ q

π
i (s,ai,a−i) is continuous and concave over

Xi(s,a−i), for all s ∈ S and a−i ∈ A−i.

Assumption 2 (Policy Class). Given Psub ⊆ Pmarkov, assume 1. Psub is non-empty, compact, and
convex; and 2. (Closure under policy improvement) for each π ∈ Psub, there exists π+ ∈ Psub s.t.
q
π
i (s,π

+
i (s),π−i(s)) = maxπ′

i∈F (π−i)
q
π
i (s,π

′
i(s),π−i(s)), for all i ∈ [n] and s ∈ S.

Theorem 2.1. IfM is a MPG for which Assumption 1 holds, and Psub ⊆ Pmarkov is a subspace of
Markov policy profiles that satisfies Assumption 2, then ∃ π∗ ∈ Psub s.t. π∗ is an GMPE ofM.

Proof. First, by Part 3 of Assumption 1, we know that for any i ∈ [n], F sub
i (π−i) is non-empty, con-

vex, and compact, for all π−i ∈ P−i. Moreover, 2 of Assumption 1, F sub is upper-hemicontinuous.
Therefore, by the Fan’s fixed-point theorem Fan (1952), the set F sub .

= {π ∈ Psub | π ∈ F sub(π)}
is non-empty.

For any player i ∈ [n] and state s ∈ S, we define the individual state best-response correspondence
Φ

s
i : Psub ⇒ Ai by

Φ
s
i (π)

.
= argmax

ai∈Xi(s,π−i(s))

ri(s,ai,π−i(s)) + E
S′∼p(·|s,ai,π−i(s))

[γv
π
i (S

′)] (5)

= argmax
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (6)

Then, for any player i ∈ [n], we define the restricted individual best-response correspondence
Φi : Psub ⇒ Psub

i as the Cartesian product of individual state best-response correspondences across
the states restricted to Psub:

Φi(π) =

(
×
s∈S

Φ
s
i (π)

)⋂
Psub
i (7)

= {πi ∈ Psub
i | πi(s) ∈ Φ

s
i (π), ∀ s ∈ S} (8)

Finally, we can define the multi-player best-response correspondence Φ : Psub ⇒ Psub as the
Cartesian product of the individual correspondences, i.e., Φ(π)

.
=×i∈[n]

Φi(π).
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To show the existence of GMPE, we first want to show that there exists a fixed point π∗ ∈ Psub

such that π∗ ∈ Φ(π∗). To this end, we need to show that 1. for any π ∈ Psub, Φ(π) is non-empty,
compact, and convex; 2. Φ is upper hemicontinuous.

Take any π ∈ Psub. Fix i ∈ [n], s ∈ S, we know that ai 7→ q
π
i (s,ai,π−i(s)) is concave over

Xi(s,π−i(s)), and Xi(s,π−i(s)) is non-empty, convex, and compact by Assumption 1, then by
Proposition 4.1 of Fiacco & Kyparisis (1986), Φs

i (π) is non-empty, compact, and convex.

Now, notice×s∈S Φ
s
i (π) is compact and convex as it is a Cartesian product of compact, con-

vex sets. Thus, as Psub is also compact and convex by Assumption 2, we know that Φi(π) =(
×s∈S Φ

s
i (π)

)⋂
Psub
i is compact and convex. By the assumption of closure under policy im-

provement under Assumption 2, we know that since π ∈ Psub, there exists π+ ∈ Psub such
that

π+
i ∈ argmax

π′
i∈Fmarkov

i (π−i)

q
π
i (s,π

′
i(s),π−i(s))

for all s ∈ S, and that means π+
i (s) ∈ Φ

s
i (π) for all s ∈ S. Thus, Φi(π) is also non-empty.

Since Cartesian product preserves non-emptiness, compactness, and convexity, we can conclude that
Φ(π) =×i∈[n]

Φi(π) is non-empty, compact, and convex.

Similarly, fix i ∈ [n], s ∈ S, for any π ∈ Psub, since Xi(s, ·) is continuous (i.e. both upper and
lower hemicontinuous), by the Maximum theorem, Φs

i is upper hemicontinuous. π 7→×s∈S Φ
s
i (π)

is upper hemicontinuous as it is a Cartesian product of upper hemicontinuous correspondence, and
consequently, π 7→

(
×s∈S Φ

s
i (π)

)⋂
Psub is also upper hemicontinuous. Therefore, Φ is also

upper hemicontinuous.

Since Φ(π) is non-empty, compact, and convex for any π ∈ Psub and Φ is upper hemicontinuous,
by Fan’s fixed-point theorem Fan (1952), Φ admits a fixed point.

Finally, say π∗ ∈ Psub is a fixed point of Φ, and we want to show that π∗ is a generalized Markov
perfect equilibrium (GMPE) of M. Since π∗ ∈ Φ(π∗) =×i∈[n]

Φi(π
∗), we know that for all

i ∈ [n], π∗
i (s) ∈ Φ

s
i (π

∗) = argmaxai∈Xi(s,π∗
−i(s))

q
π∗

i (s,ai,π
∗
−i(s)). We now show that for any

i ∈ [n], for any πi ∈ Fi(π∗
−i), v

π∗

i (s) ≥ v(πi,π
∗
−i)

i (s) for all s ∈ S. Take any policy πi ∈ Fi(π∗
−i).

Note that πi may not be Markov, so we denote {πi(h:t)}t∈N = {a(t)
i }t∈N. Then, for all s(0) ∈ S,

v
π∗

i (s(0))

= q
π∗

i (s(0),π∗
i (s

(0)),π∗
−i(s

(0)))

= max
ai∈Xi(s(0),π∗

−i(s
(0)))

q
π∗

i (s(0),ai,π
∗
−i(s

(0)))

= max
ai∈X(s(0),π∗

−i(s
(0)))

ri(s
(0),ai,π

∗
−i(s

(0))) + E
s(1)∼p(·|s(0),ai,π

∗
−i(s

(0)))
[γv

π∗

i (s(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼p(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv
π∗

i (s(1))] (9)

For any s(0) ∈ S, define v′i(s
(0))

.
= ri(s

(0),a
(0)
i ,π∗

−i(s
(0))) +

Es(1)∼p(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv
π∗

i (s(1))] . Since vπ
∗

i (s) ≥ v′i(s) for all i ∈ [n], s ∈ S, we
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have for any s(0) ∈ S

v
π∗

i (s(0))

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼p(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv
π∗

i (s(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼p(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv′i(s
(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0)))

