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ABSTRACT

We study the phenomenon that some modules of deep neural networks (DNNs)
are more critical than others. Meaning that rewinding their parameter values back
to initialization, while keeping other modules fixed at the trained parameters, re-
sults in a large drop in the network’s performance. Our analysis reveals interesting
properties of the loss landscape which leads us to propose a complexity measure,
called module criticality, based on the shape of the valleys that connects the ini-
tial and final values of the module parameters. We formulate how generalization
relates to the module criticality, and show that this measure is able to explain the
superior generalization performance of some architectures over others, whereas
earlier measures fail to do so.

1 INTRODUCTION

Neural networks have had tremendous practical impact in various domains such as revolutionizing
many tasks in computer vision, speech and natural language processing. However, many aspects
of their design and analysis have remained mysterious to this date. One of the most important
questions is “what makes an architecture work better than others given a specific task?” Extensive
research in this area has led to many potential explanations on why some types of architectures
have better performance; however, we lack a unified view that provides a complete and satisfactory
answer. In order to attain a unified view on superiority of one architecture over an another in terms
of generalization performance, we need to come up with a measure that effectively captures this.

Analyzing the generalization behavior of neural networks has been an active area of research
since (Baum & Haussler, 1989). Many generalization bounds and complexity measures have been
proposed so far. Bartlett (1998) emphasized the size of the weights in predicting the generalization
error. Since then various analysis have been proposed. These results are either based on cover-
ing number and Rademacher complexity (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur
et al., 2019; Long & Sedghi, 2019; Wei & Ma, 2019) or they use approaches similar to PAC-
Bayes (McAllester, 1999; Dziugaite & Roy, 2017; Neyshabur et al., 2017; 2018; Arora et al., 2018;
Nagarajan & Kolter, 2019a; Zhou et al., 2019). Recently authors have emphasized on the role of
distance to initialization rather than norm of the weights in generalization (Dziugaite & Roy, 2017;
Nagarajan & Kolter, 2019b; Neyshabur et al., 2019). Earlier results have exponential dependency
with depth and focus on fully connected networks. More recently, Long & Sedghi (2019) provided
generalization bounds for convolutional neural networks (CNNs) and fully connected networks used
in practice and their bounds are size-free and have linear dependency on depth.

Despite the success of earlier works in capturing the dependency of generalization performance of
a model with respect to different parameters, they fail to provide a ranking in terms of generaliza-
tion performance for candidate architectures given a specific task that aligns well with the ground
truth. Moreover, majority of these bounds are proposed for fully connected modules and it is not
straightforward to evaluate them for different architectures such as ResNets.

Every DNN architecture is a computation graph where each node is a module1. We are interested
in understanding the role of the fundamental component of a DNN, i.e., module, in generalization

1A module is a node in the computation graph that has incoming edges from other modules and outgoing
edges to other nodes and performs a linear transformation on its inputs. For a sequential model such as VGG,
module definition is equivalent to definition of a layer.
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Figure 1: Module Criticality: Loss values in the valleys that connect the initial weights θ0 to the
final weights θF of a non-critical(left) and a critical(right) module in ResNet18 architecture. Given
a ball with radius r (length of the red line), module criticality can be defined as how far one can push
the ball in the valley towards initialization (length of the white dashed line) divided by the radius r.
Hence, non-critical modules are the ones with a wide valley connecting the initial weight vector to
the final one whereas in critical modules, the valley either becomes too sharp or the loss values start
to increase when the ball becomes too close to the initial weight. The x axis is simply chosen to be
parallel to θF − θ0 and the y axis is a compact representation of all other dimensions generated by
adding Gaussian noise to the the points on the convex combination of θ0 and θF and evaluating the
loss. The sign on the y axis is decided based on the sign of the inner product of the noise to θ0.

and capture how they interact with each other. To do so, we delve deeper into the phenomenon
of “module criticality” which was reported by Zhang et al. (2019a). They observed that modules
of the network present different robustness characteristics to parameter perturbation. Specifically,
if you rewind one module back to its initialization value while keeping the other modules fixed
at their trained value, the impact of this perturbation on network performance varies and depends
on which module was rewound. Some modules are “critical” meaning that rewinding their value
to initialization harms the network performance, while for the others the impact of this perturba-
tion on performance is negligible. They show that various conventional architectures exhibit this
dissimilarity phenomenon.

