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ABSTRACT

A deployable machine learning model relies on a good representation. Two desir-
able criteria of a good representation are to be understandable, and to generalize to
new tasks. We propose a technique termed perceptual regularization that enables
both visualization of the latent representation and control over the generality of
the learned representation. In particular our method provides a direct visualization
of the effect that adversarial attacks have on the internal representation of a deep
network. By visualizing the learned representation, we are also able to understand
the attention of a model, obtaining visual evidence that supervised networks learn
task-specific representations. We show models trained with perceptual regulariza-
tion learn transferrable features, achieving significantly higher accuracy in unseen
tasks compared to standard supervised learning and multi-task methods.

1 INTRODUCTION

Identifying useful features is the cornerstone of a good computer vision model (Rumelhart et al.,|{1986;
Bengio et al.,[2013). Classical feature extraction strategies such as the SIFT features (Lowel 2004)
and SURF features (Bay et al.| 2006) are handcrafted and rely on human expertise. The success of
deep learning is in replacing human-engineered features by automatically learned features (Donahue
et al.,[2014;[Zhou et al.l 2015; 2016). However, this breakthrough has brought a new set of problems.

First, the features learned by deep neural networks are very vulnerable, small changes known as
adversarial attacks can completely change the model’s prediction. There is a rapidly growing body
of work on adversarial examples in the context of deep networks (Szegedy et al.| [2014; Nguyen
et al., 2015 |Bubeck et al.} 2019; [Ford et al.| 2019). They raise many security concerns, such as the
reliability of driverless cars, or the trustworthiness of facial recognition systems (Papernot et al.,
2016). Robustness to such adversarial attacks is becoming a common requirement (Madry et al.|
2017). Further understanding of what adversarial attacks do to a model’s representation will help
move these objectives forward.

Second, the complex hierarchical nature of deep networks makes it inherently difficult to understand
the flow of information between layers, and in particular what information a given layer’s representa-
tion contains. This is of crucial importance for interpretation of the predictions of a model, which has
had much effort and attention in last few years (Yosinski et al.l 2015} Ribeiro et al., 2016; Doshi-Velez
& Kiml |2017; |Al-Shedivat et al., |2017; |[Melis & Jaakkolal |2018)). Machine interpretability is, however,
still an ongoing project.

Third, the features learned by a supervised deep network are known to be tailored - perhaps overly
so - to the specific task they were trained on (Yosinski et al., |2014). This has led to incredible
performances on supervised learning tasks, but has made the transferability of features to new tasks
difficult, sometimes even harming performance (Pan & Yang, 2009; Rosenstein et al., [2005). It is still
an open question to understand when features trained on one task will transfer to another.

In this paper, we introduce a framework, termed perceptual regularization, that gives insight into all
of these questions. This is achieved by stacking a decoder on top of the model’s latent representation
with the aim of providing a human understandable reconstruction, see Figure[I] One of the key merits
of perception regularization is its simplicity and naturalness. A simple regularization term is all that
is needed to yield significant visual insight into a range of questions about the representations learned
by deep networks.
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The main contributions of this paper are:

e Introducing perceptual regularization, a method for jointly learning a visualization for deep
representations, and for learning representations that are predictive on unseen tasks.

e Using the visualization method to shed light on what effect adversarial attacks have on a model.

e Using this method to visualize how the attention of a model focuses only on aspects that are relevant
for prediction. More generally we give promising evidence to suggest that our visualization method
is of interest for model diagnostics and interpretability.

e Showing that representations learned using perceptual regularization transfer effectively to tasks
that were not known a priori.

2 PERCEPTUAL REGULARIZATION

We begin by introducing perceptual regularization. Consider a deep image classification model such
as AlexNet (Krizhevsky et al.l 2012), VGG-Net (Simonyan & Zisserman) [2015)), or ResNet (He et al.}
2016). It usually consists of two stages: several convolutional layers, followed by dense layers. The
convolution layers can be viewed as a feature extraction process which we denote by F, transforming
images from the input space X" into a latent space Z. The dense layers C : Z — ) act as a classifier
on the latent space. In order to regularize and visualize the latent representation, we introduce a
decoder D : Z — X on top of the latent space Z which we jointly train with the classification model.
The architecture is shown in Figure[l}
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Figure 1: Perceptual regularization: we stack a decoder on top of the feature map and jointly train it
with the classifier.