+ E
s(1)∼p(·|s(0),a

(0)
i ,π∗

−i(s
(0)))

[
γ

(
ri(s

(1),a
(1)
i ,π∗

−i(s
(1)))

+ E
s(2)∼p(·|s(1),a

(1)
i ,π∗

−i(s
(1))

[γv
π∗

i (s(2))]

)]
≥ ri(s(0),a

(0)
i ,π∗

−i(s
(0)))

+ E
s(1)∼p(·|s(0),a

(0)
i ,π∗

−i(s
(0)))

[
γ

(
ri(s

(1),a
(1)
i ,π∗

−i(s
(1)))

+ E
s(2)∼p(·|s(1),a

(1)
i ,π∗

−i(s
(1))

[γv′i(s
(2))]

)]
... (10)

≥ v(πi,π
∗
−i)

i (s)

where in Equation (10), we recursively expand v′i and eliminate vπ∗
using Equation (9). We therefore

conclude that for all states s ∈ S, and for all i ∈ [n],

v
π∗

i (s) ≥ max
πi∈Fi(π

∗
−i)

v
(πi,π

∗
−i)

i (s).

Lemma 1. Given an MPGM, a Markov policy profile π∗ ∈ Fmarkov(π∗) is a GMPE iff ϕ(s,π∗) =
0, for all states s ∈ S. Similarly, a policy profile π∗ ∈ F (π∗) is an GNE iff φ(π∗) = 0.

Proof of Lemma 1. We first prove the result for state exploitability.

(π∗ is a GMPE =⇒ ϕ(s,π∗) = 0 for all s ∈ S): Suppose that π∗ is a GMPE, i.e., for all players

i ∈ [n], vπ
∗

i (s) ≥ maxπi∈Fi(π
∗
−i)

v
(πi,π

∗
−i)

i (s) for all state s ∈ S. Then, for all state s ∈ S, we
have

∀i ∈ [n], max
πi∈Fi(π

∗
−i)

v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0 (11)

Summing up across all players i ∈ [n], we get

ϕ(s,π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)

v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0 (12)

(ϕ(s,π∗) = 0 for all s ∈ S =⇒ π∗ is a GMPE): Suppose we have π∗ ∈ Fmarkov(π∗) and
ϕ(s,π∗) = 0 for all s ∈ S. That is, for any s ∈ S

ϕ(s,π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)

v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0. (13)
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Since for any i ∈ [n], π∗
i ∈ Fmarkov

i (π∗
−i), maxπi∈Fmarkov

i (π∗
−i)

v
(πi,π

∗
−i)

i (s) − vπ
∗

i ≥ v
π∗

i (s) −

v
π∗

i (s) = 0. As a result, we must have for all player i ∈ [n],

v
π∗

i (s) = max
πi∈F (π∗

−i)
v
(πi,π

∗
−i)

i (s), ∀s ∈ S (14)

Thus, we can conclude that π∗ is a GMPE.

Then, we can prove results for exploitability in an analogous way.

(π∗ is a GNE =⇒ φ(π∗) = 0 ): Suppose that π∗ is a GNE, i.e., for all players i ∈ [n],
ui(π

∗) ≥ maxπi∈Fi(π
∗
−i)

ui(πi,π
∗
−i). Then, we have

∀i ∈ [n], max
πi∈Fi(π

∗
−i)

ui(πi,π
∗
−i)− ui(π∗) = 0 (15)

Summing up across all players i ∈ [n], we get

φ(π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)

ui(πi,π
∗
−i)− ui(π∗) = 0 (16)

(φ(s,π∗) = 0 =⇒ π∗ is a GNE): Suppose we have π∗ ∈ F (π∗) and φ(π∗) = 0. That is,

φ(π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)

ui(πi,π
∗
−i)− ui(π∗) = 0. (17)

Since for any i ∈ [n], π∗
i ∈ Fi(π∗

−i), maxπi∈Fi(π
∗
−i)

ui(πi,π
∗
−i)−ui(π∗) ≥ ui(π∗)−ui(π∗) = 0.

As a result, we must have for all player i ∈ [n],

ui(π
∗) = max

πi∈F (π∗
−i)

ui(πi,π
∗
−i) (18)

Thus, we can conclude that π∗ is a GNE.

Observation 1. Given an MPGM, minπ∈F (π) φ(π) = minπ∈F (π) maxπ′∈Fmarkov(π) Ψ(π ,π′).

Proof. The per-player maximum operator can be pulled out of the sum in the definition of state-
exploitability, because the ith player’s best-response policy is independent of the other players’
best-response policies, given a fixed policy profile π :

∀ s ∈ S, ϕ(s,π) =
∑
i∈[n]

max
π′

i∈Fmarkov
i (π−i)

v
(π′

i,π−i)

i (s)− vπi (s) (19)

= max
π′∈Fmarkov(π)

∑
i∈[n]

v
(π′

i,π−i)

i (s)− vπi (s) (20)

= max
π′∈Fmarkov(π)

ψ(s,π ,π′) (21)

The argument is analogous for exploitability:

φ(π) =
∑
i∈[n]

max
π′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i)− ui(π) (22)

= max
π′∈Fmarkov(π)

∑
i∈[n]

ui(π
′
i,π−i)− ui(π) (23)

= max
π′∈F (π)

Ψ(π ,π′) (24)

Lemma 2. Given an MPGM,
minπ∈F (π) maxπ′∈Fmarkov(π) Ψ(π ,π′) = minπ∈F (π) maxρ∈R Ψ(π ,ρ(·,π(·))).
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Proof. Fix π∗ ∈ Fmarkov(π∗). We want to show that

max
π′∈Fmarkov(π∗)

φ(π∗,π′) = max
ρ∈R

φ(π∗,ρ(·,π(·))) .

Define PR,π∗ .
= {π : s 7→ ρ(s,π∗(s)) | ρ ∈ R} ⊆ Pmarkov.

First, for all π′ ∈ PR,π∗
, π′(s) = ρ(s,π∗(s)) ∈ X(s,π∗(s)), for all s ∈ S, by the definition ofR.

Thus, π′ ∈ Fmarkov(π∗) = {π ∈ Pmarkov | ∀s ∈ S,π(s) ∈ X(s,π∗(s))}. Therefore, PR,π∗ ⊆
Fmarkov(π∗), which implies that maxπ′∈Fmarkov(π∗) φ(π

∗,π′) ≥ maxπ′∈PR,π∗ φ(π∗,π′) =

maxρ∈R φ(π∗,ρ(·,π(·))).