Let us now informally define what we mean by the measure “module criticality” (see Figure 1).
For each module, we move on a line from its final trained value to its initialization value (convex
combination2 path) while keeping all other modules the same. Then we measure the size of drop in
performance. Let θαi = (1 − α)θ0

i + αθFi , α ∈ [0, 1] be the convex combination where αi is the
minimum value between 0 and 1 when performance (train error) of the network drops by at most
a threshold value ε. If αi is small we can move a long way back to initialization without hurting
performance and the “module criticality” of this module would be low. Further, we also wish to
incorporate the robustness to noise (that is, the valley width) for the module along this path. If the
module is robust to noise along this path (valley is wide) then the module criticality would again be
low (see Definition 3.1 for a formal definition).

In this paper, we seek to study this phenomenon in depth and shed some light on by showing that
conventional complexity measures cannot capture criticality, see Section 2. Next we theoretically
formulate this phenomenon and analyze its role in generalization. Through this path, we provide a
new generalization measure that captures the dissimilarity of different modules and point out how
it influences the generalization of the corresponding DNN. Intuitively, the closer we can get to
initialization for each module, the better the generalization performance.

We analyze the relation between generalization and module criticality through PAC-Bayes analysis.
We show that it is not the number of critical modules that matters, but rather the overall network crit-
icality measure as derived in Section 3. If network criticality measure is smaller for an architecture,

2A convex combination of two points a linear combination of them where the coefficients are non-negative
and sum to 1. Every convex combination of two points lies on the line segment between the points.
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Figure 2: Analysis of rewinding modules to initialization for ResNet-18 architecture. Each row
represents a module in ResNet18-v1 that has been rewound to the initialization value and each
column represents a particular training epoch. We rewind each module, whereas (Zhang et al.,
2019a) rewinds each block.

it has better generalization performance. In Section 4, we demonstrate through various experiments
that our proposed measure is able to distinguish between different network architectures in their gen-
eralization performance, and the ranking it predicts matches their empirical performance, whereas
earlier approaches fail to capture this.

Notation: We use upper case letters for matrices. The operator norm and Frobenius norm of M
are denoted by ‖M‖2, ‖M‖F respectively. For n ∈ N, we use [n] to denote the set {1, . . . , n}. Let
LS(f) be the loss of function f on the training set S with m samples. We are mainly interested in
the classification task where LS(f) = 1

m

∑
(x,y)∈S 1[f(x)[y] ≤ maxj 6=y f(x)[j]]. For any γ > 0,

we also define margin loss LS,γ(f) = 1
m

∑
(x,y)∈S 1[f(x)[y] ≤ γ + maxj 6=y f(x)[j]]. Let LD(f)

be the loss of function f on population data distribution D defined similar to LS(f). We will denote
the function parameterized by Θ by fΘ.

2 TOWARDS UNDERSTANDING MODULE CRITICALITY

2.1 SETTING

A DNN architecture is a directed acyclic computation graph which may or may not be sequential. In
order to have a unifying definition between different architectures, we use the notion of “module”.
A module is a node in the computation graph that has incoming edges from other modules and
outgoing edges to other nodes and performs a linear transformation on its inputs. For a sequential
model such as VGG, module definition is equivalent to definition of a layer. On the other hand, in
a ResNet architecture some modules are parallel to each other, e.g., downsample module and the
concatenation of two conv modules. Note that, similar to conventional definitions the non-linearity
is not part of the module.

Let Θ = (θ1, . . . , θd) correspond to all parameters of a DNN with d modules, where θi refers to the
weight matrix (or operator matrix in case of convolution) at module i and θ0

i , θ
F
i refer to the value

of weight matrix at initialization and the end of training, respectively. For sequential architectures,
d is equal to the depth of the network but that is not necessarily true for a general architectures such
as ResNet.
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(a) Ambient module (b) Critical module

Figure 3: Spectrum of a non-critical and a critical module during different epochs of training.

2.2 ROBUSTNESS TO REWINDING

Consider the following perturbation to a trained network at some training epoch as in (Zhang et al.,
2019a). For each module in the network, rewind its value back to initialization while keeping the
values of all other modules the same. Next, measure the change in performance of the model before
and after this manipulation. We repeat a similar analysis that differs from that of (Zhang et al.,
2019a) in one detail. Zhang et al. (2019a) rewind the whole resnet block at once, whereas we rewind
each module, i.e. each conv in the parallel block, separately. This rewind analysis is shown in
Figure 2 for ResNet18. Each column represents a layer in ResNet18-v1 that has been rewound
to the initialization value and each row represents a particular training epoch. Similar to earlier
analysis, we observe that for many modules of the network, this manipulation does not influence
the network performance drastically, while for some others the impact is more noticeable. For
example, in Figure 2 we look at effect of rewinding on train error. ”Stage2.block1.conv2” module
is critical, whereas most other modules, once rewound, do not affect the performance. In Figure 6
in Appendix D we depict the effect of rewinding on different performance criteria (train loss, train
error, test error) and note that they exhibit a similar trend.

