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ABSTRACT

Deep learning training accesses vast amounts of data at high velocity, posing chal-
lenges for datasets retrieved over commodity networks and storage devices. We
introduce a way to dynamically reduce the overhead of fetching and transporting
training data with a method we term Progressive Compressed Records (PCRs).
PCRs deviate from previous formats by leveraging progressive compression to
split each training example into multiple examples of increasingly higher fidelity,
without adding to the total data size. Training examples of similar fidelity are
grouped together, which reduces both the system overhead and data bandwidth
needed to train a model. We show that models can be trained on aggressively
compressed representations of the training data and still retain high accuracy, and
that PCRs can enable a 2× speedup on average over baseline formats using JPEG
compression. Our results hold across deep learning architectures for a wide range
of datasets: ImageNet, HAM10000, Stanford Cars, and CelebA-HQ.

1 INTRODUCTION

Today’s wealth of image, audio, and text data enables novel machine learning applications, but also
presents practical concerns, as modern models can require hundreds of thousands of machine hours
to train (Chilimbi et al., 2014; Sun et al., 2017; Goyal et al., 2017; Brock et al., 2018; Mahajan
et al., 2018). This is particularly true for deep learning workloads, where the training time can be
roughly split into three components: the data pipeline (storage), the forward/backward computation
(compute), and the variable synchronization (network). A plethora of work has investigated scaling
deep learning from a computation or networking bound perspective (e.g., Dean et al., 2012; Cui
et al., 2016; Abadi et al., 2015; Cui et al., 2014; Jouppi et al., 2017; Lim et al., 2018; Zhu et al.,
2018; Alistarh et al., 2017; Lin et al., 2017; Wen et al., 2017; Wangni et al., 2018; Zhang et al.,
2017) However, little attention has been paid toward scaling training from a storage perspective.

Unfortunately, with the amount of data being stored, system bandwidth limits how much data can
be processed at any given time. Hardware trends point to an increasing divide between compute and
networking or storage bandwidth (Li et al., 2016; Lim et al., 2018; Kurth et al., 2018). For exam-
ple, the transportation of data for machine learning is a key factor in the design of the data centers
themselves, such that they’re built close to the data, which is expected to be serviced by slow storage
media for the foreseeable future (David Reinsel, 2018). This, combined with the memory wall—a
lack of bandwidth between compute and memory—suggests that, while computation may be suffi-
cient moving forward, the mechanisms for moving data to the compute may not (Wulf & McKee,
1995; Kwon & Rhu, 2018; Hsieh et al., 2017). The storage pipeline is therefore a natural area to
seek improvements in overall training time, which manifest from the storage medium, through the
network, and into the compute nodes.

In this work, we propose a novel on-disk format called Progressive Compressed Records (PCRs) as
a way to reduce the bandwidth cost associated with training over massive datasets. Our approach
leverages a compression technique that decomposes each data item into deltas, each of which in-
creases data fidelity. Naively storing replicas of the data at various compression levels could in fact
increase storage costs. However, by carefully accounting for the layout of these deltas, we allow
applications to control the tradeoff between dataset size (and, thus, bandwidth) and fidelity—all
without additional overhead. As a result, we find that for a variety of popular deep learning mod-

1



Under review as a conference paper at ICLR 2020

els and datasets, bandwidth can be easily reduced by 2× on average relative to JPEG compression
without affecting model accuracy. Overall, this paper makes the following contributions:

1. In experiments with multiple architectures and several large-scale image datasets, we show
that neural network training is robust to data compression in terms of test accuracy and
training loss, but that the amount of compression that can be tolerated varies both by dataset
and architecture.

2. We introduce Progressive Compressed Records (PCRs), a novel on-disk format for training
data. PCRs combine progressive compression and careful data placement to enable appli-
cations to dynamically choose the fidelity of the data they consume, in order to reduce their
data bandwidth.

3. We demonstrate that using PCRs, training speed can be improved by 2× on average over
standard formats using JPEG compression. This is achieved by selecting a lower data
fidelity, which, in turn, reduces the amount of read data without significantly impairing
model performance.