Moreover, for all π′ ∈ Fmarkov(π∗), π′(s) ∈ X(s,π∗(s)), for all s ∈ S, by the defi-
nition of Fmarkov. Define ρ′ such that for all s ∈ S, ρ′(s,a) = π′(s) if a = π∗(s),
and ρ′(s,a) = a′ for some a′ ∈ X(s,a) otherwise. Note that ρ′ ∈ R, since ∀(s,a) ∈
S × A, ρ(s,a) ∈ X(s,a). Thus, as π′(s) = ρ′(s,π∗(s)), for all s ∈ S, it follows that π′ ∈
PR,π∗

. Therefore, Fmarkov(π∗) ⊆ PR,π∗
, which implies that maxπ′∈Fmarkov(π∗) φ(π

∗,π′) ≤
maxπ′∈PR,π∗ φ(π∗,π′) = maxρ∈R φ(π∗,ρ(·,π(·))).

Finally, we conclude that maxπ′∈Fmarkov(π∗) φ(π
∗,π′) = maxρ∈R φ(π∗,ρ(·,π(·))).

Assumption 3 (Parameterization for Min-Max Optimization). Given an MPGM and a parameteri-
zation scheme (π ,ρ,RΩ,RΣ), assume 1. for all ω ∈ RΩ, π(s;ω) ∈ X(s,π(s;ω)), for all s ∈ S;
and 2. for all σ ∈ RΣ, ρ(s,a;σ) ∈ X(s,a), for all (s,a) ∈ S ×A.

Lemma 3. Given an MPGM and a parameterization scheme (π ,ρ,RΩ,RΣ) with ϕ(s, ·) differen-
tiable at ω ∈ RΩ, for all s ∈ S. If ∥∇ωφ(ω)∥= 0, then ∥∇ωϕ(s,ω)∥= 0 µ-almost surely, for all
states s ∈ S, i.e., µ({s ∈ S | ∥∇ωϕ(s,ω)∥= 0}) = 1. Moreover, for any ε > 0 and δ ∈ [0, 1], if
supp(µ) = S and ∥∇ωφ(ω)∥≤ ε, then with probability at least 1− δ, ∥∇ωϕ(s,ω)∥≤ ε/δ, for all
states s ∈ S.

Proof. First, using Jensen’s inequality, by the convexity of the 2-norm ∥·∥, we have:

E
s∼µ

[
∥∇ωϕ(s,ω)∥

]
≤
∥∥∥∥ E
s∼µ

[
∇ωϕ(s,ω)

]∥∥∥∥
=

∥∥∥∥∇ω E
s∼µ

[ϕ(s,ω)]

∥∥∥∥
= ∥∇ωφ(ω)∥ .

The first claim follows directly from the fact that for all s ∈ S, ∥∇ωφ(s,ω)∥≥ 0, and hence for

the expectation Es∼µ

[
∥∇ωφ(s,ω)∥

]
to be equal to 0, its value should be equal to zero on a set of

measure 1.

Now, for the second part, by Markov’s inequality, we have: P
(
∥∇ωϕ(s,ω)∥≥ ε/δ

)
≤

Es∼µ

[
∥∇ωϕ(s,π)∥

]
ε/δ ≤ ε

ε/δ = δ.

Lemma 4. LetM be an MPG with initial state distribution µ. Given policy parameter ω ∈ RΩ, for
any state distribution υ ∈ ∆(S), if both ϕ(υ, ·) and φ(·) are differentiable at ω , then ∥∇ϕ(υ,ω)∥≤
Cbr(π(·;ω), µ, υ)∥∇φ(ω)∥. In particular, for any s ∈ S, if υs is the Dirac distribution on S
centered at s, then ∥∇ϕ(s,ω)∥≤ Cbr(π(·;ω), µ, υs)∥∇φ(ω)∥.

Proof. In this proof, for any i ∈ [n], we define σi(ω) = ρi(·,π(·;ω);σ) as player i’s policy in the
policy profile σ(ω) = ρ(·,π(·;ω);σ). Similarly, we define ωi = πi(·;ω) as player i’s policy in
the policy profile ω = π(·;ω).
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Given a policy parametrization scheme (π ,ρ,RΩ,RΣ), consider any two parameters ω ∈ RΩ,σ ∈
RΣ, and any two initial state distributions µ, υ ∈ ∆(S), we know that∥∥∥∇ωψ(υ,ω ,σ)

∥∥∥ (25)

=

∥∥∥∥∥∥∇ω

∑
i∈[n]

ui(σi(ω),ω−i)− ui(ω)

∥∥∥∥∥∥ (26)

=

∥∥∥∥∥∥
∑
i∈[n]

∇ω (ui(σi(ω),ω−i)− ui(ω))

∥∥∥∥∥∥ (27)

=

∥∥∥∥∥∥∥
∑
i∈[n]

∇ω

E
s′∼δ

(σi(ω),ω−i)

υ

s∼δωυ

[
ri(s

′,ρi(s
′,π(s;ω);σ),π−i(s

′;ω)− ri(s,π(s;ω))
]
∥∥∥∥∥∥∥ (28)

=

∥∥∥∥ ∑
i∈[n]

E
s′∼δ

(σi(ω),ω−i)

υ

s∼δωυ

[
∇a−i

q
σi(ω),ω−i

i (s′,ρi(s
′,π(s′;ω);σ),π−i(s

′;ω))∇ω

(
ρi(s

′,π−i(s
′;ω);ω),π(s′;ω)

)
−∇aq

ω
i (s,π(s;ω))∇ωπ(s;ω)

]∥∥∥∥ (29)

≤ max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)
υ (s′)δ

ω
υ (s)

δ
(σi(ω),ω−i)
µ (s′)δ

ω
µ (s)

∥∥∥∥Es′∼δ
(σi(ω),ω−i)

µ

s∼δωµ

[
∇a−i

q
σi(ω),ω−i

i (s′,ρi(s
′,π(s′;ω);σ),π−i(s

′;ω))

∇ω

(
ρi(s

′,π−i(s
′;ω);ω),π(s′;ω)

)
−∇aq

ω
i (s,π(s;ω))∇ωπ(s;ω)

]∥∥∥∥ (30)

≤ max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)
υ (s′)δ

ω
υ (s)

δ
(σi(ω),ω−i)
µ (s′)δ

ω
µ (s)

∥∥∥∇ω

[
v
σi(ω),ω−i

i (µ)− vωi (µ)
]∥∥∥ (31)

≤
(

1

1− γ

)2

max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)
υ (s′)δ

ω
υ (s)

µ(s′)µ(s)

∥∥∥∇ωψ(µ,ω ,σ)
∥∥∥ (32)

=

(
1

1− γ

)2

max
i∈[n]

∥∥∥∥∥δ
(σi(ω),ω−i)
υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωµµ
∥∥∥∥
∞

∥∥∥∇ωψ(µ,ω ,σ)
∥∥∥ (33)

where Equation (29) and Equation (31) are obtained by deterministic policy gradient theorem Silver
et al. (2014), and Equation (32) is due to the fact that δωµ (s) ≥ (1− γ)µ(s) for any π ∈ P , s ∈ S.