An stable phenomena: The plots in Figure 2 capture a network trained with SGD with weights
initialized with the standard Kaiming initialization (He et al., 2015). To ensure that the observed
phenomenon is not an artifact of the training method and the initialization scheme, we repeated the
experiments with different initialization and optimization methods. We noted a similar pattern. For
example, Figures 7a, 7b in the Appendix illustrate the emerged pattern when changing the initializa-
tion to Fixup (Zhang et al., 2019b), replace SGD with Adam (Kingma & Ba, 2014) respectively.

2.3 WHAT MEASURES FAIL TO DISTINGUISH CRITICAL LAYERS

Spectrum of weight matrices: To understand this phenomenon, we examine how weight ma-
trices evolve during training to see if this can differentiate between critical and non-critical layers.
We explore the change in the spectrum of different weight matrices on rewinding and note that the
spectrum for a critical and non-critical module look alike. This is shown in Figures 3. We calculate
the spectrum using the algorithm of (Sedghi et al., 2019).

Distance to initialization: Next, we analyze the operator norm of difference from initialization
for each module. Figure 8 in the appendix depicts this and reveals no difference between critical
and non-critical modules. A similar plot was explored in Zhang et al. (2019a), where they find that
Frobenius norm and infinity norm also fail to capture criticality.

Change in the activation patterns: We investigate the change in the activation patterns of a
network when we rewind a module. To do this we study the similarity between two networks: 1. The
original trained network and 2. The network with a rewound module. As a measure of similarity we
use CKA (Kornblith et al., 2019). We note that for a non-critical module, the original and rewound
networks are similar and in case of a critical module, the similarity between the activation patterns
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between the two networks breaks down gradually rather than an the exact rewound module. See
Figure 9 in Appendix D.

3 CRITICALITY AND GENERALIZATION

Our goal is to understand criticality and how it affects the generalization performance of a DNN.
Inspired by the rewind to initialization experiments of (Zhang et al., 2019a), we take one step further
and consider changing the value of each module, to the convex combination of its initial and final
value, i.e., for each module i, we replace θi with θαi = (1 − α)θ0

i + αθFi , α ∈ [0, 1], and keep all
other layers the same. Then we look at the effect of this perturbation on the performance of the
network.

Figure 4 depicts how train error, test error and train loss change as we increase the value of α in
θαi when i is a critical module (green curve), a non-critical module (orange curve) and all modules
(blue curve). We find that along this convex combination path all these performance measures drop
monotonically, as we move from the final weights to the initial weights. As the figure suggests, this
point is closer to initialization for non-critical modules than the critical ones.

The above experiment shows the effect of moving along a convex combination between module’s
initial and trained value. To capture the relation between criticality and generalization, we are in-
terested in also accounting for the width of the valley as we move from final value to the initial
value. In particular, we are interested in analyzing what happens if we are moving inside a ball of
some radius σi around each point in this path. PAC-Bayesian analysis, looks for a ball around final
value of parameters such that the loss does not change if moving in this ball. Bringing this idea
together with the one mentioned above, we are interested in moving from final value to initialization
value in a valley of some radius, and find out how much we can move on this path without the ball
becoming tighter. Intuitively, the closer we can get to initialization for each module, the better the
generalization performance.
Definition 3.1 (Module and Network Criticality). Given ε > 0 and network fΘ, we define the
module criticality for module i as follows:

µi,ε(fΘ) = min
0≤α,σ≤1

{
α2
i

∥∥θFi − θ0
i

∥∥2

F
σ2
i

: Eu∼N (0,σ2
i )[LS(fθαi +u,ΘF−i

)] ≤ ε

}
, (1)

We also define the network criticality as the sum over the modules of the module criticality:

µε(fΘ) =

d∑
i=1

µi,ε(fΘ) (2)

Here, LS denotes the empirical zero-one loss over the training set, fθαi ,ΘF−i is the DNN’s function
value where weight matrix corresponding to ith module is replaced by θαi and all other modules are
fixed at their values in the end of training, ΘF

−i. θ
α
i = (1−α)θ0

i +αθFi , where θ0
i is the value of the

weight matrix at initialization and θFi is the trained value.

Intuitively, network criticality measure is sum of module criticalities. This is also theoretically
derived using the analysis below.