2 BACKGROUND

Two complimentary concepts make up the process of storing training data: the layout of the data on
the storage medium, and the representation of the data. Data layout is important because it can help
fully utilize the potential of the underlying storage system. Data representation is important because
it can allow the data to be processed faster. One example of data representation within the scope of
this work is compression, which increases the useful computation per bit, a key property to consider
as computation increases faster than bandwidth to storage.

Figure 1: Red marks an on-disk format
without records and has highly random
behavior. Blue has records at various
data qualities and has sequential behav-
ior for a given quality. Cyan represents
our proposed PCR format, which pro-
vides sequential behavior without the
space overhead.

Record Layouts. Learning from data requires sam-
pling points from a training set, which will cause small,
random accesses that are detrimental to storage device
performance. Record layouts, such as TensorFlow’s
TFRecords (TFR) or MXNet’s ImageRecord (Ima, a), at-
tempt to alleviate this problem by batching data points to-
gether to increase access locality. Batches of training data
are then accessed together, amortizing delays in access
time across multiple data points. These batches of data
are called records. The key to any record layout is the se-
rialization, which is the conversion of data structures into
byte streams. Record designs have different performance
properties when written to disk, as shown in Figure 1.

Image Compression. Compression is commonly used to
represent training data. JPEG (Wallace, 1992) is one of
the most popular formats for image compression, and is
used ubiquitously in machine learning (e.g., Sajjadi et al.,
2017; Ima, b;c; MSC). Most compression formats (in-
cluding JPEG) only allow for the compression level, i.e.,
the trade-off between data size and fidelity, to be set at encoding time, which often results in choosing
this level independent of the application. This can result in over-compressing the data, which may
affect application performance, or under-compressing the data, which results in excess data size,
and thus, slower performance. Worse, deep learning pipelines often involve an application-defined
post-processing step (e.g., data augmentation), which may further distort an image and obscure the
relationship between image quality and model accuracy (Bishop, 1995; Karras et al., 2017; Dziu-
gaite et al., 2016; Arnab et al., 2018). While setting encoding-time parameters is unavoidable, the
ability to decompress data as it becomes available (dynamic compression) provides a means to avoid
some of the bandwidth expenses of under-compression by simply terminating decompression once
sufficient quality is reached.

We provide a high-level illustration of the JPEG algorithm in Figure 2a, which provides the grounds
to understanding how dynamic compression can be achieved. First, an image is split into blocks of
size 8× 8. Each block is converted into the frequency domain, such that frequency 0 is the average
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(a) JPEG Algorithm (Before Entropy Coding)

(b) Images from scans: 1, 3, and 10 (baseline)

(c) PCR Encoding

Figure 2: Left: The JPEG algorithm proceeds by carving an image into blocks, which are then con-
verted into frequencies, quantized, and then serialized. Progressive compression writes out a subset
of important coefficients from each block before re-visiting the block. Right Top: A visualization of
various scan levels from a 10-scan JPEG. Each scan progressively deblurs the image further. Right
Bottom: Our PCR format progressively encodes images by scan. Data can be retrieved at a certain
quality by sequentially reading up to the desired quality’s offset (saving commensurate bandwidth).

color of the block, and higher frequencies encode rapid changes in the block. The low frequencies,
such as the average value of the block, store the bulk of the perceptually-relevant content in the image
(e.g., knowing the block is mostly blue is more important than knowing a white wave is rippling
through it). Quantization, which discards information from the block and results in compression,
thus prioritizes discarding higher frequencies. The resulting quantized table is then serialized into
a flat form. Since data is rendered on a screen from left to right, top to bottom, it makes sense to
encode the data in this manner, which results in a sequential format1. Decoding the resulting data is
simply a matter of inverting (albeit losslessly) the process which we just described.