Given condition (1) of Assumption 5, fix any ω ∈ RΩ, there exists σ∗ ∈ RΣ s.t. for all i ∈ [n],
s ∈ S:

q
ω
i (s,ρi(s,π(s;ω);σ∗),π−i(s;ω)) = max

π′
i∈Fi(π(·;ω))

q
ω
i (s,π

′
i(s),π−i(s;ω)) .

Thus, ϕ(s,ω) = ψ(s,ω ,σ∗) for all s ∈ S. Hence, plugging in the optimal best-response policy
σ = σ∗, we obtain that

∥∇ωϕ(υ,ω)∥ ≤
(

1

1− γ

)2

max
i∈[n]

∥∥∥∥∥δ
(σ∗

i (ω),ω−i)
υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωµµ
∥∥∥∥
∞
∥∇ωϕ(µ,ω)∥ (34)

≤
(

1

1− γ

)2

max
i∈[n]

max
π′

i∈Φi(π−i(·;ω))

∥∥∥∥∥δ
(π′

i,π−i(·;ω))
υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωµµ
∥∥∥∥
∞
∥∇ωϕ(µ,ω)∥ (35)

where eq. (35) is due to the fact that σ∗
i (ω) ∈ Φi(π−i(·;ω)).

Assumption 4 (Lipschitz Smooth Payoffs). Given a Markov pseudo-gameM and a parameterization
scheme (π ,ρ,RΩ,RΣ), assume 1. RΩ and RΣ are non-empty, compact, and convex, 2. ω 7→ π(s;ω)
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is twice continuously differentiable, for all s ∈ S, and σ 7→ ρ(s,a;σ) is twice continuously
differentiable, for all (s,a) ∈ S × A; 3. a 7→ r(s,a) is twice continuously differentiable, for all
s ∈ S; 4. a 7→ p(s′ | s,a) is twice continuously differentiable, for all s, s′ ∈ S.

Assumption 5 (Gradient Dominance Conditions). Given a Markov pseudo-game M together
with a parameterization scheme (π ,ρ,RΩ,RΣ), assume 1. (Closure under policy improve-
ment) For each ω ∈ RΩ, there exists σ ∈ RΣ s.t. q

ω
i (s,ρi(s,π(s;ω);σ),π−i(s;ω)) =

maxπ′
i∈Fi(π(·;ω)) q

ω
i (s,π

′
i(s),π−i(s;ω)) for all i ∈ [n], s ∈ S. 2. (Concavity of action-value)

σ 7→ q
ω′

i (s,ρi(s,π−i(s;ω);σ),π−i(s;ω)) is concave, for all s ∈ S and ω ,ω′ ∈ RΩ.

Theorem 2.2. Given an MPG M and a parameterization scheme (π ,ρ,RΩ,RΣ), assume As-
sumptions 1, 4, and 5 hold. For any δ > 0, set ε = δ∥Cbr(·, µ, ·)∥−1

∞ . If Algorithm 1 is run
with inputs that satisfy ηω , ησ ≍ poly(ε, ∥∂δπ

∗
µ /∂µ∥∞, 1

1−γ , ℓ
−1
∇Ψ, ℓ

−1
Ψ ), then there exists T ∈

poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇Ψ, ℓΨ, diam(RΩ × RΣ), η−1

ω

)
and k ≤ T s.t. ω(T )

best = ω(k)

is an (ε, ε/2ℓΨ)-stationary point of exploitability, i.e., there exists ω∗ ∈ RΩ s.t. ∥ω(T )
best −ω∗∥≤ ε/2ℓΨ

and minh∈Dφ(ω∗)∥h∥≤ ε. And, for any distribution υ ∈ ∆(S), if ϕ(υ, ·) is differentiable at ω∗, then

∥∇ωφ(υ,ω
∗)∥≤ δ, i.e., ω(T )

best is an (ε, δ)-stationary point of expected state exploitability ϕ(υ, ·).

Proof. As is common in the optimization literature (see, for instance, Davis et al. (2018)), we consider
the Moreau envelope of the exploitability, which we simply call the Moreau exploitability, i.e.,

φ̃(ω)
.
= min

ω′∈RΩ

{
φ(ω′) + ℓ∇ψ ∥ω − ω′∥2

}
.

Similarly, we also consider the state Moreau exploitability, i.e., the Moreau envelope of the state
exploitability:

ϕ̃(s,ω)
.
= min

ω′∈RΩ

{
ϕ(s,ω′) + ℓ∇ψ ∥ω − ω′∥2

}
.

We recall that in these definitions, by our notational convention, ℓ∇ψ ≥ 0, refers to the Lipschitz-
smoothness constants of the state exploitability which in this case we take to be the largest across
all states, i.e., for all s ∈ S, (ω ,σ) 7→ ψ(s,ω ,σ) is ℓ∇ψ-Lipschitz-smooth, respectively, and
which we note is guaranteed to exist under Assumption 4. Further, we note that since Ψ(ω ,σ) =
Es∼µ [ψ(s,ω ,σ)] is a weighted average of ψ, (ω ,σ) 7→ Ψ(ω ,σ) is also ℓ∇ψ-Lipschitz-smooth.

We invoke Theorem 2 of Daskalakis et al. (2020). Although their result is stated for gradient-
dominated-gradient-dominated functions, their proof applies in the more general case of non-convex-
gradient-dominated functions.