3.1 A PAC-BAYESIAN GENERALIZATION BOUND

We attempt to understand the relationship between module criticality, and generalization by de-
riving a generalization bound using PAC-Bayesian framework (McAllester, 1999). Given a prior
distribution over the parameters that is picked in advanced before observing a training set, and a
posterior distribution over the parameters that could depend on the training set and a learning al-
gorithm, PAC-Bayesian framework bounds the generalization error in terms of the KullbackLeibler
(KL) divergence (Kullback & Leibler, 1951) between the posterior and the prior distribution. We
use PAC-Bayesian bounds as they hold for any architecture.

The intuition from Figure 4 suggests moving the parameters of each module as close as possible to
initialization before harming the performance. For such αi, we can then define the posterior Qi for
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(a) Train Error (b) Test Error (c) Train Loss

Figure 4: Performance drop as we move on convex combination path from final to initial value
of modules. We find that along this path the training error drops monotonically from the initial
weights to the final weights. The blue curve is when we replace all the parameters in the network
by the convex combination between their initial and final value simultaneously, the orange curve
corresponds to the convex combination path of a single (non-critical) layer and the green curve
corresponds to a convex combination path of a critical layer in ResNet-18 architecture.

module i to be a Gaussian distribution centered at θαi with covariance matrix σ2
i , i.e., as if we have

additive noise ui ∼ N (0, σiI). We use Θα to refer to the case where all θi are replaced with θαii
and matrix U includes all ui. Then the following theorem holds.
Theorem 3.2. For any data distribution D, number of samples m ∈ N , for any 0 < δ, for any
0 < σi ≤ 1 and any 0 ≤ α ≤ 1, with probability 1 − δ for the choice of the training set Sm ∼ D
the following generalization bound holds:

EU [LD(fΘα+U )] ≤ EU [LS(fΘα+U )] +

√√√√√ 1
4

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2F

kiσ2
i

)
+ log m

δ + Õ(1)

m− 1

where ki is the number of parameters in module i. For example, for a convolution module with
kernel size qi × qi and number of output channels ci, ki = q2

i ci−1ci.

The exact bound including the constants and the proof of the above theorem is given in Appendix A.
Theorem 3.2 already gives us some insight into generalization of the original network. However, it
is not exactly a generalization bound on the original network but rather the perturbed network. We
conjecture that for almost any realistic distribution D, any random Θ0, any ΘF achieved by known
gradient based optimization algorithms, any 0 ≤ α ≤ 1 and any σ ≥ 0, the test error does not
improve by taking a convex combination of parameters and their initial values followed by Gaussian
perturbation. Therefore, we have LD(fΘF ) ≤ EU [LD(fΘα+U )]. The following corollary restates
Theorem 3.2 by using this assumption and doing some search over α and σ parameters in the bound.

Corollary 3.3. For any data distribution D, number of samples m ∈ N. For any ε > 0, for any
0 < δ, if LD(fΘF ) ≤ EU [LD(fΘα+U )] for ui ∼ N (0, σiI) , then with probability 1 − δ for the
choice of the training set Sm ∼ D, the following generalization bound holds

LD(fΘ) ≤ ε+

√
1
4µ
′
ε(fΘ) + log m

δ + Õ(1)

m− 1
,

where µ′ε(fΘ) is calculated as follows:

µ′ε(fΘ) = arg max
0≤α,σ≤1

{∑
i

α2
i

∥∥θFi − θ0
i

∥∥2

F
σ2
i

: EU [LS(fΘα+U )] ≤ ε

}
.

Note that the above bound uses a slightly different notion of network criticality compare to Defini-
tion 3.1 since the bound requires finding α and σ values simultaneously for all modules as opposed
to the one defined in Definition 3.1 which allows us to decouple them.
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Deterministic Generalization Bound for Convolutional Networks Although PAC-Bayesian
bounds are data-dependent hence numerically superior, they provide less insight about the under-
lying reason that causes generalization. For example, the flatness of the solution after adding Gaus-
sian perturbation can be computed but computing its value does not reveal what properties in the
network enforce the loss surface around a point to be flat. Deterministic norm-based generalization
bounds on the other hand are numerically much looser yet provide better insights into dependency
of generalization to different parameters. In Appendix B, we build on the results of the Theorem 3.2
to present a norm-based deterministic bound using module criticality.

In this section, we intuitively justified network criticality measure and proved the form of depen-
dency of DNN generalization to network criticality measure in Corollary 3.3. In Section 4, we em-
pirically show that network criticality measure is able to correctly rank generalization performance
of different architectures while earlier measures fail to do so.