Progressive Image Compression. Progressive formats allow data to be read at varying degrees
of compression without duplication. With the sequential case, data is order by blocks, and thus,
partially reading the data results in “holes” in the image for those blocks (Wallace, 1992). Dy-
namic compression ensures that all spatial locations (i.e., blocks) get some information (deltas)
before revising them (with more deltas). As progressive formats are simply a different traversal of
the quantization matrix, with all else being equal, they contain the same information as sequential
JPEG (JPE). Progressive JPEG, combined with an additional rearrangement of data, forms the basis
of the idea behind PCRs. In Figure 2a, non-progressive formats serialize the image matrix in one
pass, while progressive formats serialize the matrix in disjoint groups of deltas which are called
scans (see Figure 2b). Scans are ordered by importance (e.g., the first scan contains higher quality
deltas than subsequent scans). Thus, any references to images generated from scan n will implicitly
assume that the image decoder had access to all prior scans (i.e., {scan 1,scan 2,. . . ,scan (n− 1)}).
The image from scan 3 in Figure 2b makes use of scan 1 and scan 2 data, and scan 10 uses them all.

3 PROGRESSIVE COMPRESSED RECORDS

In this section, we introduce a novel record format for machine learning training called Progressive
Compressed Records (PCRs). PCRs are a combination of both layout and data representation. The
reason for this is simple—having bandwidth savings is pointless if the hardware isn’t operating effi-
ciently in the first place. To this end, we introduce the concept of scan groups in Section 3.1, which
leverage both layout and progressive compression to obtain dynamic decompression, allowing both
high performance reads while reducing the amount of data read. Leveraging progressive compres-
sion, scan groups break images into deltas, which are then rearranged in order to faciliate reduced,
yet sequential, data access. In Section 3.2, we discuss how PCRs are implemented, which covers
both creating PCRs (encoding) and reading them (decoding). The PCR encoding process starts with
the training dataset stored in JPEG format. PCRs then rearrange (twice) the bits associated with this
training dataset to yield a bandwidth-optimized format. The benefits of the PCR implementation
boiling down to a bit shuffle is that: 1) PCRs are easy to implement, 2) they’re fundamentally loss-

1“Sequential” refers to in-memory, and should not be confused with sequential on-disk access.
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less, 3) processing them is fast. Although PCRs can be implemented easily, they manifest in large
speedups for a variety of scenerios.

3.1 SCAN GROUPS

Scan groups are a collection of scans (deltas) of the same quality. Scan groups combine layout
with progressive compression to allow reading subsets of the compressed data with high hardware
efficiency. PCRs make the assumption that the entire training data will be read at the same quality.
Using this assumption, scan groups rearrange the data such that all deltas of the same quality are
grouped together. This is turn enables groups of deltas to be read together sequentially, which creates
dynamicity in the decoding process. Since scans are sorted by importance, and scan groups are a set
of scans, the scan groups are also sorted by importance.

To paint a clear representation of how scan groups work, we point the reader to Figure 2c. PCRs
begin with some metadata which is assumed to be needed by all machine learning tasks, such as
labels or bounding boxes. This metadata is small, and thus, not much of a concern if not all of it is
used. The metadata is followed by scan groups, which consist of scans. The scan 1 representation
of the shark in Figure 2b will be available in its record once data is read up to offset 1. Likewise, the
scan 3 representation will be available once the record is read up to offset 3, and the representation
will be more crisp as 3 scans were used per image, rather than 1. Reading up to the end of the record
yields the most complete representation of the image. Since scan groups consist of groups of the
same quality, every image contained in a record is available at the same quality at the same group
offset. Users of PCRs can read data at a certain scan quality by simply reading the on-disk byte
stream from the start of the PCR (i.e., offset 0) to the byte offset corresponding to the corresponding
scan group. Avoiding reading the entire record results in bandwidth savings.