More precisely, we denote the classification model by H = C o F and term the reconstruction
P =D o F aperception of the model. The regularization strategy we introduce is to jointly train H
and P together by minimizing

17131142 Exy [((H(X),Y)+X[|X —P(X)|?]. (Perceptual regularization)

classification loss reconstruction loss

The first term is the standard classification loss and we use the cross-entropy loss throughout the paper.
The regularization term is the 5 reconstruction loss scaled by a hyper-parameter A > 0. Intuitively,
the decoder tries to reconstruct the original image based on the same information the classifier uses
for prediction. In particular, if the feature map JF preserves all the information from the input, the
perception should be able to perfectly recover X . Conversely, if a lot of information has been thrown
away, then we will get a poor reconstruction and the regularization loss will be high. Therefore,
our regularization biases the learned representation to maintain more information about the input
compared to normal supervised learning. This will be useful if one would like to reuse the learned
features later for other tasks.

Notice that the regularization term vanishes when P is the identity mapping, in which case the feature
map F is bijective. This can happen when the model is very powerful and therefore able to memorize
any dataset. However, this situation is less interesting in the sense that a good representation should
efficiently compress the information. This idea has been clearly understood with the information
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bottleneck objective, for which it is known that F (X ') approximates the minimal sufficient statistic
for Y given X (Shamir et al,[2010). Therefore, to constrain the expressiveness of the feature map,
we impose a bottleneck structure in the network architecture. More precisely, the dimension of the
latent space Z is made significantly smaller than the dimension of the input space &’. This enforces
the feature map to compress information and makes it very unlikely to be bijective.

As well as regularizing the model, our perceptual regularization also provides a natural way to
visualize the latent space. In particular, the perception P is designed to decode the feature map F,
which is very useful for model understanding. In the next two sections we begin to explore the
insights that can be drawn using perceptual regularization.

3 HOW DO ADVERSARIAL ATTACKS AFFECT A CLASSIFIER’S PERCEPTION?

Adversarial examples can seem quite mysterious, and point to a way in which human and machine
perceptions are misaligned (Han et al.| 2019 [Engstrom et al.| 2019). While intuitively reasonable,
understanding of this phenomenon has been limited by the difficulty of observing the effect of
adversarial attacks on the internal representation of a model (Zhang & Zhul, 2018} [Olah et al.| 2018).
In this section we explore the first application of our perceptual regularization: to provide human
understandable visualizations of a model’s internal representation of adversarial examples.

First, we briefly recap how adversarial examples are obtained. Given a classification model  and
a sample (X,Y), we aim to fool the model’s prediction by slightly perturbing the input X. We
constrain the perturbation to be in a small neighborhood A(X) of X, which is usually defined as an
¢, ball. Specifically, we are looking for

Xaav € argmax £(H(X'),Y) (1)
X/eA(X)

While many different strategies have been proposed to adversarially attack the model
let al} 2015} Moosavi-Dezfooli et all, 2016} [Kurakin et al. Athalye et al [2018)) , we focus on
the projected gradient descent (PGD) attack (Madry et al.,[2017) throughout this paper. Specifically,
we set A(X) to be an £, ball and the adversarial example X,q, is obtained by performing 100
iterations of PGD attack. Examples of adversarial attacks can be found in the first row of Figures[2}

+ .02 x
X Xadv
“female” PGD attack “male”
99.92% confidence 99.08 % confidence
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Figure 2: First row: by adding an imperceptibly small vector whose elements are obtained from
performing a PGD attack, we can change the classification of the image. Second row: by applying
perception, we can visualize why the model make the “incorrect” prediction.
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—
PGD attack

P(Xadv)
“not smile”

Figure 3: Images after applying perception on the task of classifying smiling face, we can visualize
why the model make the “incorrect” prediction. The corresponding original images can be found in
Appendix A.

