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ABSTRACT

That machine learning algorithms can demonstrate bias is well-documented by
now. This work confronts the challenge of bias mitigation in feedforward fully-
connected neural nets from the lens of causal inference and multiobjective opti-
misation. Regarding the former, a new causal notion of fairness is introduced that
is particularly suited to giving a nuanced treatment of datasets collected under un-
fair practices. In particular, special attention is paid to subjects whose covariates
could appear with substantial probability in either value of the sensitive attribute.
Next, recognising that fairness and accuracy are competing objectives, the pro-
posed methodology uses techniques from multiobjective optimisation to ascertain
the fairness-accuracy landscape of a neural net classifier. Experimental results
suggest that the proposed method produces neural net classifiers that distribute
evenly across the Pareto front of the fairness-accuracy space and is more efficient
at finding non-dominated points than an adversarial approach.

1 INTRODUCTION

There is increasing concern over the ethics of machine learning algorithms. The issue of machine
bias was prominently featured in ProPublica’s 2016 eponymous article (Angwin et al., 2016) where
the investigation uncovered prejudice against African-Americans in COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions), a recidivism prediction tool developed by
Northpointe.

Efforts to mitigate machine bias has received steadily increasing attention from stakeholders in a
wide array of arenas including academia, industry research labs, and advocacy groups. A number
of works focus on defining the very concept of fairness (Dwork et al., 2012; Chouldechova, 2016;
Joseph et al., 2016). But given its nascent nature, there is no single agreed-upon definition of fairness
in the algorithmic fairness community. For instance, Corbett-Davies et al. (2017) and Dieterich et al.
(2016) argue that COMPAS is indeed fair with respect to certain fairness notions. Works such as
Hardt et al. (2016) and Kleinberg (2018) have shed light on this apparent contradiction by showing
that certain fairness criteria cannot be simultaneously satisfied.

Most works in algorithmic fairness attempt to answer the question “is the algorithm unfair?” and
then to find ways to impose constraints that can make the algorithm more fair (Hardt et al., 2016;
Joseph et al., 2016; Zafar et al., 2017b;a). Recent works can handle very complex algorithms such as
neural networks (Beutel et al., 2017; Wadsworth et al., 2018; Madras et al., 2018; Manisha & Gujar,
2018). However none of the works in the literature can give a holistic view of the fairness-accuracy
landscape of the algorithm.

What we mean is this, while it is desirable that the neural network maintain high predictive accuracy
while simultaneously remaining fair with regards to a sensitive variable, these two objectives often
compete. Given this, it is essential to cast the balancing act between fairness and accuracy as a
multi-objective optimisation task and look at the fairness-accuracy Pareto front. This can give a
bird’s eye view of the algorithm and can be useful for comparing two algorithms based on, say, the
“volume” of the Pareto front (Li et al., 2015). In this work, we propose a methodlogy for estimating
the fairness-accuracy Pareto front of a feedforward fully-connected network.

Contributions This is the first work in algorithmic fairness that specifically addresses estimation of
the fairness-accuracy Pareto front of a feedforward network. The framework presented is flexible
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enough to allow for user-supplied accuracy and fairness measures. Although the framework is gen-
eral, we will investigate one particular fairness notion. Namely, we introduce a causal measure of
fairness which emphasises subjects with the most overlap in observed covariates across the different
values of a sensitive attribute. The motivation for doing this is to avoid selection bias in the datasets
we typically observe in algorithmic fairness. Furthermore, the methodology can be used to enforce
fairness in all intermediate representations of the neural network. This has potential benefits for
downstream tasks that may involve transfer learning.

2 RELATED WORK

In this section, we review the broad categories of existing methods in algorithmic fairness. The
major discernible classes of fair learning methods can be trifurcated according to the stage during
which action is taken. The first class of methods attempts to remove bias from the input data itself.
These methods rest on the premise that once proper preprocessing is accomplished, any classifier
can be used to subsequently produce fair predictions (Kamiran & Calders, 2012; Feldman et al.,
2015; Calmon et al., 2017; Johndrow & Lum, 2019), among others.