3.2 IMPLEMENTATION

There are two fundamental PCR implementation details: the encoding process and the decoding
process. The encoding process transforms a set of JPEG files into a directory, which contains 1) a
database for PCR metadata and 2) at least one .pcr file. The decoding process, which takes the
directory as input and yields a set of JPEG images, does the opposite. The dataset is split into many
PCRs, and thus the training process is processing tens to hundreds of .pcr files per epoch. The data
loader is where the PCR decoding library interfaces with the inputs provided to deep learning librares
(e.g., TensorFlow (Abadi et al., 2015), MXNet (Chen et al., 2015), PyTorch (Paszke et al., 2017)).
Below, we describe how each of these steps is done, and we will open source our implementation
upon paper acceptance.

Encoding. Given a set of images, the PCR encoder must break the images into scans, group the scans
into scan groups, and sort the scan groups by quality. Once the groups are sorted, the PCR encoder
can serialize the groups while taking note of their offsets (so that they may later be decoded). The
metadata (e.g., labels) is pre-pended to the serialized representation, and the serialized representation
is written to disk.

Our implementation uses JPEGTRAN (jpe) to (losslessly) transform the set of JPEG images into a
set of progressive JPEG images. With the default settings, each JPEG is broken up into 10 scans.
The encoder scans the binary representation of the progressive JPEG files, searching for the markers
that designate the end of a scan group. The encoder thus has access to all 10 offsets within the
JPEG files that can be used to determine the boundaries between scan regions. Forming scan groups
requires grouping the scan regions with the same quality together, which can be done in one pass
over the set of images corresponding to that PCR. This grouping must be reversable, as the decoding
process will un-group the scans to reconstruct the original images. This grouping can be done
with existing serialization libraries. We use Protobuf (Pro) to serialize the groups as well as the
labels. However, it is key that every group (and the metadata) be serialized as a seperate message,
as Protobuf can rearrange the contents within a message, and thus can rearrange the ordering of the
groups themselves. We finally concatenate the contents of the messages and write them out as one
file. Our PCR converter script converts 100k images in a matter of minutes.

Decoding. To decode a PCR, one has to first lookup the offsets in the database corresponding to that
file. The offsets provide sufficient information to do a partial read of the file (e.g., instead of reading
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the entire file, we read only enough bytes to read up to the desired scan group). Decoding the JPEGs
requires inverting the PCR scan-group grouping process for the available scan-groups. Since we are
missing scan-groups, we terminate the byte stream with an End-of-Image (EOI) JPEG token — this
allows most JPEG decoders to render the byte stream with only the available subset of scans. The
bulk of the inverse conversion is done in 150 lines of C++ code.

Loader. We implemented PCR loaders using PyTorch’s dataloader as well as DALI (DAL)’s
ExternalSource operator. Ultimately, we found that a pipeline abstraction simplified loader
design, since record-based datasets can be easily iterated sequentially. This abstraction was more
convenient that the PyTorch Dataloader abstraction, which assumes that we can index randomly
into an in-memory data structure (e.g., i = RandInt(0, n); (x, y) = data[i];), and
is therefore hard to use for constantly fetching record formats off disk. Our implementation, while
being only several hundred lines of code, obtains image rates that are competitive (e.g., faster/slower
depending on number of scans) with the included DALI TFRecord loader, showing that PCRs can
be implemented efficiently (i.e., fast enough to rarely bottleneck data loading) with a low amount of
engineering effort. Writing the entire PCR pipeline in native code is future work.

4 EXPERIMENTS

This section presents our evaluation of PCRs using a suite of large-scale image datasets. Large
images are more straining on a system’s network and storage, thus our evaluation focuses on high-
resolution datasets. Overall, we find that PCRs are most effective on larger images due to the
large amount of redundant information found in them, which results in better compression. We
describe our experimental setup in Section 4.1. We present our evaluation results in Section 4.2.
In Section 4.3, we analyze the relationship between image quality and time-to-accuracy. Finally,
in Section 4.4, we show results that explain the cause of the speedups to the data loader. To avoid
measuring implementation differences with other loaders, our evaluation focuses on the differences
obtained by reading various amounts of scan groups. Reading all the data is the baseline.