As is well known, adversarial examples are hard to distinguish from the original image with human
perception. Now, if we jointly train the classifier and decoder with perceptual regularization, besides
the classification model, we also have in hand a perception branch that aims to transfer the latent
variable to images. We adversarially attack the classification branch # = C o F using (I) to
obtain X,qy. If, instead of viewing X and X,4,, we look at the model’s perception of each image
P(X) and P(Xaav), a clear disparity emerges between how the model understands the two examples.
What is extremely striking is that the model’s perception and incorrect classification are semantically
consistent to the human eye. To put it simply: when the model misclassifies an image of a female
as male, the perception of the adversarial image really looks like a male to a human, as shown in
Figure 2} when the model misclassifies an image of a smiling face as not smiling, the perception of
the adversarial image really looks like it is not smiling, as shown in Figure 3]

We provide further experiments of our method on the MNIST (LeCun et al}[T998)) and CelebA
datasets. Our perception decoder allows one to visualize the effect of an adversarial attack
on a deep network’s representation. It successfully reveals a clear difference in machine perception
even though humans cannot distinguish the two. For CelebA we train three different classifiers for
three different binary classification tasks (Eyeglasses/Smiling/Gender). All experiments support the
same observations made in this section. See the appendix for many more examples.

This shows that given the model’s feature representation, it is making a prediction that appears
reasonable on adversarial images. In other words, the representation learned by the model is very
different from human perception. It is also interesting that the images obtained from perception
(Figure 3] in the second row of Figure 2] ) are simultaneously close to each other and yet highly
distinguishable in the characteristics most important for prediction. This gives interesting visual
insight into the way in which adversarial attacks find a short path to a decision boundary. For example,
Figure 2| has several subtle modifications: lighter eyes, squarer forehead and jaw, thicker nose. The
changes are very targeted, capturing the essence of the global feature.

This begs the question: can adversarial attacks be used to identify and modify high-level features?
Global features are high level human-interpretable features such as, “wearing glasses”, “is smiling”,
or “is female”). There has been much previous work on learning disentangled representations for
which the latent variables correspond to disentangled human-interpretable features
Freemanl, [2000}; [(Chen et al.l 2016; [Higgins et al[2017). To then modify a given global feature one

needs to figure out which latent feature (or which combination) to adjust. However, the task of finding
the “correct” latent direction is non-trivial.
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Adversarial attacks as global feature adjustment. Our visualization method yields a novel way

for user-controlled global feature adjustment. The recipe is as follows:

e Train a model with perceptual regularization,

e Given X, obtain X,4, by performing an adversarial attack toward the target label (e.g. smiling/wear
eyeglasses),

e Apply perception P on the adversarial example to obtain the adjusted image P (X,ay)-

Figures [2]and 3] give examples of this. We believe it is possible to obtain more realistic images using
recent progress on GANSs, but we leave this for future work. Finally, we stress that our method
requires labeled data while GANs do not. However, if one has labeled data, our method provides a
promising alternative since it does not require human intervention.

4  VISUALIZING FEATURES LEARNED BY A DEEP NETWORK

A second application of perceptual regularization is to visualize what a classifier’s attention focuses
on. In particular, if a model is trained to predict the object in the middle of an image, it is commonly
believed that the learned representation “overfits” to the training task by focusing only on the central
part of the image. This can be a cause of negative transfer - when reusing a learned representation for
a new task actually hurts performance (Pan & Yang} [2009; [Kuzborskij & Orabona, 2013). We show
our visualization method can help understand when a representation will cause negative transfer.
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Figure 4: Left: Original images from SVHN. Right: The model’s perception of the images.

4.1 THE ATTENTION PROBLEM

It has long been intuitively understood that the representations in the final layers of a supervised
deep network will only focus on aspects of the data relevant to its prediction task (Long et al, 2015}
Yosinski et all [2014). In this section we demonstrate on the SVHN dataset (Netzer et al., 2011 that
this phenomenon of focused attention can be visualized using perceptual regularization.

The SVHN dataset consists of images of house numbers and the task is to predict the number in the
center of the image. In particular, an image could contain multiple numbers but the label is given
according to the middle one. A natural question is: will a supervised model learn a representation
that remembers numbers that are not in the center? To answer this question, we train a CNN with
perceptual regularization and then use perception to visualize the attention of the model, i.e. given
any input X, we visualize P(X). As shown in Figure[d] our visualization technique shows that the
model learns a representation that focuses on the middle of the image, and forgets what is at the
edges of the image. This provides very strong visual evidence to support the common belief that a
supervised model learns a representation specific to its prediction task. This is fine if there is only
one task of interest, but makes transferring features between tasks problematic. For example, in our
case, the representation would be completely ineffective for identifying the digit on the left or right
hand sides.