4 EXPERIMENTS

We perform several experiments to compare our network criticality measure to earlier complexity
measures in the literature. All our experiments are performed on CIFAR10 dataset. For all experi-
ments, implementation and architecture details are presented in Appendix C.

Table 1 summaries the quantities that are calculated in this Section. For the last two measures, we
calculate σi and αi as in Definition 3.1.

Table 1: Quantities of Interest

Generalization Error (GE) LD(fΘ)− LS(fΘ)
Product of Frobenius Norms (PFN) Πi‖θFi ‖F
Product of Spectral Norms (PSN) Πi‖θFi ‖2

Distance to Initialization (DtI)
∑
i‖θ0

i − θFi ‖2F
Number of Parameters (NoP) Total number of parameters in the network

PAC Bayes (at error threshold 0.1)
∑
i‖θ0

i − θFi ‖2F/σ2
i

Network Criticality Measure
(at error threshold 0.1)

∑
i α

2
i ‖θ0

i − θFi ‖2F/σ2
i

First as a sanity check we use our complexity measure (lower is better) to compare between a
ResNet18 trained on true labels and compare it with a ResNet18 trained on data where 20% of
the labels are randomly corrupted. As seen in Figure 5a, our measure is able to correctly capture
that the network trained with true label generalizes better than the one trained on corrupted labels
(4.62% error vs. 35% ).

Next, in Table 2 (and in Figure 5b) we compare the generalization performance of four ResNet18
architectures where we vary the number of output channels in each stage. In the ResNet18 (1x
width) the number of output channels are 16, 16, 32, 64, 128 in the five stages respectively. The
other ResNet18s have output channels scaled by factors (2x,4x and 8x) in each stage. There is a
particular ranking of the networks based on their generalization error and it is desired for complexity
measures to capture it. Therefore, we compare the rankings proposed by network criticality measure
and complexity measures from the literature with the empirical rankings obtained in the experiment.
To do this we calculate the Kendall’s τ correlation coefficient (Kendall, 1938) which is defined as
follows:

Kendall’s τ =
# of pairs where the rankings agree−# of pairs where the rankings disagree

# pairs
.

This coefficient lies between −1 and 1, where 1 denotes a high correlation between the two set of
rankings. Table 2 shows that the Kendall’s τ coefficient between our network criticality measure and
the generalization error is higher than all other complexity measures that we compared to. Moreover,
our complexity measure only fails to correctly capture the relative rank of one pair – ResNet18 (4x
width) vs. ResNet18 (8x width).

Finally, we repeat the above experiment on different conventional DNN architectures (see Table 3
for details). We note that network criticality measure correctly predicts the ranking of generalization
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(a) Comparing ResNet18 on trained true labels vs.
corrupted labels

(b) ResNet18 architectures obtained by scaling up
the number of output channels in each stage. The
ResNet (1x width) has 16, 16, 32, 64, 128 output
channels respectively in its 5 stages.

Figure 5: Network criticality measure as a function of error threshold, for ResNet18.

Table 2: Comparing generalization measures on ResNet18 with different channel widths. The net-
work is ResNet18 with 16,16,32,64,128 channels in the five stages and is scaled by different factors.

ResNet18 (x) GE PFN PSN DtI NoP PAC Bayes Net. Criticality
1x width 6.27% 4.5e17 2.3e15 1409 6.9e6 6.5e7 3.5e7
2x width 5.13% 8.2e19 6.4e18 2253 2.7e7 2.8e6 8.2e6
4x width 4.61% 7.6e21 9.5e20 3433 1.1e8 9.3e6 6.6e6
8x width 2.88% 1.1e24 3.28e22 5365 4.4e8 9.8e6 7.0e6

Kendall’s τ - -1 -1 -1 -1 0 0.66

performance for various different architectures – ResNet18, ResNet34, ResNet101, VGG16 and a 3-
layer fully connected network (FCN). We find that the generalization error of ResNet34 is the lowest
which is correctly captured only by our complexity measure and not by any other measures. Further,
the Kendall’s τ correlation coefficient between the ranking based of the generalization error and our
network criticality measure is 0.8 which is again higher than this coefficient for any other complexity
measure. Our measure only fails to capture the relative ranking of ResNet101 and VGG16. The
difference in the generalization error of these networks in less than 1% which makes this challenging.

Table 3: Comparing complexity measures on different architectures.