4.1 EVALUATION SETUP

Our evaluation uses the ImageNet ILSVRC (Deng et al., 2009; Russakovsky et al., 2015),
HAM10000 (Tschandl et al., 2018), Stanford Cars (Krause et al., 2013), and CelebA-HQ Karras
et al. (2017) datasets which we describe next.

Datasets. ImageNet provides a wide diversity of classes, of which we focus on the first 100 to make
training times more tractable. We refer to this subset of ImageNet as ImageNet-100. Since classes
are roughly ordered by ImageNet categories, this results in a fine-grained, i.e., hard to classify,
multiclass task. We convert the dataset into PCRs in batches of 1024, which results in 126 PCRs. We
split the HAM10000 dataset randomly 80%/20% between train and test. We convert the dataset into
PCRs in batches of 64, which results in 125 PCRs of similar size as the ImageNet ones. The Stanford
Cars dataset is another fine-grained classification dataset, since all images are cars and there are 196
classes spread over 16k images. We believe these datasets highlight some of the worst-case training
scenarios, as it is considerably easier to predict highly compressed variants of unrelated images by
exploiting low frequency image statistics (e.g., planes vs. frogs). Cars has 63 PCRs. CelebA-HQ
is a high-resolution derivative of the CelebA dataset (Liu et al., 2015), which consists 30k celebrity
faces at 10242. We use the annotations provided by CelebA to construct a smiling or not smiling
dataset, which we term CelebAHQ-Smile. We split the 30k dataset into 80%/20% train/test and we
convert the training set into 93 PCRs. All datasets except for HAM10000 use resizing, crop, and
horizontal-flip augmentations, as is standard for ImageNet training. We provide examples of scan
groups for these datasets, as well as how they look at various scans, in the appendix.

Training Regime. We use pretrained ImageNet weights for HAM10000 and Cars due to the limited
amount of training data. We use standard ImageNet training, starting the learning rate at 0.1 and
dropping it on epoch 30 and 60 by 10×. After augmentations, all inputs are of size 224× 224. The
pretrained experiments (HAM10000 and Cars) start at a learning rate of 0.01 to avoid changing the
initialization too aggressively. We use fp16 training as it gives us an additional 18% images per
second (from 3200 to 3900). We use a ResNet18 (He et al., 2016) and ShuffleNetv2 (Ma et al., 2018)
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(a) ImageNet-100
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(b) HAM10000
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(c) Stanford Cars
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(d) CelebAHQ-Smile

Figure 3: ImageNet, HAM10000, Stanford Cars, and CelebA-HQ top-1 test performance with
ResNet-18. Top-5 accuracies mirror the top-1 accuracies trends. Time is the x-axis (seconds) and is
relative to first epoch. 95% confidence intervals are shown.

architecture for our experiments with a batch size of 128 per each worker. We run each experiment
at least 3 times to obtain confidence intervals.

System Setup. We run distributed experiments on a 16-node Ceph (Weil et al., 2006) cluster
connected with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE switch. Each node has a 16–
core Intel E5–2698Bv3 Xeon 2GHz CPU, 64GiB RAM, NVIDIA TitanX, 4TB 7200RPM Seagate
ST4000NM0023 HDD, and a Mellanox MCX314A-BCCT 40GbE NIC. All nodes run Linux kernel
4.15 on Ubuntu 18.04, CUDA10, and the Luminous release (v12.2.12) of Ceph. We use 6 of the
nodes as Ceph nodes; 5 nodes are dedicated as storage nodes in the form of Object Storage Devices
(OSDs), and one node is used as a Ceph metadata server (MDS). The rest of the 10 nodes are used as
machine learning workers for the training process. This means there is a 2:1 ratio between compute
and storage nodes. The exception to this is Figure 5a, which was run with 8 additional worker nodes
in the interest of time. We use PyTorch (Paszke et al., 2017) with NVIDIA Apex (ape). We use 4
threads to prefetch data in the loader.