4.2 PERCEPTUAL REGULARIZATION TO CONTROL ATTENTION

The cause of this limited attention problem is the supervised learning paradigm itself. In this section,
we demonstrate that perceptual regularization can be useful to reduce the problem of learning overly
specific features. In particular, our method allows for a smooth interpolation between supervised
learning and unsupervised learning. In the extreme case, when A — 0, we recover the standard
supervised learning setting, and when A — oo we recover the classical auto-encoder objective. Hence,
the parameter \ can control how much information we would like our model’s representation to keep.
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(@) A = 1074, Acc: 88.5%. (b) A = 1073, Acc: 87.9%. (c) A = 1072, Acc: 87.8%. (d) A = 10%, Acc: 81.3%.
Figure 5: Visualizing the model’s attention. Acc is the accuracy of the classifier on the test set.

We run experiments on the SVHN dataset by varying the regularization parameter A\. We keep the
architecture fixed (see Appendix B.3 for more details). Figure[5]shows different regimes of features
for different values of \. There are four main regimes:

e Tiny (A < 10~%, Figure a)): Since A is extremely small the contribution to the loss from the
decoder branch is so negligible that there is not much incentive to learn a good decoder and the
visualization breaks down.

e Delicate (1074 < A < 1072 ,Figureb)): A good decoder is learned and the bias injected into
the learned feature map by the regularization term is small. The number in the center is well
reconstructed, but the edges of the image are not and the colors are missing. It is in this regime
that we are able to see the restricted attention of a classifier.

o Intermediate (1072 < X < 1, Figure c)): We obtain more faithful reconstructions compared to
the “delicate” regime. In particular, the numbers at the edges are reasonably reconstructed but
colors are still not perfect.

e Large (A > 1, Figure[5[d)): The decoder is very good, both numbers and colors are recovered.
The regularization has had a significant effect on the nature of the learned features. Since these
features retain much more information than for smaller A they are more likely to transfer well to
new unseen tasks.

Clearly the choice of A heavily affects the features learned by the model. The larger A is, the more
information is preserved in the features: small values of A only preserve the number in the middle of
the image, intermediate values can also reconstruct the boundary of the image, and only for large A is
the input’s precise color correctly reconstructed. It is also important to note that the accuracy on the
supervised task decreases as )\ increases, but at a relatively slow rate. This is to be expected. In the
limit A — oo there is no longer any incentive to perform good classification, only reconstruction. An
interesting future direction will be to understand why certain features are harder to learn than others,
for instance, in our example why the color is recovered later than numbers along the edges.

It is important to mention that the representation learned using perceptual regularization is not
exactly the same as what is learned without it. This is because the reconstruction loss encourages
representations to preserve as much information as possible about the original input. If one wanted to
avoid this bias then the obvious solution is to learn the feature map first, then learn the visualization
decoder separately, with the feature map frozen. This strategy works reasonably well when the
network’s size is small. But, as the network gets more complicated it becomes computationally
difficult to decode the feature map. Hence, as an alternative solution, we train the decoder jointly
with the feature map. What we have shown is that although the bias induced by the regularization is
an apparent drawback, it can in fact be turned into a strength by using A to control the behavior of the
feature map.

Finally, the specific values of A quoted are meant only to serve as a very rough guide about trends.
Making the magnitude of the reconstruction loss and classification loss comparable is often effective
to locate the “delicate” .

5 TOWARDS OBTAINING GENERALIZABLE FEATURES FOR UNSEEN TASKS

We call a representation generalizable if it is useful for tasks beyond the one(s) it was trained on.
In the previous section, we gave visual evidence that features learned from supervised learning are
task related and so may not be generalizable. In contrast, our proposed perceptual regularization
encourages the feature to capture more details of the original input, which may help generalizability.
In this section we build on these observations by showing that features learned using perceptual
regularization are indeed more predictive on new, unseen tasks.
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Our approach is as follows: given access to training data for a source task S, we train a model for
task S and obtain a feature map F and a classifier Cs. Then, when a new target task 7" comes along,
we use the same features F learned previously, but train a new classifier Cr on top of it. In other
words, we freeze the feature representation and fine-tune the last layers.