First, Assumption 4 guarantees that the cumulative regret Ψ is Lipschitz-smooth w.r.t. (ω ,σ).
Moreover, under Assumption 4, which guarantees that σ 7→ q

ω′

i (s,ρi(s,π−i(s;ω);σ),π−i(s;ω))

is continuously differentiable for all s ∈ S and ω ,ω′ ∈ RΩ, and Assumption 5, we have that Ψ

is
(∥∥∥∥∂δ

π∗
µ /∂µ

∥∥∥∥
∞
/1−γ

)
-gradient-dominated in σ , for all ω ∈ RΩ, by Theorems 2 and 4 of Bhandari

& Russo (2019). Finally, under Assumption 4, since the policy, the reward function, and the
transition probability function are all Lipschitz-continuous, û, Ψ̂, and hence Ĝ are also Lipschitz-
continuous, since S and A are compact. Their variance must therefore be bounded, i.e., there exists
ςω , ςσ ∈ R s.t. Eh,h′ [Ĝω (ω ,σ ;h,h′)−∇ωΨ(ω ,σ ;h,h′)] ≤ ςω and Eh,h′ [Ĝσ (ω ,σ ;h,h′)−
∇σΨ(ω ,σ ;h,h′)] ≤ ςσ .

Hence, under our assumptions, the assumptions of Theorem 2 of Daskalakis et al. are satisfied.
Therefore, 1/T+1

∑T
t=0∥∇φ̃(ω(t))∥≤ ε. Taking a minimum across all t ∈ [T ], we conclude∥∥∥∇φ̃(ω(T )

best)
∥∥∥ ≤ ε.

Then, by the Lemma 3.7 of Lin et al. (2020), there exists some ω∗ ∈ RΩ such that ∥ω(T )
best−ω∗∥≤ ε

2ℓΨ

and ω∗ ∈ RΩ
ε
.
= {ω ∈ RΩ | ∃α ∈ Dφ(ω), ∥α∥≤ ε}. That is, ω(T )

best is a (ε, ε
2ℓΨ

)-stationary point of
φ.
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Furthermore, if we assume that ϕ(δ, ·) is differentiable at ω∗ for any state distribution δ ∈ ∆(S), φ
is also differentiable at ω∗. Hence, by the proof of Lemma 4, we know that for any state distribution
υ ∈ ∆(S),

∥∇ωϕ(υ,ω)∥ ≤ max
σ∗∈argmaxσ∈RΣ ψ(υ,ω ,σ)

∥∇ωψ(υ,ω ,σ
∗)∥ (36)

≤ max
i∈[n]

max
σ∗∈argmaxσ∈RΣ ψ(υ,ω ,σ)

(37)

(
1

1− γ

)2
∥∥∥∥∥δ

σ∗
i (ω),ω−i

υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωυµ
∥∥∥∥
∞
∥∇ωΨ(ω ,σ∗)∥ (38)

= Cbr(ω , µ, υ)∥∇ωΨ(ω ,σ∗)∥ (39)

1

Cbr(ω , µ, υ)
∥∇ωϕ(υ,ω)∥≤ ∥∇ωΨ(ω ,σ∗)∥ (40)

Therefore,

ω∗ ∈ RΩ
ε
.
= {ω ∈ RΩ | ∃α ∈ Dφ(ω), ∥α∥≤ ε} (41)

⊇ {ω ∈ RΩ | ∃σ∗ ∈ argmax
ω∈RΩ

Ψ(ω ,σ)s.t.∥∇ωΨ(ω ,σ∗)∥≤ ε} (42)

⊇ {ω ∈ RΩ | 1/Cbr(ω ,µ,υ)∥∇ωϕ(υ,ω)∥≤ ε} (43)

= {ω ∈ RΩ | ∥∇ωϕ(υ,ω)∥≤ δ} (44)

Therefore, we can conclude that there exists ω∗ such that ∥ω(T )
best−ω∗∥≤ ε

2ℓΨ
and ∥∇ωϕ(υ,ω)∥≤ δ

for any υ. Thus, ω(T )
best is a (ε, δ)-stationary point of ϕ(υ, ·) for any υ ∈ ∆(S).

D.2 OMITTED ASSUMPTIONS, RESULTS, AND PROOFS FROM SECTION 3

Assumption 6. Given an infinite horizon Markov exchange economy I, assume for all i ∈ [n],

1. X , Y, E, are non-empty, closed, convex, with E additionally bounded;

2. (θi,xi) 7→ ri(xi;θi) is continuous and concave, and (s,yi) 7→ p(s′ | s,yi,y−i) is
continuous and stochastically concave, for all s′ ∈ S and y−i ∈ Y−i;

3. for all ei ∈ Ei, the correspondence

(p, q) ⇒ Bi(ei,p, q)∩

(xi,yi)

∣∣∣∣∣ ∑
i∈[n]

xi ≤
∑
i∈[n]

ei,
∑
i∈[n]

yi ≤ 0m, (X ,Y ) ∈ X × Y


is continuous16 and non-empty, convex, and compact, for all p ∈ ∆m and q ∈ Rl;17

4. (no saturation) there exists an x+
i ∈ Xi s.t. ri(x

+
i ;θi) > ri(xi;θi), for all xi ∈ Xi and

θi ∈ Ti.
Theorem 3.1. Consider an infinite horizon MEE I. Under Assumption 6, the set of RRE of I is
equal to the set of GMPE of the associated exchange economy MPGM.

Proof. Let π∗ = (X∗,Y ∗,p∗, q∗) : S → X × Y × P × Q be an GMPE of the Radner Markov
pseudo-gameM associated with I. We want to show that it is also an RRE of I.

16One way to ensure this condition holds is to assume that for all s = (o,E ,Θ) ∈ S, returns from assets
are positive, i.e., Ro ≥ 0ml, and for all consumers i ∈ [n], there exists (xi,yi) ∈ Xi × Yi, s.t. xi < ei and
yi < 0.

17One way to ensure this condition holds is to assume that for all s = (o,E ,Θ) ∈ S, returns from assets are
positive, i.e., Ro ≥ 0ml, and X ,Y are bounded from below.
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First, we want to show that π∗ is Markov perfect for all consumers. We can make some easy
observations: the state value for the player i ∈ [n] in the Radner Markov pseudo-game at state s ∈ S
induced by the policy π∗

v
π∗

i (s) = E
H∼νπ∗

[ ∞∑
t=0

γtr′(S(t), A(t)) | S(0) = s)

]
(45)

= E
H∼νπ∗

[ ∞∑
t=0

γtri(x
∗
i (S

(t)); Θ
(t)
i ) | S(0) = s)

]
(46)

is equal to the consumption state value induced by (X∗,Y ∗,p∗, q∗)

v
(X∗,Y ∗,p∗,q∗)
i (s)

.
= E
H∼ν(X∗,Y ∗,p∗,q∗)

[ ∞∑
t=0

γtri

(
x∗
i (H:t); Θ

(t)
)
| S(0) = s

]
. (47)

as x∗
i is Markov. Since π∗ is a GMPE, we know that for any i ∈ [n]:

(x∗
i ,y

∗
i ) ∈ argmax

(xi,yi):S→Xi×Yi:∀s∈S,
(xi,yi)(s)∈Bi(ei,p

∗(s),q∗(s))

{
v
(xi,x

∗
−i,yi,y

∗
−i,p

∗,q∗)

i (s)
}

for all s ∈ S, so (X∗,Y ∗,p∗, q∗) is Markov perfect.