Network GE PFN PSN DtI NoP PAC Bayes Net. Criticality
ResNet18 4.61% 7.6e21 9.5e20 3433 1.1e8 9.3e6 6.6e6
ResNet34 4.52% 3.0e37 3.1e34 4804 2.1e8 1.2e7 6.3e6

ResNet101 6.4% 8.4e109 2.3e99 18630 4.2e8 3.4e7 3.5e7
VGG16 7.47% 5.1e15 8.6e12 2341 3.3e8 1.1e7 1.3e7

FCN 29.83% 8.6e7 6.2e5 35964 2.0e8 8.9e7 1.0e8
Kendall’s τ - -0.6 -0.6 0.2 0 0.4 0.8

5 CONCLUSION

In this paper, we studied the module criticality phenomenon and proposed a complexity measure
based on module criticality that is able to correctly predict the superior performance of some DNN
architectures over others, for a specific task. We believe module criticality can be used as a road-map
for designing new task-specific architectures. Proposing new regularizers that improve generaliza-
tion performance by bounding criticality or spreading it among various modules of the network is
an exciting direction for future work.
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APPENDIX

A PROOF OF THE THEREORM 3.2

We start by stating the PAC-Bayes theorem which bounds the generalization error of any posterior
distribution Q on parameters Θ that can be reached using the training set given a prior distribution
P on parameters that should be chosen in advance and before observing the training set.

Theorem A.1 ((McAllester, 1999)). For any data distribution D, number of samples m ∈ N,
training set Sm ∼ D, and prior distribution P on parameters Θ, posterior distribution Q, for any
0 < δ, with probability 1− δ over the draw of training data we have that

KL
(
EΘ∼Q[LS(fΘ)]

∣∣∣∣∣∣∣∣EΘ∼Q[LD(fΘ)]

)
≤

KL(Q||P ) + log m
δ

m− 1

where KL is the the KullbackLeibler (KL) divergence (Kullback & Leibler, 1951).

Following (Dziugaite & Roy, 2017), we use the inequality KL−1(q|c) ≤ q +
√
c/2 to achieve a

simple bound on the test error:

EΘ∼Q[LD(fΘ)] ≤ KL−1

(
EΘ∼Q[LS(fΘ)]

∣∣∣∣KL(Q||P ) + log m
δ

m− 1

)

≤ EΘ∼Q[LS(fΘ)] +

√
KL(Q||P ) + log m

δ

2(m− 1)
,

where KL−1(q|c) = sup {p ∈ [0, 1] : KL(q||p) ≤ c}.
The intuition from Figure 4 suggests that moving the parameters of each module as close as possible
to initialization before harming the performance. For such αi, we can then define the posterior Qi
for module i to be a Gaussian distribution centered at θαi with covariance matrix σ2

i , i.e., as if we
have additive noise ui ∼ N (0, σiI). We use Θα to refer to the case where all θi are replaced with
θαii and matrix U includes all ui. Then the training loss term can be decomposed as

EΘ∼Q[LS(fΘ)] = Eui∼N (0,σiI)[LS(fΘα+U )]

≤ LS(fΘF ) +

∣∣∣∣Eui∼N (0,σiI)[LS(fΘα+U )]− LS(fΘF )

∣∣∣∣,
where the second term on the right hand side of the inequality captures the flatness of the point
Θα by adding Gaussian noise and measuring the change in the loss. Therefore, searching over the
posterior corresponds to finding a flat solution in the valley that connects the initial and final points.
Next, we use this intuition to prove a generalization bounds based on module criticality.

First, we express the value of the Õ(1) term in Theorem 3.2 , which is equal to ε as below

ε =
∑
i

log

(
7m+ 2 log

(
ki

kiσ2
i + α2

i

∥∥θFi − θ0
i

∥∥2

F

))
. (3)

Now we proceed with the proof.

The KL-divergence between two k-dimensional Gaussian distributions can be written as

KL(N (µ1,Σ1)||N (µP ,ΣP )) =
1

2

[
tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

>
Σ−1

2 (µ2 − µ1)− k + ln(
det Σ2

det Σ1
)

]
.