4.2 TIME TO ACCURACY

The time-to-accuracy results for ResNet18 training are presented in Figure 3, while those of Shuf-
fleNetv2 are presented in Figure 5. See the appendix for the corresponding training loss results. All
scan groups within a dataset were run for the same number of epochs (at least 90), so lower scan
groups finish earlier. We sample test accuracy every 15 epochs for non-ImageNet datasets to reduce
interference with training, since test set evaluation can take significant time. For visualization, we
group ImageNet data points by 60 seconds, and the rest by 30 seconds.
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Figure 4: The size in bytes of scan
groups for ImageNet-100.

First, we make note that for all datasets, except for Cars, PCRs
provide a 2× boost to time-to-accuracy compared to the base-
line. The reason for this speedup is that lower scan groups cost
less. As shown in Figure 4, scan group 5 is roughly half the
size of the baseline, and scan group 1 is a fifth of scan group
5. This trend holds across datasets (see appendix). As we will
discuss in Section 4.4, the space savings manifest in reduced
data loader latencies.

Second, we note that there is an inherent trade-off between
convergence quality and the speedup attained by using less
storage resources. In general, although lower quality scan
groups allow the system to operate more efficiently, they do
so at the expense of model convergence. Scan group 1, the
lowest quality scan, performs poorly, especially on Cars, where fine-grain details are important.
Scan groups limit the maximum achievable accuracy on a task; if learning plateaus prematurely,
applications should raise the scan group in a manner similar to learning rate drops.

Third, the relative rankings of scan groups is relatively stable across models. We further relate
these rankings to the quality of the scan groups in Section 4.3. Our conclusion is that, for most
datasets, scan group 5 costs half as much in terms of bandwidth, but reaches the same level of test
accuracy as the baseline — thus, it is a good group to default to. This is most clear for ImageNet
and HAM10000, which are challenging enough for small variations in image quality to make a
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(a) ImageNet-100
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(b) HAM10000
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(c) Stanford Cars
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(d) CelebAHQ-Smile

Figure 5: ImageNet, HAM10000, and Stanford Cars top-1 test performance with ShuffleNetv2.
ImageNet-100 was run on 8 additional ML nodes, yielding 18 worker nodes. Time is the x-axis
(seconds) and is relative to first epoch. 95% confidence intervals are shown.

commensurate difference in test accuracy. This is in contrast to Cars, which is too fine-grain to
allow images to be degraded, and CelebAHQ-Smile, which is too coarse-grained.

4.3 THE RELATIONSHIP BETWEEN IMAGE QUALITY AND TEST ACCURACY
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Figure 6: The reconstruction quality of using various amounts of scans using the MSSIM metric.
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Figure 7: Data loading stalls are
periodic and followed by extents
of prefetched data. Lower scan
groups result in lower magnitude
stalls.

We use MSSIM (Wang et al., 2003), a standard measure of
image similarity, to compare how various scans approximate
the reference image, and we show the results in Figure 6. We
find that there is a strong connection between MSSIM and the
resulting final test accuracy, especially when comparing scan
groups within a task. Our preliminary tests found that scan
groups that have very similar MSSIM perform very similarly,
so we show only groups 1, 2, 5, and the baseline, which cor-
responds to scan group 10. Due to the way progressive JPEG
is coded by default, groups tend to cluster (e.g., 2, 3, and 4
are usually similar, while 5 introduces a difference). We found
that MSSIM being poor, such as in scan 1 for Cars, or MSSIM
being close to baseline, such as scan 5 for HAM10000, were
good predictors of relative test accuracy. As a concrete exam-
ple, Cars has a slightly higher MSSIM on scan 6 than scan 5,
and using scan 6 results in about 2% accuracy boost over scan
5 for ResNet18.