Then there are methods that directly intervene at the stage of training the learning algorithm. Many
of these methods are specific to certain classifiers and certain notions of fairness. Generally speak-
ing, train-time methods minimise predictive error while enforcing some fairness constraint (Agarwal
et al., 2018; Narasimhan, 2018; Zafar et al., 2017a;b;c; Kamishima et al., 2011; Calders & Verwer,
2010; Bechavod & Ligett, 2017).

Our proposed methodology falls into this category. However, rather than placing fairness constraints
on the output of the classifier, our method nudge internal representations in the neural network to be
less biased. In this way, it’s almost as if we are performing a sequence of supervised pre-processing
to the input data, one in each layer of the neural net. This is in contrast to agnostic pre-processing
that is performed in the preprocessing methods.

Another class of methods that operate at train time employs concepts from adversarial learning.
These include Beutel et al. (2017) and Ganin et al. (2016) in which hidden layers are encouraged
to promote fairness. The adversarial approach to fairness can also involve an adversary that tries
to predict the sensitive attribute from the output of the predictor in (Wadsworth et al., 2018; Zhang
et al., 2018).

Finally, post-processing techniques directly operate on the classifier output and are amenable to any
classifier. The technique in Hardt et al. (2016) for instance seeks to learn a monotone transformation
of the classifier’s output to remove unfairness with regard to either demographic parity or equalised
odds.

3 THE FAIRNESS-ACCURACY PARETO FRONT

This section introduces the fairness-accuracy Pareto front of a general learning algorithm which
attempts to learn an accurate mapping while also remaining fair with respect to a sensitive attribute.
Suppose the inputs live in some space X, the sensitive attribute in A, and the responses in Y. Let
(X,A,Y) be a measurable space and P be a probability measure on it. Let F be a class of functions
from X to Y. Given a loss function L : Y × Y → R, we may define the expected loss, R(f ;P ) =
E(x,a,y)∼PL(f(x),y), also known as the risk.

Suppose F is chosen to be the family of functions fθ : X→ Y parametrised by a deep feedforward
fully-connected neural network with parameters θ ∈ Θ. For a probability measure P on (X,A,Y),
define R(θ;P ) = R(fθ;P ). Let U(θ;P ) be a measure of the unfairness of fθ, in a manner to be
made precise in Section 4. Since we wish for the learning algorithm fθ to be both accurate and fair,
we wish to minimise, over θ, the vector objective function[

R(θ;P )
U(θ;P )

]
. (1)

Unfortunately, the situation is made difficult by the fact that classification accuracy and fairness are
often competing objectives. Take for instance the extreme of performing classification completely
at random, then the resulting classifier will certainly be fair with respect to the sensitive attribute, by
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almost all measures of fairness. The other extreme might be a perfect classifier; but in datasets where
the targets are collected in a biased way, this will result in the classifier being unfair. For instance,
if police routinely target a certain group then a recidivism dataset would contain a disproportionate
number of re-offenses amongst that group.

When the individual components of a vector function compete, as they do in equation 1, it is unlikely
that a parameter value exists which simultaneously minimises the individual objectives. This lack
of total ordering necessitates optimisation according to a partial order. For a, b ∈ Rp, we say
a ≤ b if and only if every component of a is less than or equal to the corresponding component of
b. Suppose we have p objective functions J1, . . . , Jp where each is a function from the parameter
space Θ to R. Then θ ∈ Θ is Pareto optimal if and only if there does not exist any θ̃ ∈ Θ such that
(J1(θ̃), . . . , Jp(θ̃)) ≤ (J1(θ), . . . , Jp(θ)) with at least one strict inequality. The Pareto front is the
set of all Pareto optimal points.