For experiments, we used the CelebA dataset. We considered three different image understanding
tasks: identifying if a face has Glasses, is Smiling, and the individual’s Gender. We compare our
methods to standard supervised training (with {5 regularization). The architecture is kept exactly the
same and the only difference is the regularization. The results can be found in Figures[6|and[7} The
results are averaged over 6 trials. For full experimental details see the appendix.

Target . Target .
m Eyeglasses  Smile  Gender m Eyeglasses  Smile  Gender

Eyeglasses 95.63 % 5932 % 74.30% Eyeglasses 87.55% 83.03% 86.47%
Smile 58.49%  89.12 % 63.43% Smile 8596%  8417% 86.26%
Gender 71.34% 60.38%  93.86% Gender 86.13% 82.63% 87.09%

Figure 6: Left: Standard supervised training with weight decay. Right: Our method: perceptual
regularization with A = 1073,

Supervised learning (Figure [6| Left): As one would expect, supervised learning methods have
strong performance when S = 7' (the diagonal). But these features do not transfer well to new tasks,
with accuracy falling significantly when S # T (the off-diagonal). This is to be expected since
standard supervised training learns features tailored specifically to the training task, as illustrated in
Section ]

Our method (Figure [6| Right): In contrast, the results for perceptual regularization (with A =
10~3) show that the learned features generalize to new tasks extremely well, with comparable
accuracies across all tasks. Indeed, for an unseen target task 7', the accuracy varies by at most two
percentage points. When compared to standard supervised learning features, perceptual regularization
achieves between 12 — 30% better accuracy when S # T'. The cost is that our method performs
slightly poorer than the standard training method when .S = T'. This is simply due to balancing task
specific attention and the generality we are aiming for.

For further comparison, we benchmark our results against multi-task learning methods with hard
parameter sharing (Caruanal [1997), see Figure In the multi-task setting, the model have access
to multiple datasets during training. The model jointly trains the same feature map for the training
tasks, but uses distinct classifiers so as to maximize the average empirical risk across the tasks. The
results reported are the accuracies for fine tuning the learned representation for a task 7'. The families
of training tasks are as follows: Multi2-1 is Smile and Gender; Multi2-2 is Eyeglasses, and Gender;
Multi2-3 is Eyeglasses and Smile. Multi3 uses all three datasets for training. In other words, there is
no unseen dataset, and 7' is part of the training dataset.

Multi-task learning (Figure[7): We emphasize that this setting is strictly stronger than our setting
because the model has the opportunity to see multiple datasets during training (two or three in our
experiments) which should help learn features that can transfer between tasks. Despite this unfair
comparison, our method still outperforms this approach on unseen tasks. When the multi-task training
involved data from the test task 7' the multi-task results are better (for the same reasons as when
S = T in the supervised setting).

S SourceT Target Eyeglasses ~ Smile Gender
Multi2-1 62.15% 94.60%  93.34%
Multi2-2 89.06% 73.39%  93.67%
Multi2-3 89.41% 95.24%  74.53%
Multi3 88.76% 93.94% 93.15%

Figure 7: Multi-task supervised training.
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6 DISCUSSION AND CONCLUDING REMARKS

In this paper we introduced perceptual regularization, a method for visualizing and learning represen-
tations that can generalize to unseen tasks. To achieve this, our method combines a generative and
discriminative model. There has been previous work on the idea of combining generative and dis-
criminative models (Lasserre et al., 2006; |Grabner et al., 2007; [Larochelle & Bengiol |2008} |Le et al.}
2018), however these works have focused on the idea of using such a model to exploit semi-supervised
(unlabeled) data. To the best of our knowledge our work is the first to identify the generative plus
discriminative formulation as an effective method for practical, visual appraisal of the representation
learned by a model. We use this visualization to understand adversarial examples and study the
attention of a model. We also identify this formulation as suitable for learning representations that
are effective on previously unseen tasks.