4.4 THE RELATIONSHIP BETWEEN SCANS AND DATA STALLS

The datasets we evaluated have shown that data loading can slow down the training process. To
highlight these slowdowns, and the improvements PCRs achieve by not using all scan groups, we
present the loading time of data for the ResNet18 ImageNet-100 run in Figure 7. We obtain similar
results for the other datasets. The baseline of using all scan group results in high periodic loading
stalls, where the prefetching queue was drained. Upon blocking, training cannot proceed until the
worker threads obtain a full batch of data. Because there are multiple threads fetching the data,
future batches are also fetched, resulting in periods of (mostly) no stalls. Using less scan groups
reduces the amount of data read, which results in lower magnitude stalls. These stalls occur with
both DALI and PyTorch loaders.
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5 RELATED WORK

Data Reduction. Prior work focused on training machine learning models on reduced datasets.
Data reduction techniques, such as sketching, coresets, clustering, and sampling, have been used
to reduce the size of a training set (Karnin & Liberty, 2019; Feldman et al., 2013; Liberty, 2013;
Woodruff et al., 2014; Daniely et al., 2017; Kabkab et al., 2016). Other work develops reformulated
large-scale SVM training into a storage-friendly form (Matsushima et al., 2012). Recently, dataset
distillation was proposed (Wang et al., 2018), where a model’s parameters were compressed into in
a few training examples, such that the original model could be recovered by training on the reduced
dataset. Our work takes a different approach to these methods, as we reduce the size of the dataset
with compression techniques (i.e., JPEG) that are already in use.

Compression. Prior work on compressed neural network models to reduce their transmission cost
or allow the model to be efficiently implemented in hardware Han et al. (2015a; 2016; 2015b);
Cheng et al. (2017); Xu et al. (2018); Hwang & Sung (2014); Anwar et al. (2015); Denton et al.
(2014). Our work attempts to compress data for training, and not the network itself. Prior work
has also looked into compressing neural network training network traffic (Lim et al., 2018; Alistarh
et al., 2017; Lin et al., 2017; Wen et al., 2017; Wangni et al., 2018; Zhang et al., 2017). While our
work focuses on mainly on storage, this line of work is complementary to ours, as both gradients
and training data can use the same network resources. There is a line of work in using compressed
formats to reduce system bandwidth requirements, such as in the context of databases and com-
puter memories Zukowski et al. (2006); Abadi et al. (2006); Pekhimenko et al. (2018); Houston &
Koh; Pekhimenko et al. (2012). Our work differs in that it exploits ML-specific resilience to lossy
transformations. Training models directly on compressed representation for the purpose of avoiding
decoding or reducing model complexity has been done (Gueguen et al., 2018; Torfason et al., 2018;
Fu & Guimaraes, 2016; Ulicny & Dahyot, 2017). Our work differs in motivation, as we do not focus
on model computation or make modifications to the models.

Training Over Large Datasets. Training with massive amounts of parallelism (thus stressing sys-
tem bandwidth) while achieving near-linear speedup has been the focus of previous work. A com-
mon objective is training models over ImageNet in a record amount of time (Goyal et al., 2017; You
et al., 2017; 2018; Jia et al., 2018; Ying et al., 2018; You et al.). This line of work, while demon-
strating immense bandwidth needs, typically keeps data in memory, avoiding storage problems al-
together. Recently, the high performance computing community has seen an interest in training
models at massive scale, training deep models over two cluster with 5300 P100 and 27360 V100
GPUs (Kurth et al., 2018). This work had a large emphasis on I/O, as each GPU can match or ex-
ceed the bandwidth of a disk; to get around this bandwidth problem, each node was given a subset
of images to store locally rather than performing a true sampling of data. Our work attempts to re-
duce the storage bottleneck altogether, such that a single disk could service potentially many GPUs.
A seperate line of work shows that I/O is a significant bottleneck for certain tasks, and proposes
optimizing I/O via a set of deep-learning specific optimization to LMDB (Pumma et al., 2019). In
contrast, our focus is more on data representation, which is agnostic of the storage system.