A basic technique for approximating the Pareto front is to first scalarise the vector objective function.
Let λ ∈ [0, 1]. One possible scalarisation scheme for equation 1 is to minimise, with respect to θ,
the convex combination (1 − λ)R(θ;P ) + λU(θ;P ). An important caveat is that scalarisation in
this manner only allows for recovery of points on the convex hull of the Pareto front (Das & Dennis,
1997). A scalarisation scheme that avoids this issue is the so-called Chebyshev method (Ehrgott,
2000; Giagkiozis & Fleming, 2015) which results in the scalar optimisation

θλ = arg min
θ

max{(1− λ)R(θ;P ), λU(θ;P )}. (2)

The resulting set {θλ : λ ∈ [0, 1]} are members of the Pareto front and it is this set that we will at-
tempt to approximate. The Chebyshev scalarisation enjoys many properties. It guarantees solutions
that are at least weakly Pareto optimal for any λ ∈ [0, 1]. The term weakly refers to replacing the
non-strict inequality in the Pareto optimal definition with a strict inequality. A further property of
the Chebyshev scalarisation is that any Pareto optimal solution can be obtained for some λ.

Estimation of the Pareto front Now we describe a general technique for estimating the set
{θλ : λ ∈ [0, 1]}. Let (x1,a1,y1), . . . , (xn,an,yn) be independent copies of (x,a,y)

drawn from (unknown) distribution Pmodel. Define the empirical measure as P̂data =
1
n

∑n
i=1 δ(xi,ai,yi). Let R(θ; P̂data) be the plug-in estimator of R(θ;Pmodel), i.e. R(θ; P̂data) =

E(x,a,y)∼P̂data
L(f(x),y) = 1

n

∑n
i=1 L(f(xi),yi). Similarly let U(θ; P̂data) be an estimate of

U(θ;Pmodel), but not necessarily a plug-in estimator. Then we consider the empirical version of
equation 2 to obtain θ̂λn = arg minθ max{(1− λ)R(θ; P̂data), λU(θ; P̂data)}.
To assess the quality of our Pareto front approximation, it will be helpful to have unbi-
ased estimators of R(θ̂λn;Pmodel) and U(θ̂λn;Pmodel). We are in luck if we have a test-
ing set V = {(x∗

i ,y
∗
i )} where (x∗

1,y
∗
1), . . . , (x∗

m,y
∗
m) are another set of independent copies

of (x,a,y) drawn from distribution Pmodel. Define the corresponding empirical measure as
P̂test = 1

m

∑m
i=1 δ(x∗

i ,y
∗
i )

. The risk of θ̂λn can be assessed using the out-of-sample average loss
R(θ̂λn; P̂test) = E(x,a,y)∼P̂test

L(f(x; θ̂λn),y) = 1
m

∑m
i=1 L(f(x∗

i ; θ̂
λ
n),y∗

i ). The unfairness can be

also assessed on the test set, let’s denote it U(θ̂λn; P̂test).

In summary, the Pareto front of (R(θ;Pmodel), U(θ;Pmodel)) will be approximated by the
set {θ̂λn : λ ∈ [0, 1]}. The quality of the approximation will be assessed by evaluating
{(R(θ̂λn; P̂test), U(θ̂λn, P̂test)) : λ ∈ [0, 1]}.
The appropriate loss function R(θ;Pmodel) will be context-specific; since we will be interested in
binary classification, we will limit future discussion to the cross entropy loss. How fairness should
be defined is much more controversial. We will discuss various existing notions of fairness in the
next section and advocate for a new causal measure of fairness that is especially adept at handling
inherent biases in the dataset.
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4 A NEW CAUSAL FAIRNESS MEASURE

Notions of fairness in the algorithmic fairness literature can be divided into two camps. On one hand,
we have non-causal fairness notions which typically operate by conditioning on the levels of the
sensitive variable and thus revolve around conditional distributions, e.g. p(fθ(x) | a = a,x = x).
For instance, enforcing equalised odds (Hardt et al., 2016) on a classifier amounts to enforcing two
conditional distributions are the same.

Taking the causal approach means replacing the question “is the learning algorithm (conditionally)
dependent on the sensitive attribute?” with the question “does the sensitive attribute have a causal
effect on the algorithm’s predictions?” In an ideal world, we could intervene on the sensitive attribute
by manipulating their values in an experiment and recording the outcomes. Causal inference is
designed to handle situations where this direct intervention is not possible. In particular, causal
inference tools attempt to glean causal effects from observational data. The tools are based on
posing hypothetical questions about counterfactuals or potential outcomes: “what would have been
the prediction outcome in a parallel universe where the only thing that changed about this subject
was the value of the sensitive attribute?”