Next, we want to show that (X∗,Y ∗,p∗, q∗) satisfies the Walras’s law. First, we show that for any
i ∈ [n], s ∈ S, x∗

i (s) · p∗(s) + y∗
i (s) · q∗(s)− ei · p∗(s) = 0. By way of contradiction, assume

that there exists some i ∈ [n], s ∈ S such that x∗
i (s) ·p∗(s)+y∗

i (s) · q∗(s)− ei ·p∗(s) ̸= 0. Note
that (x∗

i (s),y
∗
i (s)) ∈ B′(s,a−i) = B(ei,p∗(s), q∗(s)) = {(xi,yi) ∈ Xi ×Yi | xi · p∗(s) + yi ·

q∗(s) ≤ ei · p∗(s)}, so we must have x∗
i (s) · p∗(s) + y∗

i (s) · q∗(s) − ei · p∗(s) < 0. By the
(no saturation) condition of Assumption 6, there exists x+

i ∈ Xi s.t. ri(x
+
i ;θi) > ri(x

∗
i (s);θi).

Moreover, since xi 7→ ri(xi;θi) is concave, for any 0 < t < 1, ri(tx
+
i + (1 − t)x∗

i (s);θi) >
ri(x

∗
i (s);θi). Since x∗

i (s) · p∗(s) + y∗
i (s) · q∗(s)− ei · p∗(s) < 0, we can pick t small enough

such that x′
i = tx+

i + (1 − t)x∗
i (s) satisfies x

′

i(s) · p∗(s) + y∗
i (s) · q∗(s) − ei · p∗(s) ≤ 0 but

x′
i ∈ Xi s.t. ri(x

+
i ;θi) > ri(x

∗
i (s);θi). Thus,

q
π∗

i (s,x′
i,x

∗
−i(s),Y

∗(s),p∗(s), q∗(s)) (48)

= r′i(s,x
′
i,x

∗
−i(s),Y

∗(s),p∗(s), q∗(s)) + E
S′∼p(S′|s,Y ∗(s))

[γv
π∗

i (S′)] (49)

= ri(x
′
i;θi) + E

S′∼p(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (50)

> ri(x
∗
i (s);θi) + E

S′∼p(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (51)

= q
π∗

i (s,X∗(s),Y ∗(s),p∗(s), q∗(s)) (52)

This contradicts that fact that π∗ is a GMPE since an optimal policy is supposed to be greedy optimal
(i.e., maximize the action-value function of each player over its action space at all states) respect to
optimal action value function. Thus, we know that for all i ∈ [n], s ∈ S, x∗

i (s) · p∗(s) + y∗
i (s) ·

q∗(s)− ei · p∗(s) = 0. Summing across the buyers, we get p∗(s) ·
(∑

i∈[n] x
∗
i (s)−

∑
i∈[n] ei

)
+

q∗(s) ·
(∑

i∈[n] y
∗
i (s)

)
= 0 for any s ∈ S, which is the Walras’ law.

Finally, we want to show that (X∗,Y ∗,p∗, q∗) is feasible. We first show that∑
i∈[n] x

∗
i (s) −

∑
i∈[n] ei ≤ 0m for any s ∈ S. We proved that for any state s ∈

S, r′n+1(s,X
∗(s),Y ∗(s),p∗(s), q∗(s)) = p∗(s) ·

(∑
i∈[n] x

∗
i (s)−

∑
i∈[n] ei

)
+ q∗(s) ·(∑

i∈[n] y
∗
i (s)

)
= 0, which implies vπ

∗

n+1(s) = 0. For any j ∈ [m], consider a p : S → P
defined by p(s) = jj for all s ∈ S and a q : s → Q defined by q(s) = 0l for all s ∈ S. Then, we
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know that

0 = v
π∗

n+1 (53)

= q
π∗

n+1(s,X
∗(s),Y ∗(s),p∗(s), q∗(s)) (54)

≥ qπ
∗

n+1(s,X
∗(s),Y ∗(s),p(s), q(s)) (55)

= r′n+1(s,X
∗(s),Y ∗(s),p(s), q(s)) + E

S′∼p(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (56)

= jj ·

∑
i∈[n]

x∗
i (s)−

∑
i∈[n]

ei

 ∀j ∈ [m] (57)

=
∑
i∈[n]

x∗ij(s)−
∑
i∈[n]

eij ∀j ∈ [m] (58)

Thus, we know that
∑
i∈[n] x

∗
i (s) −

∑
i∈[n] ei ≤ 0m for any s ∈ S. Finally, we show that∑

i∈[n] y
∗
i (s) ≤ 0l for all s ∈ S. By way of contradiction, suppose that for some asset k ∈ [l], and

some state s ∈ S,
∑
i∈[n] y

∗
ik(s) > 0. Then, the auctioneer can increase its cumulative payoff by

increasing q∗k(s), which contradicts the definition of a GMPE.

Therefore, we can conclude that π∗ = (X∗,Y ∗,p∗, q∗) : S → X ×Y ×P ×Q is a RRE of I .

Corollary 2. Under Assumption 6, the set of RRE of an infinite horizon MEE is non-empty.

Proof. For any infinite horizon Markov exchange economy I for which Assumption 6 holds, consider
the associated exchange economy Markov pseudo-gameM. By the definition of exchange economy
Markov pseudo game, we can see that the transition functions set in the game are all stochastically
concave and as such give rise action-value functions which are concave in the actions each of player
Atakan (2003a), and it is easy to verify that the game also satisfies all conditions that guarantee the
existence of a GMPE (see Section 4 of Atakan (2003a) for detailed proofs). Hence, by Theorem 2.1
which guarantees the existence of GMPE in Markov pseudo-game, we can conclude that there exists
an RRE (X∗,Y ∗,p∗, q∗) in any Radner economy I.