The above equation can be further simplified for Gaussian distributions with a diagonal covariance
matrix. Let the prior P be a Gaussian distribution such that for each module i, the distribution is

11
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N (θ0
i , σ

2
P,iI) and let the posterior Q be a Gaussian distribution such that for each module i, the

distribution is N ((1− α)θ0
i + αθFi ), σ2

Q,iI). We can then write the KL-divergence KL(Q||P ) as

KL(Q||P ) =
1

2

∑
i

[
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F
σ2
P,i

− ki + ki log

(
σ2
P,i

σ2
Q,i

)]
. (4)

Since prior should be decided before observing the training set, we are not allowed to optimize for
σP,i directly. However, one can optimize for σP,i over a pre-defined set of values and use a union
bound argument to get the generalization bound for the best σP,i in that set. We use a covering
approach suggested by Langford & Caruana (2002). For b, ε > 0, if one chooses the variance of
prior to be exp(−εj + b) for j ∈ N such that for each j the bound holds with probability1 − 6

π2j2 ,
then all bounds hold with probability 1−

∑
j∈N

6
π2j2 = 1− δ. We can apply the same idea to every

module such that the bound holds with probability 1− δ
∏d
i=1

6
π2j2i

.

If we choose σ2
Q,i ≤ 1 then we have σP,i ≤ exp

(
4m
ki

+ 1
)

. Otherwise, the bound holds since the

right hand side is greater than one. Given (from Equation 3) ε ≥ 0, if we choose σ2
P,i to have the

form exp
(

4m−ji
ki

+ 1
)

, for some integer ji, we can always find choose ji such that

kiσ
2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F ≤ kiσ
2
P,i ≤ exp(1/ki)

(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

)
. (5)

Therefore, the KL-divergence can be bounded as

KL(Q||P ) ≤ 1

2

∑
i

[
ki
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

− ki + ki log

(
σ2
P,i

σ2
Q,i

)]

=
1

2

∑
i

[
ki log

(
σ2
P,i

σ2
Q,i

)]

≤ 1

2

∑
i

ki log

exp(1/ki)
(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

)
kiσ2

Q,i


≤ 1

2

∑
i

ki log

exp(1/ki)
(
kiσ

2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

)
kiσ2

Q,i


≤ 1

2

∑
i

1 + ki log

(
1 +

α2
i

∥∥θFi − θ0
i

∥∥2

F
kiσ2

Q,i

)
.

Note that in order to achieve the inequality in equation 5, ji should be chosen as

ji =

⌊
4m

ki
+ 1 + log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

)⌋
≤ 5m+ log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

)
.

Given that each such bound should hold with probability 1− δ
∏d
i=1

6
π2j2i

, the log term in the bound
can be written as

log
m

δ
+
∑
i

log(π2j2
i /6) ≤ log

m

δ
+ 2

∑
i

log

(
7m+ 2 log

(
ki

kiσ2
Q,i + α2

i

∥∥θFi − θ0
i

∥∥2

F

))
.

Putting everything together proves the Theorem statement.

B A DETERMINISTIC GENERALIZATION BOUND FOR CONVOLUTIONAL
NETWORKS

We start by stating a generalization bound given in (Neyshabur et al., 2018) with a slight improve-
ment in the constants.

12
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Lemma B.1 (Neyshabur et al. (2018)). Let fΘ : X → RC be any predictor function with parameters
Θ and P be a prior distribution on parameters Θ. Then for any γ,m, δ > 0, with probability 1− δ
over the training set S of size m, for any parameter Θ and any perturbation distribution Q over
parameters such that PU∼Q

[
maxx∈X |fΘ+U (x)− fΘ(x)| ≤ γ

4

]
≥ 1

2 , we have

LD(fΘ) ≤ LS,γ(fΘ) +

√
2KL(Θ + U ||P ) + 1 + log m

δ

2(m− 1)
.

The above lemma gives a data-independent deterministic bound which depends on the maximum
change of the output function over the domain after a perturbation. We combine the Lemma B.1
with the Theorem 3.2 and prove a bound on the perturbation which leads to the following theorem.

Theorem B.2. Let norm of the input x anN×N image whose norm is bounded byB, fΘ : X → RC
be the predictor function with parameters Θ which is a DNN of depth dmade of convolutional blocks.
Then for any margin γ, sample size m, δ > 0, with probability 1 − δ over the training set S, any
parameter Θ and any αi > 0 such that maxx∈X |fΘ(x)− fΘα(x)| ≤ γ

8 , we have

LD(fΘ) ≤ LS,γ(fΘ)+

√√√√√∑d
i=1 ki log

(
1 +

[32edBαi‖θFi −θ0i‖F
∏
i6=j‖θαi ‖2

√
log(4dN2)]2

ciγ2

)
+ log m

δ + Õ(1)

m− 1
,

(6)
where ki is the number of parameters in module i. For example, for a convolution module with
kernel size qi × qi and number of output channels ci, ki = p2ci−1ci.

