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A APPENDIX

A.1 MULTI RANGE LABEL SELECTION

We adopted a multi-range label selection method and constructed corresponding ground truth for
two stages: rsingle and csingle for the single-agent independent prediction stage, and rco and cco
for the cooperative fusion prediction stage. This strategy offers several advantages: not only does it
expand the cooperative perception detection range under the V2V-C setting, but it also reduces the
learning complexity during the cooperative fusion stage and effectively addresses challenges posed
by differing detection ranges of heterogeneous sensors in the V2V-H setting. We configured the
detection ranges and ground truth for the three cooperative perception settings: V2V-L, V2V-C, and
V2V-H. Using the OPV2V dataset as an example, the selection results are shown in Table. 1.

Table 1: Specific Configuration Settings

Setting Ego Detection and GT Range (m) Collaborative Detection and GT Range (m)

V2V-L [−102.4,−102.4,+102.4,+102.4] [−102.4,−102.4,+102.4,+102.4]

V2V-C [−51.2,−51.2,+51.2,+51.2] [−102.4,−102.4,+102.4,+102.4]

V2V-H L: [−102.4,−102.4,+102.4,+102.4]
[−102.4,−102.4,+102.4,+102.4]C: [−51.2,−51.2,+51.2,+51.2]

For V2V-C Setting: Unlike most cooperative perception methods Xiang et al. (2023); Lu et al.
(2024); Xu et al. (2022a) that use a detection range of only 51.2m, we maintained the camera’s
detection range and ground truth of 51.2m in the single-agent independent prediction stage, while
extending the detection range to 102.4m during the cooperative fusion stage. Through a cooperative
deep supervision mechanism, the effective detection range for cooperative perception was success-
fully expanded.

For V2V-L Setting: Due to the larger detection range of the LiDAR, we used a 102.4m detection
range for both the single-agent prediction and cooperative fusion stages. To improve individual
vehicle detection performance, we introduced cooperative ground truth in the single-agent stage,
increasing the number of prediction labels, thereby reducing the difficulty of subsequent cooperative
fusion.

For V2V-H Setting: In the OPV2V Xu et al. (2022b) dataset, the camera’s effective detection range
is 51.2m, while the LiDAR’s is 102.4m. Unlike HMViT Xiang et al. (2023), which simplifies
heterogeneous feature fusion by unifying the detection range to 102.4m, our framework flexibly
handles differences in detection ranges between heterogeneous sensors. In the single-agent inde-
pendent prediction stage, each sensor used its effective detection range and ground truth. During
the cooperative fusion prediction stage, we unified the detection range to 102.4m, leveraging the
cooperative ground truth to further improve the accuracy of individual vehicle predictions.

A.2 DETECTION VISUALIZATION
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Figure 1: Qualitative comparison on scenarios 1-4 under V2V-L setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and prediction, respectively. Our
method detected more dynamic objects.
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Figure 2: Qualitative comparison on scenarios 1-4 under V2V-C setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and prediction, respectively. Our
method produced more accurate detection results.
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Figure 3: Qualitative comparison on scenarios 1-4 under V2V-H setting in the OPV2V dataset.
The green and red bounding boxes represent the ground truth and predictions, respectively. Our
method produced more accurate detection results and resulted in fewer false detection boxes.
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Figure 4: Qualitative comparison on scenarios 1-4 in the V2V4Real dataset. The green and red
bounding boxes represent the ground truth and predictions, respectively. Our method produced more
accurate detection results.
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