Let us first review some existing notions of fairness before introducing our new causal measure. In
the non-causal category, two fundamental definitions of fairness are demographic parity and condi-
tional parity. The classifier fθ(x) is said to exhibit demographic parity with the sensitive attribute
a if fθ(x) ⊥⊥ a, where the shorthand ⊥⊥ means independence. Intuitively, demographic parity as-
sesses if the predicted score does not depend on the sensitive variable. For example, a classifier
predicting if a convicted criminal will re-offend exhibits demographic parity with respect to race
if the distribution of fθ(x) is the same irrespective of race. The drawbacks to demographic parity
are well-documented (Hardt et al., 2016; Kleinberg, 2018). Essentially, when the base rates dif-
fer across values of the sensitive attribute, satisfying demographic parity can come at the cost of
discrimination.

A more flexible framework of fairness is given by conditional parity, a term coined in Ritov et al.
(2017). Let u be a random vector. The prediction score fθ(x) is said to exhibit conditional parity
with sensitive attribute a conditional on u if fθ(x) ⊥⊥ a | u. Under the umbrella of conditional
parity, Ritov et al. (2017) unified various measures of fairness. For instance, the notion of equalized
odds, introduced in Hardt et al. (2016), is recovered by setting u to the true target class membership
itself.

Intuitively, conditional parity asks for class predictions that are independent of the sensitive variable
a conditioned on u. For example, one could consider a classifier predicting if an applicant should
be admitted to graduate school. Here, one may desire admission decisions generally independent of
sex (demographic parity), or, for conditional parity, independent of sex conditional on a particular
university department. That the notions of demographic and conditional parity can strongly differ
and may lead seemingly paradoxical results was strikingly illustrated in Bickel et al. (1975) for
graduate admissions at UC Berkeley.

4.1 CAUSAL FAIRNESS IN THE OVERLAP POPULATION

We have seen that satisfying demographic parity can come at the cost of discrimination. On the
other hand, conditional parity concepts such as equalised odds can be problematic if the labels in
the training set are biased themselves. In response to these issues, a growing line of work employs
causal notions of fairness (Kusner et al., 2017; Kilbertus et al., 2017; Khademi et al., 2019). A good
review on causal inference tools for algorithmic fairness can be found in Loftus et al. (2018).

Our approach differs from previous works mainly in the causal estimand we use. We also note that
we do not make use of structural equation models. Our new causal fairness notion is based on the
weighted average treatment effect (WATE) (Hirano et al., 2003) which derives its name from the fact
that in many situations due to selection bias, the study population may be different from the target
population. Then, to make valid causal inference, we might weight the samples according to the
covariate distributions of the target population. Specifically, WATE is a class of causal estimands

4



Under review as a conference paper at ICLR 2020

parametrised by a function g : Rp → R as follows

τg(h) =
E(x,a,y)∼Pmodel

[g(x)(µ1(x)− µ0(x))]

E(x,a,y)∼Pmodel
[g(x)]

(3)

where µ1(x) = (h(1) | x = x) and µ0(x) = E(h(0) | x = x). This form reveals WATE is indeed
a measure of the causal effect in the target population specified by g(x). Note when g(x) = 1
for all values of x, WATE reduces to the standard conditional average treatment effect (CATE),
τCATE = E(x,a,y)∼Pmodel

(h(1)− h(0) | x = x).

Henceforth, we focus our discussion on the case when g(x) = e(x)(1− e(x)) where

e(x) = P (a = 1 | x = x)

is also known as the propensity score. The propensity score is typically understood to be the proba-
bility of treatment given the covariate x. (Recall in our case, the sensitive variable a plays the role of
treatment.) The WATE corresponding to g(x) = e(x)(1−e(x)) shall be called the average treatment
effect for the overlap population (ATO) after Li et al. (2018a) who introduced the terminology. The
ATO articulates the causal effect among the overlap population which consists of subjects whose
covariates could appear with substantial probability in either value of the sensitive attribute.