6 CONCLUSION

In order to continue making advances in machine learning, researchers will need access to larger and
larger datasets, which will eventually spill into storage. Storage and networking bandwidth, which
are precious resources, can be better utilized with efficient compression formats. We introduce a
novel record format, Progressive Compressed Records, that trades off data fidelity with storage and
network demands, allowing the same model to be trained with 2× less storage bandwidth while
retaining model accuracy. PCRs leverage progressive compression to split training examples into
multiple examples of increasingly higher fidelity without the overheads of naive approaches. PCRs
avoid duplicating space, are easy to implement, and can be applied to a broad range of tasks dy-
namically. While we apply our format in this work specifically to images with JPEG compression,
PCRs are general enough to handle various data modalities or additional compression techniques;
future work will include exploring these directions in fields outside visual classification, such as
audio generation or video segmentation.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT PLOTS

Below, we provide additional experiment plots (e.g., loss and scan size) that were omitted in the
main text.
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(c) Stanford Cars
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Figure 8: ImageNet-100, HAM10000, Stanford Cars, and CelebA-HQ train loss with ResNet-18.
Time is the x-axis (seconds) and is relative to first epoch. All runs were completed on the Ceph
cluster.
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Figure 9: ImageNet, HAM10000, Stanford Cars, and CelebA-HQ train loss with ShuffleNetv2.
Time is the x-axis (seconds) and is relative to first epoch. All runs were completed on the Ceph
cluster.
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(c) Stanford Cars
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(d) CelebAHQ-Smile

Figure 10: The size in bytes of various levels of scans read. Scan group 0 is shown, which contains
only labels and is typically ∼ 100 Bytes. Each scan adds roughly a linear amount of data, although
certain scans do add considerably more than others due to techniques like chroma subsampling.
Using all 10 scans can require over an order of magnitude more bandwidth than 1–2 scans.

A.2 IMAGE EXAMPLES BY SCAN

Below, we provide image examples from each dataset that show what each scan group looks like.
Images can use a remarkably low amount of scan groups without impacting visual quality, which
can manifest is space savings if used accordingly.
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(a) Scan 1 (6.3kB) (b) Scan 2 (14.7kB) (c) Scan 3 (23.8kB) (d) Scan 4 (28.8kB) (e) Scan 5 (53.3kB)

(f) Scan 6 (72.0kB) (g) Scan 7 (73.1kB) (h) Scan 8 (84.6kB) (i) Scan 9 (91.0kB) (j) Scan 10 (115.3kB)

Figure 11: Examples of scans for ImageNet. The amount of scans needed to hit an acceptable level
of quality is small. Having a larger final size (high quality compression) results in more savings for
earlier scans.

(a) Scan 1 (8.0kB) (b) Scan 2 (14.9kB) (c) Scan 3 (40.1kB) (d) Scan 4 (67.9kB) (e) Scan 5 (79.1kB)

(f) Scan 6 (116.2kB) (g) Scan 7 (117.8kB) (h) Scan 8 (165.3kB) (i) Scan 9 (213.2kB) (j) Scan 10 (260.9kB)

Figure 12: Examples of scans for HAM10000. The amount of scans needed to hit an acceptable level
of quality is small. Having a larger final size (high quality compression) results in more savings for
earlier scans.

(a) Scan 1 (5.9kB) (b) Scan 2 (13.3kB) (c) Scan 3 (21.0kB) (d) Scan 4 (26.9kB) (e) Scan 5 (44.8kB)

(f) Scan 6 (58.8kB) (g) Scan 7 (59.7kB) (h) Scan 8 (69.7kB) (i) Scan 9 (77.0kB) (j) Scan 10 (96.6kB)

Figure 13: Examples of scans for Stanford Cars. The amount of scans needed to hit an acceptable
level of quality is small. Having a larger final size (high quality compression) results in more savings
for earlier scans.
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(a) Scan 1 (12.6kB) (b) Scan 2 (25.9kB) (c) Scan 3 (27.1kB) (d) Scan 4 (28.0kB) (e) Scan 5 (32.8kB)

(f) Scan 6 (57.5kB) (g) Scan 7 (60.6kB) (h) Scan 8 (62.9kB) (i) Scan 9 (65.1kB) (j) Scan 10 (110.7kB)

Figure 14: Examples of scans for CelebA-HQ. The amount of scans needed to hit an acceptable level
of quality is small. Having a larger final size (high quality compression) results in more savings for
earlier scans.
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