Theorem 3.2. Given an infinite horizon MEE I for which Assumption 6 holds, and the associated
exchange economy MPG M. If (π ,ρ,RΩ,RΣ) is a parametrization scheme for M such that
Assumptions 4 and 5 hold, then the convergence results in Theorem 2.2 hold, meaning Algorithm 1
converges to a point in the neighborhood of a point that approximately satisfies the necessary
conditions of an GMPE inM, which is likewise a point that approximately satisfies the necessary
conditions of an RRE of I. Moreover, beyond its finite-time guarantees, in the limit, Algorithm 1
converges to a point that satisfies these conditions exactly.

Proof. In the proof of Theorem 3.1, we can observe that, for any infinite horizon Markov exchange
economy I and its associated exchange economy Markov pseudo-gameM, the exploitability of
an outcome (X ,Y ,p, q) in I is equivalent to the exploitability of a policy π = (X ,Y ,p, q) in
M. Similarly, the state exploitability of an outcome (X ,Y ,p, q) in I is equivalent to the state
exploitability of a policy π = (X ,Y ,p, q) inM given any state s ∈ s.

Therefore, this results follows readily from Theorem 2.2.

E EXPERIMENTS

E.1 NEURAL PROJECTION METHOD

The projection method Judd (1992), also known as the weighted residual methods, is a numerical
technique often used to approximate solutions to complex economic models, particularly those
involving dynamic programming and dynamic stochastic general equilibrium (DSGE) models. These
models are common in macroeconomics and often don’t have analytical solutions due to their non-
linear, dynamic, and high-dimensional nature. The projection method helps approximate these
solutions by projecting the problem into a more manageable, lower-dimensional space.
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The main idea of the projection method is to express equilibrium of the dynamic economic model
as a solution to a functional equation D(f) = 0, where f : S → Rm is a function that represent
some unknown policy, D : (S → Rm) → (S → Rn), and 0 is the constant zero function. Some
classic examples of the operator D includes Euler equations and Bellman equations. A canonical
project method consists of four steps: 1) Define a set of basis functions {ψi : S → Rm}i∈[n] and
approximate each each function f ∈ F through a linear combination of basis functions: f̂(·;θ) =∑n
i=1 θiψi(·); 2) Define a residual equation as a functional equation evaluated at the approximation:

R(·;θ) .= D(f̂(·;θ)); 3) Choose some weight functions {wi : S → R}i∈[p] over the states and find
θ that solves F (θ) .=

∫
S wi(s)R(s;θ)ds = 0 for all i ∈ [p]. This gets the residual “close" to zero

in the weighted integral sense; 4) Simulate the optimal decision rule based on the chosen parameter
θ and basis functions.

Recently, the neural projection method was developed to extend the traditional projection method
Maliar et al. (2021); Azinovic et al. (2022); Sauzet (2021). In the neural projection method, neural
networks are used as the functional approximators for policy functions instead of traditional basis
function approximations. In this section, we show how we can approximate generalized Markov
perfect equilibrium of Markov pseudo-game, and consequently Recursive Radner Equilibrium of
infinite-horizon Markov exchange economies, through the neural projection method.

Assumption 7. Given a Markov pseudo-gameM, assume that 1. for any i ∈ [n], s ∈ S, a−i ∈ A−i,
Xi(s,a−i)

.
= {ai ∈ Ai | hic(s,ai,a−i) ≥ 0 for all c ∈ [d]} for a collection of constraint functions

{hic : S ×A | c ∈ [d]}, where ai 7→ hic(s,ai,a−i) is concave for every c ∈ [d].

Theorem E.1. LetM be a Markov pseudo-game that satisfies Assumption 7. For any policy profile
π ∈ Fmarkov, π is a GMPE if and only if there exists Lagrange multiplier policy λ : S → Rn×d+
such that (π ,λ) solves the following functional equation: for all i ∈ [n], s ∈ S,

0 ∈ ∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[d]

λic(s)∂ai
hic(s,πi(s),π−i(s)) (59)

∀c ∈ [d], 0 = λic(s)hic(s,πi(s),π−i(s)) (60)
∀c ∈ [d], 0 ≤ hic(s,πi(s),π−i(s)) (61)

and for all i ∈ [n], s ∈ S,

v
π
i (s) = q

π
i (s,πi(s),π−i(s)) (62)

Proof. First, we know that a policy profile π ∈ Fmarkov is a GMPE if and only if it satisfies the
following generalized Bellman Optimality equations, i.e., for all i ∈ [n], s ∈ S,

v
π
i (s) = max

ai∈Xi(s,π−i(s))
ri(s,ai,π−i(s)) + γEs′∼p(·|s,ai,π−i(s))

[v
π
i (s

′)] (63)

= max
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (64)

Then since ai 7→ q
π
i (s,ai,π−i(s)) is concave over Xi(s,π−i(s)) by Assumption 1, the KKT

conditions provides sufficient and necessary optimality conditions for the constrained maximization
problem

max
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (65)

That is, a∗
i ∈ Xi(s,π−i(s)) is a solution to eq. (65) if and only if there exists {λ∗ic : S → R+}c∈[d]

s.t.

0 ∈ ∂ai
q
π
i (s,a

∗
i ,π−i(s)) +

∑
c∈[d]

λ∗ic(s)∂ai
hic(s,a

∗
i ,π−i(s)) (66)

∀c ∈ [d], 0 = λ∗ic(s)hic(s,a
∗
i ,π−i(s)) (67)

∀c ∈ [d], 0 ≤ hic(s,a∗
i ,π−i(s)) (68)
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Therefore, we can conclude that π ∈ Fmarkov is a GMPE if and only if there exists {λic : S →
R+}i∈[n],c∈[d] s.t. for all i ∈ [n], s ∈ S,

0 ∈ ∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[d]

λi,c(s)∂ai
hic(s,πi(s),πi(s)) (69)

∀c ∈ [d], 0 = λic(s)hic(s,πi(s),πi(s)) (70)
∀c ∈ [d], 0 ≤ hic(s,πi(s),π−i(s)) (71)

and for all i ∈ [n], s ∈ S,

v
π
i (s) = q

π
i (s,πi(s),π−i(s)) (72)

Therefore, for a policy profile π ∈ Fmarkov and a Lagrange multiplier policy λ : S → Rn×d+ ,
consider the total first-order violation

Ξfirst-order(π ,λ) =
∑
i∈[n]

∥∥∥∥∥∥
∫
s∈S

∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[d]

λi,c(s)∂ai
hic(s,πi(s),π−i(s))ds

∥∥∥∥∥∥
2

2
(73)

and the average Bellman error

ΞBellman(π ,λ) =
∑
i∈[n]

∥∥∥∥∥
∫
s∈S

v
π
i (s)− q

π
i (s,πi(s),π−i(s))ds

∥∥∥∥∥
2

2

. (74)

We can directly approximate the GMPE through minimizing the sum of these two errors.