We will use WATE to measure and then penalise the causal link between the sensitive attribute and
an intermediate representation of the neural network. Suppressing the dependence on the layer,
let h denote values in the hidden layer. Note h is itself a function of (x,a,y). Adopting the
potential outcome framework of Imbens & Rubin (2015), each intermediate representation h takes
on one of two potential outcomes, h(0),h(1) depending on whether a = 0 or a = 1. Note that
h = ah(1) + (1− a)h(0), i.e. we can only ever observe one of the two potential outcomes.

Let ê(x) be an unbiased estimator of the propensity score function; the estimation will be dis-
cussed further in the next section. An unbiased estimator of the ATO (Li et al., 2018b) based on
{(xi,ai,hi)}ni=1 is

τ̂ATO(h) =

∑n
i=1 aihiwi∑n
i=1 aiwi

−
∑n
i=1(1− ai)hiwi∑n
i=1(1− ai)wi

(4)

where wi are the so-called overlap weights (Li et al., 2018a) given by

wi =

{
1− ê(xi) if ai = 1

ê(xi) if ai = 0.

Overlap weights derive their name from an emphasis on subjects with the most overlap in observed
covariates x across the treatments (in our case the treatment is the sensitive attribute). The weights
smoothly down-weight subjects in the tails of the propensity score distribution.

5 METHODOLOGY

In this section, we present a methodology for approximating the fairness-accuracy Pareto front of a
feedforward fully-connected neural net classifier. The available data include a single binary sensitive
variable a, input variables x ∈ Rp, and binary response y indicating class membership. The input
x is further standardised to mean 0 and variance 1. All discrete variables are dummy encoded.

To define a multi-layer feedforward fully-connected neural network with L layers, let w(l) ∈
Rml×ml−1 and b(l) ∈ Rml , l = 1, . . . , L be the parameters in the l-th layer. Let h(l) : Rml−1 → Rml
be the affine transformation

h(l) = w(l)v(l−1) + b(l), l = 1, . . . , L

where v(0) = id is the identity function and m0 = p. The activation function σ(l) : Rml → Rml is
applied to obtain

v(l) = σ(l) ◦ h(l), l = 1, . . . , L.

The activation function in the final layer, σ(L), is restricted to the sigmoid function since we wish the
classifier to output scores between 0 and 1. We use the ReLU activation function in all other layers
for our experiments. Let h(l)

i be shorthand for the application of the function h(l) to input feature xi,
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i.e. h(l)
i = h(l)(xi). Collect all parameters w(l) and b(l) for l = 1, . . . , L into the parameter vector

θ. The multi-layer feed-forward neural network is simply the function fθ : Rp → [0, 1] given by
fθ(x) = v(L)(x).

We will employ the binary cross-entropy loss L : [0, 1]× {0, 1} → R given by L(ŷ, y) = y log ŷ +
(1−y) log(1− ŷ). For this loss, the risk becomes R(θ;Pmodel) = −E(x,a,y)∼Pmodel

(y log fθ(x))+
(1− y) log(1− fθ(x))).

Our object of interest is to determine, for the feedforward fully-connected network fθ, the fairness-
accuracy Pareto front associated to the (unknown) vector objective function(

R(θ;Pmodel)
U(θ;Pmodel)

)
=

(
−E(x,a,y)∼Pmodel

(y log fθ(x)) + (1− y) log(1− fθ(x)))
τATO(fθ(x))

)
. (5)

The first component measures classification error while the second component determines unfairness
with respect to the ATO measure. (We would like both components to have low values.) To estimate
the Pareto front of equation 5, we will use the strategy laid out in Section 3. Namely, we estimate
each component of equation 5, scalarise the vector objective function using the Chebyshev method,
and finally optimise the scalarised objective.