In this work we made the choice to consider the ¢5 loss as a metric between images. However, the
specific nature of the injected bias is particular to /5: it permits lots of small errors, but penalizes
large differences severely. It would be an interesting future direction to consider different metrics and
consider what kind of representations are learned by regularizing with different generative model
objectives such as GANs, VAEs, or InfoMAX (Goodfellow et al., 2014} |Kingma & Welling| [2014;
Hjelm et al.| 2019).

Another interesting question is to understand what conditions are necessary to obtain good visu-
alizations. We identify two possible factors. First: model complexity. As the task becomes more
challenging we may need a more powerful decoder and refined training strategy (e.g. applying
methods from the GAN literature). Second: human meaningful features. There has been work
suggesting that more complicated datasets have small but highly predictive features that humans do
not notice (Tsipras et al., 2018)). The model may learn to use these features for prediction. In this
case our visualizations may also not be human meaningful. Nevertheless, our visualization method
could be a useful certificate for whether the model learns human meaningful features.

This raises the question of how to learn robust features that generalize across multiple tasks. There is
evidence suggesting adversarial training may help learn more “human-aligned” features. But so far
work on adversarial training has mainly focused on supervised learning. We suspect that this will not
be sufficient to learn transferrable features. It would be an interesting next step to combine perception
regularization with adversarial training.

Our visualizations raise a broader point about the supervised learning paradigm: models insist on
pigeon-holing every input into one of a fixed number of classes, no matter how out of sample the input
is. Consider the following toy example: taking X to be random noise and computing the adversarial
attack X,qy for a model  trained on MNIST, then P (X,qy) looks like a digit to the human eye (see
Figure ). This is undesirable and it is not sufficient to simply add an 11th “other” class. This is a
long way from the dynamic way that humans create and learn new classes of objects.

To conclude, we have shown that perceptual regularization is a promising approach to answering
many important questions in machine learning. However we believe this is just the beginning, and
view perceptual regularization as a broadly useful tool for model diagnostics with many more uses to
be uncovered in the future.

Figure 8: First row: X,4, for random noise X. Second row: P(X,qy). Even for what is essentially
random noise, the model insists on perceiving something that semantically looks like a number.
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A ADDITIONAL IMAGES ON ADVERSARIAL EXAMPLES
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Figure 9: Visualization of adversarial examples on CelebA dataset with Smile labels. The adversarial
examples are obtained by applying 100 iterations of PGD attack with /., perturbation and € = 0.03.
The regularization parameter is set to A = 1073,
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Figure 10: Visualization of adversarial examples on CelebA dataset with Smile labels. The adversarial
examples are obtained by applying 100 iterations of PGD attack with /., perturbation and € = 0.03.
The regularization parameter is set to A = 1073,
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Figure 11: Visualization of adversarial examples on CelebA dataset with eyeglasses labels. The
adversarial examples are obtained by applying 100 iterations of PGD attack with ¢, perturbation
and € = 0.03. The regularization parameter is set to A = 1073,
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Figure 12: Visualization of adversarial examples on CelebA dataset with Gender labels. The
adversarial examples are obtained by applying 100 iterations of PGD attack with ¢, perturbation
and € = 0.03. The regularization parameter is set to A = 1073,
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Figure 13: Visualization of adversarial examples on CelebA dataset with Eyeglasses labels. The
adversarial examples are obtained by applying 100 iterations of PGD attack with ¢, perturbation
and € = 0.03. The regularization parameter is set to A = 1073,
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Figure 14: Visualization of adversarial examples on CelebA dataset with Eyeglasses labels. The
adversarial examples are obtained by applying 100 iterations of PGD attack with ¢, perturbation
and € = 0.03. The regularization parameter is set to A = 1073,
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B ARCHITECTURE DETAILS

B.1 EXPERIMENTAL SETTING ON CELEBA

For the CelebA experiments, we resize the images to 64 x 64 and we subsample the dataset to obtain a
relatively balanced dataset on the labels we are considering : Eyeglasses/Smile/Gender. The statistics
of the training set and testing set are as follows:

Size | Eyeglasses | Smile | Gender
Training Set | 20000 50% 44.72% | 59.60%

Test Set 6386 50% 43.83% | 59.51%

Figure 16: The percentage indicates the proportion of positive labels among the dataset.