Typically, approximating the GMPE using the neural projection method requires optimizing both
the policy profile and the Lagrange multiplier policy. However, in exchange economy Markov
pseudo-games, we derive a closed-form solution for the optimal Lagrange multiplier, allowing us to
focus solely on optimizing the policy profile.

E.2 MORE RESULTS

Figure 2: Normalized Metrics for Economies with Deterministic Transition Probability Function
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E.3 IMPLEMENTATION DETAILS

Deterministic Case Training Details For deterministic transition probability case, for each reward
function class we randomly sampled one economy with 10 consumers, 10 commodities, 1 asset, and 5
world state. The asset return matrix R is sampled in a way such that rokj ∼ U([0.5, 1.1]) for all o, k,
and j. Moreover, we set the length of the stochastic process to be 30. For the initial state, we sample
each consumer’s endowment ei ∼ U([0.01, 0.1])m and normalized so that the total endowment of
each commodity add up to 1. We also sample each consumer’s type θi ∼ U([1.0, 5.0])m, and set
the world state to be 0. The transition probability function p is defined as p(s′ | s,Y ) = 1 for all
s(o,E ,Θ) where s′ = (o′,E′,Θ′) is defined as o′ = 0, E′ = 0.01 · 1n×m, and Θ′ = Θ.

Then, for both GAPNets method and neural projection method, we run 1000 episodes for each
learning rate candidate in a grid search manner and measure the performance in terms of minimizing
total first-order violation and average Bellman error. Finally, we pick the best hyperparameter for the
final experiments.

In the final experiments, we run GAPNets for 2000 episodes using learning rates ηω = 1 ×
10−5,ησ = 1×10−5 for the linear economy, ηω = 1×10−5,ησ = 1×10−5 for the Cobb-Douglas
economy, and ηω = 1× 10−5,ησ = 1× 10−5 for the Leontief economy. Similarly, we ran neural
projection method for 2000 episodes using learning rates ηω = 1 × 10−4 for the linear economy,
ηω = 2.5× 10−5 for the Cobb-Douglas economy, and ηω = 1× 10−4 for the Leontief economy.
In this process, we compute the exploitability of computed policy profile through gradient ascent
of the adversarial network. In specific, we ran 1000 episodes of gradient ascent with learning rate
ησ = 5 × 10−5 for the linear economy, ησ = 1 × 10−4 for the Cobb-Douglas economy, and
ησ = 1× 10−4 for the Leontief economy.

Next, for each economy, we randomly sample 50 policy profiles and record their total first-order
violations, average Bellman errors, and exploitabilities. Finally, we normalize the results by the
average of the sampled values.

Stochastic Case Training Details For stochastic transition probability case, for each reward
function class we randomly sampled one economy with 10 consumers, 10 commodities, 1 asset,
and 5 world state. The asset return matrix R is sampled in a way such that rokj ∼ U([0.5, 1.1])
for all o, k, and j. Moreover, we set the length of the stochastic process to be 30. For the initial
state, we sample each consumer’s endowment ei ∼ U([0.01, 0.1])m and normalized so that the
total endowment of each commodity add up to 1. We also sample each consumer’s type θi ∼
U([1.0, 5.0])m, and set the world state to be 0. The transition probability function will stochastically
transition from state s(o,E ,Θ) to state s′ = (o′,E′,Θ′) where o′ ∼ U({0, 1, 2, 3, 4}), E′ ∼
0.002 + U([0.01, 0.1])n×m, and Θ′ = Θ.

Then, for both GAPNets method and neural projection method, we run 1000 episodes for each
learning rate candidate in a grid search manner and measure the performance in terms of minimizing
total first-order violation and average Bellman error. Finally, we pick the best hyperparameter for the
final experiments.

In the final experiments, we run GAPNets for 2000 episodes using learning rates ηω = 1 ×
10−5,ησ = 1 × 10−5 for the linear economy, ηω = 2.5 × 10−5,ησ = 2.5 × 10−5 for the Cobb-
Douglas economy, and ηω = 5 × 10−5,ησ = 5 × 10−5 for the Leontief economy. Similarly, we
ran neural projection method for 2000 episodes using learning rates ηω = 5× 10−5 for the linear
economy, ηω = 2.5× 10−5 for the Cobb-Douglas economy, and ηω = 5× 10−4 for the Leontief
economy. In this process, we compute the exploitability of computed policy profile through gradient
ascent of the adversarial network. In specific, we ran 1000 episodes of gradient ascent with learning
rate ησ = 7.5× 10−4 for the linear economy, ησ = 1× 10−4 for the Cobb-Douglas economy, and
ησ = 1× 10−4 for the Leontief economy. When estimating the neural loss function—cumulative
regret for the GAPNets method and total first-order violations and average Bellman error for the
neural projection method—we use 100 samples for GAPNets and 10 samples for the neural projection
method. The primary reason for this difference is the high memory consumption of the neural
projection method, which makes larger sample sizes infeasible.
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Next, for each economy, we randomly sample 50 policy profiles and record their total first-order
violations, average Bellman errors, and exploitabilities. Finally, we normalize the results by the
average of the sampled values.

E.4 OTHER DETAILS

Programming Languages, Packages, and Licensing We ran our experiments in Python 3.7
Van Rossum & Drake Jr (1995), using NumPy Harris et al. (2020), , CVXPY Diamond & Boyd
(2016), Jax Bradbury et al. (2018), OPTAX Bradbury et al. (2018), Haiku Hennigan et al. (2020), and
JaxOPT Blondel et al. (2021). All figures were graphed using Matplotlib Hunter (2007).

Python software and documentation are licensed under the PSF License Agreement. Numpy is
distributed under a liberal BSD license. Pandas is distributed under a new BSD license. Matplotlib
only uses BSD compatible code, and its license is based on the PSF license. CVXPY is licensed
under an APACHE license.

Computational Resources The experiments were conducted using Google Colab, which provides
cloud-based computational resources. Specifically, we utilized an NVIDIA T4 GPU with the
following specifications: GPU: NVIDIA T4 (16GB GDDR6), CPU: Intel Xeon (2 vCPUs), RAM:
12GB, Storage: Colab-provided ephemeral storage.

Code Repository the full details of our experiments, including hyperparameter search, fi-
nal experiment configurations, and visualization code, can be found in our code repository
(https://anonymous.4open.science/r/Infinite-Horizon-Markov-Economies-ICLR-2026-1A68/).
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