Estimation of R(θ;Pmodel) is straightforward; we simply use the plug-in estimator R(θ; P̂data) =
− 1
n

∑n
i=1 [yi log fθ(xi) + (1− yi) log(1− fθ(xi))] . Now we turn our attention to estimating

τATO((fθ(x)), the average effect of the sensitive attribute on the prediction for the overlap pop-
ulation. To achieve a low value for τATO((fθ(x)), we could directly constrain the network to learn
final predictions with low ATO. However, it may be preferable to penalise the ATO in the hidden
layers of the network. This way, downstream analyses that involve transfer learning are also safe-
guarded against bias. See the exposition in Madras et al. (2018) for further benefits of learning fair
internal representations. To keep the notation simple, let’s say we penalise the hidden units in the
some layer l. We then calculate the ATO in that layer to obtain

U(θ; P̂data) =
∣∣∣τ̂ATO(h(l))

∣∣∣ =

∣∣∣∣∣
∑n
i=1 aih

(l)
i (1− ê(xi))∑n

i=1 ai(1− ê(xi))
−
∑n
i=1(1− ai)h

(l)
i ê(xi)∑n

i=1(1− ai)ê(xi)

∣∣∣∣∣ (6)

We use the set {θ̂λn : λ ∈ [0, 1]} to approximate the Pareto front associated to equation 5 where

θ̂λn = arg min
θ

max{(1− λ)R(θ; P̂data), λU(θ; P̂data)}. (7)

Ideally, we would finely sample λ in [0, 1]. However, the computational burden of solving equation 7
increases accordingly. Thus in situations where only a coarse grid of λ’s is possible, we have to make
a decision which λ’s to sample from [0, 1]. It turns out that evenly distributed λ’s in the interval [0, 1]
can often produce solutions that form clumps on the Pareto front, i.e. evenly distributed λ’s in [0, 1]
do not produce evenly distributed points in the multi-objective space. Future work might seek to
adaptively select the λ’s by implementing methods such as the Normal-Boundary-Interactive Das &
Dennis (2000).

We also found it necessary to make sure the two terms are comparable in scale, we standardised
each term as follows. First, we ran the optimisation for λ = 0 and recorded the minimum Rmin and
maximum Rmax of R(θ; P̂data). Similarly we then ran the optimisation for λ = 1 to obtain Umin
and Umax. The we standardised by (R−Rmin)/(Rmax−Rmin) for the expected loss and similarly
for the unfairness measure.

Evaluation Suppose we have available to us a testing set {(x∗
i ,a

∗
i ,y

∗
i )}mi=1. We assess the quality

of the approximation by evaluating
[
R(θ̂λn, P̂test)

U(θ̂λn, P̂test)

]
where

R(θ̂λn, P̂test) = − 1

m

m∑
i=1

[
y∗
i log fθ̂λn

(x∗
i ) + (1− y∗

i ) log(1− fθ̂λn(x∗
i ))
]

(8)

and

U(θ̂λn, P̂test) =

∣∣∣∣∣
∑m
i=1 a

∗
i fθ̂λn

(x∗
i )(1− ê(x∗

i ))∑m
i=1 a

∗
i (1− ê(x∗

i ))
−
∑m
i=1(1− a∗i )− fθ̂λn(x∗

i )ê(x
∗
i )∑n

i=1(1− a∗i )ê(x
∗
i )

∣∣∣∣∣ .
6
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We employ a neural net to estimate the propensity score e(x), the conditional probability of a for
X = x. The output is then calibrated through the temperature scaling procedure of Guo et al. (2017)
to provide proper probability estimates. This neural net is trained once and for all on the training
set.
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Figure 1: Each block of plots corresponds to a dataset and a sensitive attribute of interest. In all
panels, we repeatedly split the data into training and testing sets, creating in total 100 sets of each.
Then in each of the 100 training sets, for a collection of 15 λ’s in the interval [0, 1], we find θ̂λn
according to the Chebyshev scalarisation scheme (left panel) and θ̃λn according to the adversarial
approach (right panel). The quality of the approximation is assessed using the corresponding test
set. Lower values are better in both axes. Thus there are a total of 1500 learned θ’s in each plot
and the magenta boundary is the Pareto frontier culled from these 1500 candidates. We can see the
estimated Pareto front by the proposed methodology spans the fairness-accuracy space more than
the adversarial approach.