We use Adam optimizer (Kingma & Bal [2015) with 8 = (0.9, 0.999), learning rate 1073 in the first
20 iterations and 10~ for later iterations. No data augmentation is used. The architecture used in
the perception regularization is similar to the one from DCGAN (Radford et al., 2016). The detailed
architecture is as follows:

Input: RGB image & € R3x64x64
4 x 4 conv. 128¢ch, ReLU, stride 2, padding 1
4 x 4 conv. 256¢h, ReLLU, stride 2, padding 1
4 x 4 conv. 512ch, ReLU, stride 2, padding 1
4 x 4 conv. 1024ch, ReL.U, stride 2, padding 1
4 x 4 conv. 128¢ch, ReLU, stride 1, padding 0

Output: latent vector z € R'23

(a) Feature Map F

Input: latent vector z € R1?8
4 x 4 deconv. 128ch — 1024ch, ReLU, stride 1, padding 0
4 x 4 deconv. 1024ch — 512ch, ReLU, stride 2, padding 1
4 x 4 deconv. 512ch — 256¢h, ReLU, stride 2, padding 1
4 x 4 deconv. 256ch — 128ch, ReLU, stride 2, padding 1
4 x 4 deconv. 128ch — 3ch, ReLU, stride 2, padding 1
Sigmoid

Output: RGB image reconstruction 2’ € R3*64x64

(b) Decode D

Input: latent vector z € R128
Fully connected 128 — 256, ReLU,
Linear 256 — 2

Output: prediction y € R2.

(¢) Classifier C
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B.2 EXPERIMENTAL SETTING ON MNIST

For training the perceptual regularization, we perform 20 iterations of Adam optimizer (Kingma &
2015) with 3 = (0.9,0.999) and learning rate 10~3. No data augmentation is used.

Input: Greyscale image x € R1*28x28
4 x 4 conv. 16¢h, ReLU, stride 2, padding 1
4 x 4 conv. 16¢h, ReLLU, stride 2, padding 1
4 x 4 conv. 32ch, ReLU, stride 1, padding 0
4 x 4 conv. 32ch, ReL.U, stride 1, padding 0

Output: latent vector z € R3?

(d) Feature Map F

Input: latent vector z € R32
4 x 4 deconv. 32ch — 32ch, ReLU, stride 1, padding 0
4 x 4 deconv. 32ch — 32ch, ReL.U, stride 1, padding 0
4 x 4 deconv. 32ch — 16¢h, ReLU, stride 2, padding 1
4 x 4 deconv. 16ch — 1ch, ReLU, stride 2, padding 1
Sigmoid

Output: Greyscale image reconstruction z’ € R1*?28%28

(e) Decode D

Input: latent vector z € R3?
Fully connected 32 — 64, ReLU,
Linear 64 — 10

Output: prediction y € R1Y.

(f) Classifier C

B.3 EXPERIMENTAL SETTING ON SVHN

For the SVHN experiments, the inputs are RGB images of size 32 x 32. No data augmentation is
used. Our architecture for the perception regularization is as follows:
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Input: RGB image z € R3*32x32
4 x 4 conv. 16¢ch, ReLU, stride 2, padding 1
4 x 4 conv. 32ch, ReLLU, stride 2, padding 1
4 x 4 conv. 64ch, ReLU, stride 2, padding 1
4 x 4 conv. 64ch, ReLLU, stride 1, padding 0

Output: latent vector z € R%

(g) Feature Map F

Input: latent vector z € R4

4 x 4 deconv. 128ch — 64, ReLU, stride 1, padding O

4 x 4 deconv. 64ch — 32, ReLU, stride 2, padding 1

4 x 4 deconv. 32ch — 16, ReLU, stride 2, padding 1

4 x 4 deconv. 16ch — 3ch, ReLU, stride 2, padding 1

Sigmoid

Output: RGB image reconstruction 2’ € R3*32x32

(h) Decode D

Input: latent vector z € R%
Fully connected 64 — 128, ReLU,
Linear 128 — 10

Output: prediction y € R1Y.

(i) Classifier C
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