6 EXPERIMENTS

In this section, we will apply the proposed methodology to two benchmarking datasets in the algo-
rithmic fairness literature – the UCI adult income dataset and the ProPublica recidivism dataset. The
two datasets are briefly summarised in Table 2. Missing values were pre-processed according to the
accompanying code. Our goals are as follows. In the UCI dataset, we wish to predict whether an
individual has income above 50, 000 USD while remaining fair with respect to gender. Separately,
we wish to perform the same prediction task while remaining fair with respect to race. In the re-
cidivism dataset, we wish to predict whether an individual will recommit a crime in two years while
remaining fair with respect to race.

We will achieve these goals by estimating the fairness-accuracy Pareto front of a binary classifier
given by a feedforward fully-connected network. Note that we are conducting the analysis for the
UCI dataset separately for race and gender. Future work should address fairness with respect to
multiple sensitive attributes at the same time; this would require an extension of the ATO to multiple
“treatments” which was suggested as feasible future work by the authors who proposed the ATO in
Li et al. (2018a).

Each dataset is split into a training set and a held-out test set, with the split reported in Table 2.
First, the propensity scores are estimated using a neural net. Details of the propensity score network
are given in Appendix A. For the neural net architecture defining fθ, the number of fully-connected
layers and number of hidden nodes in each layer (held constant over the layers) were tuned for
each dataset with the goal of not incurring over-fitting in the held-out test set. Each fully-connected
layer is interspersed with a dropout layer with dropout probability 0.2. The resulting architecture
is reported in Table 3. The ReLU activation function is used in all intermediate layers while the
sigmoid function is used in the output layer.

To learn the network, we use the ADAM optimisation algorithm (Kingma & Ba, 2014). The initial
learning is fixed throughout at 0.001. We reduce the learning rate when the training loss has stopped
decreasing by using the ReduceLROnPlateau scheduler in PyTorch, setting the factor and pa-
tience variables to 0.9 and 10, respectively. All training took place over 500 epochs. Mini-batch size
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was chosen to be around 5% of the training set size; 150 and 1000 minibatch sizes were used in the
recidivism and UCI datasets, respectively.

For a given dataset and a sensitive attribute of interest, we repeatedly split the data into training
and testing sets, creating in total 100 sets of each. Then, in each of the 100 training sets, we find
θ̂λn, according to equation 7, for a collection of 15 λ’s in the interval [0, 1]. The quality of the
approximation is assessed using the corresponding test set. Thus we produce a total of 1500 learned
network parameters and each one can be plotted in the fairness-accuracy space. The left column of
Figure 1 shows all 1500 θ̂λn’s as well as the Pareto front culled from these 1500 Pareto candidates.
The culling simply involves checking which of the 1500 points is dominated by any other point in the
set; the Pareto front displayed in Figure 1 consists of all non-dominated points. As we sweep from
the top-left corner to the bottom-right corner, we move from networks exhibiting high-accuracy-
low-fairness to networks exhibiting low-accuracy-high-fairness. We also repeated this experiment
by modifying the fairness measure to penalise intermediate representations in all layers, i.e. set
U(θ; P̂data) =

∑L
i=1

∣∣τ̂ATO(h(l))
∣∣, for which the results are reported and discussed in Appendix A.

Comparison to alternatives We did not find other works in the algorithmic fairness literature that
address the specific task of finding the fairness-accuracy Pareto front of a feedforward neural net-
work. Given this, we instead looked for methods where there was some type of tuning parameter that
controls the trade-off between fairness and accuracy. By dialling this tuning parameter, one could
hope to sweep out a set of classifiers that live in different parts of the fairness-accuracy landscape.

Given the diversity of fairness methods, due in part to the fairness definition used, we decided to
implement the adversarial training technique proposed in Louppe et al. (2017) which is not based
on a specific fairness criterion. The idea is intuitive; the classifier and adversarial are engaged in a
zero-sum game. The classifier network, call its parameters θclf , attempts to make the best binary
classification. The adversary, on the other hand, attempts to make the best prediction of the binary
sensitive attribute based on the classifier’s prediction. Let θadv denote the parameters of the ad-
versarial network. The overall objective is θ̃λn = arg minθclf [Lossy(θclf )− λLossa(θclf , θadv)] .
where the first loss measures the prediction of y and the second loss measures the prediction of the
sensitive attribute a. Both losses were chosen to be the binary cross-entropy loss.

Our implementation of Louppe et al. (2017) is based on GoDataDriven’s post on fairness in machine
learning with adversarial networks. Following their choice of epochs, we alternate the following
steps over 200 epochs: (1) train the adversarial network for a single epoch, holding the classifier
network fixed and (2) train the classifier network on a single sampled mini batch, holding the adver-
sarial network fixed.

Details on the adversarial network architecture are provided in Appendix A. For the classifier net-
work, we employed the same network as above in our proposed methodology and kept all training
choices, such as the optimisation algorithm and mini-batch size, the same. The classifier was pre-
trained for 2 epochs.

We built on top of GoDataDriven’s code base the ability to sweep θ̃λn over the parameter λ. The
result of the adversarial approach is shown in the right column of Figure 1. Once again, using
the same 100 training and testing pairs as above, we find solutions to θ̃λn for a set of 15 λ’s in
[0, 1], for a total of 1500 Pareto candidates. We can immediately see that compared to the proposed
methodology, the adversarial is less capable of finding a Pareto front that spans the fairness-accuracy
space. Furthermore, a better Pareto front estimation method should find more non-dominated points.
Indeed the set of dominated (non-dominated) points in the adversarial approach is larger (smaller)
relative to the proposed approach, see Table 1.

Table 1: A comparison between the proposed methodology the adversarial technique for finding the
Pareto front in each of the three data settings of Figure 1. Reported are the number of non-dominated
points. Higher is better.

UCI (gender) UCI (race) Recidivism
Proposed 44 33 89

Adversarial 13 9 27
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A APPENDIX

In this section, we provide additional details on the experiments conducted in Section 6. First, in
Table 2, we summarise the datasets on which all experiments were conducted. The feedforward
architecture used in the proposed methodology is given in Table 3 for each of the three data settings.

Next, we describe the neural net we employed to estimate the propensity scores P (a = 1 | X). We
actually used the same neural net for all three data settings in Table 2. Each of the 3 fully-connected
layer, with 32 hidden units each, is interspersed with a dropout layer with dropout probability 0.2.
The ReLU activation function is used in all intermediate layers while the sigmoid function is used
in the output layer. The cross-entropy loss is used between the estimated scores and the true labels
dictated by a. To learn the network, we use the ADAM optimisation algorithm (Kingma & Ba,
2014). The initial learning is fixed throughout at 0.001. Training took place over 100 epochs.
Mini-batch size was chosen to be around 5% of the training set size; 150 and 1000 minibatch sizes
were used in the recidivism and UCI datasets, respectively. After the propensity neural network is
trained, we apply the calibration technique proposed in Guo et al. (2017) to calibrate the probability
predictions. We used their GitHub code with no modification.

Figure 2 shows the additional output from the experiment that produced Figure 1 on the UCI dataset
with race as the sensitive attribute. We also repeated the experiment in Section 6 by penalising the
ATO in all layers. The results are shown in Figure 3. The adversarial approach we compared the
proposed methodology against used a network with 4 hidden layers with 32 hidden units in each.
ReLU activations were used throughout except in the final layer where the sigmoid function is used.
The adversarial network was pretrained for 5 epochs. Optimisation used ADAM and minibatch sizes
described in Table 2.

Table 2: Dataset descriptions

dataset features

Dataset dim(x) binary outcome y sensitive a training size testing size minibatch size

Recidivism 12 Reoffend in 2 years? binary race 3086 3086 150
UCI 93 Income above 50K? binary race 15470 15470 1000
UCI 93 Income above 50K? binary gender 15470 15470 1000
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Table 3: Network architecture

neural network features

Dataset layers L hidden nodes

Recidivism 4 4
UCI 32 10
UCI 32 10
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Figure 2: This reports the result for UCI (race) in the same experiment that produced Figure 1.
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Figure 3: We repeated the experiment in Figure 1 changing only the fairness penalty to penalise
the ATO in all layers. There is a drop in the quality of the Pareto front estimation compared to
penalising just one internal layer. Namely, more of the candidate points are dominated points in this
modified experiment where we’ve penalised ATO in all layers. It seems that we should have perhaps
also tuned for a brand new architecture given this new penalty.
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