Proof. First, we express the value of the Õ(1) term in Theorem B.2 , which is equal to ε2 as below

ε2 = 1 +
∑
i

log

7m+ 2 log

 ki

kiγ2/
(

16e
∏
j 6=i ‖θαi ‖2 log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

F


 .

(7)

We note that for any Θ,Θ′, if maxx∈X ‖fΘ(X)− fΘ‖∞ ≤ γ/2 then L(fΘ) ≤ Lγ(f ′Θ). The reason
is that the output for each class can change by at most γ/2 and therefore the label can only change
for the data points that are within γ of the margin.

We start using the assumptions on the perturbation bound. Combining the results from Theorems
B.1 and 3.2, we can get the following bound.

LD(fΘF ) ≤ LD, γ4 (fΘα) (8)

≤ LS, 3γ4 (fΘα) +

√√√√√ 1
2

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2F

kiσ2
i

)
+ log m

δ + ε2

m− 1

≤ LS,γ(fΘα) +

√√√√√ 1
2

∑d
i=1 ki log

(
1 +

α2
i‖θFi −θ0i‖2F

kiσ2
i

)
+ log m

δ + ε2

m− 1

where ε2 is given above in equation 7.

Therefore, it suffices to find the value of σi under which the assumption on norm of perturbation in
function space holds and then simplify the following upper bound given the desired value of σi.

In order to find the desired value of σi we use the following two lemmas. First we adopt the pertur-
bation lemma in (Neyshabur et al., 2018) to bound the change in the output a network based on the
magnitude of the perturbation:

Lemma B.3 ((Neyshabur et al., 2018)). Let norm of input x be bounded by B. For any B > 0, let
fΘ : X → RC be a neural network with ReLU activations and depth d. Then for any Θ, x ∈ X ,

13
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and any perturbation U s.t. ‖ui‖2 ≤ ‖θi‖2, the change in the output of the network can be bounded
as follows

‖fΘ+U − fΘ‖2 ≤ eB
d∏
i=1

‖θi‖2
d∑
j=1

‖ui‖2
‖θi‖2

. (9)

We next use the following lemma from (Pitas et al., 2017) that bounds the magnitude of the Gaussian
perturbation ui for each convolutional module based on the standard deviation of the perturbation.

Lemma B.4 ((Pitas et al., 2017)). Let ui be a Gaussian perturbation for each module i of a convo-
lutional model. Let N be the image size, qi , ci be the kernel size and the number of output channels
at module i respectively. We have that

P
[
‖ui‖2 ≥ σi

(
qi(2
√
ci) + t

)]
≤ 2N2e

− t2

2q2
i .

The above lemma suggests that by taking union bounds over all modules, we can ensure that with
probability 1/2 we have that for any module i, the following upper bound on the spectral norm of
the perturbation holds.

‖ui‖2 ≤ σiqi(2
√
ci +

√
2 log(4dN2))

≤ 2σiqi(
√
ci +

√
log(4dN2))

≤ 4σiqi
√
ci log(4dN2).

Combining this with perturbation bound in Equation 9, we have that

‖fΘα+U − fΘα‖2 ≤ eB
d∑
i=1

‖ui‖2
d∏
j 6=i

∥∥θαj ∥∥2

≤ 4eB

d∑
i=1

σiqi
√
ci log(4dN2)

d∏
j 6=i

‖θαi ‖2 ≤
γ

8
,

where the last inequality can be achieved with

σi =
γ

32edB
∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)

. (10)

Therefore, this value for σi ensures the assumption on norm of perturbation in function space in
Theorem B.2 holds and hence completes the proof.

Moreover, we show how we get the value of ε2, by showing the simplification from inserting the
value for σi from Equation equation 10 as follows.

log

(
1 +

α2
i

∥∥θFi − θ0
i

∥∥2

F
kiσ2

i

)
≤ log

(
1 +

[
αi
∥∥θFi − θ0

i

∥∥
F

]2
q2
i c

2
iσ

2
i

)

≤ log

(
1 +

[32edBαi
∥∥θFi − θ0

i

∥∥
F
∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)]2

q2
i c

2
i γ

2

)

= log

(
1 +

[32edBαi
∥∥θFi − θ0

i

∥∥
F
∏d
i=1 ‖θαi ‖2

√
log(4dN2)]2

ciγ2

)
.
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Then, ε2 can also be simplified as follows.

ε2 = 1 +
∑
i

log

(
7m+ 2 log

(
ki

kiσ2
i + α2

i

∥∥θFi − θ0
i

∥∥2

F

))

≤ 1 +
∑
i

log

7m+ 2 log

 ki

kiγ2/
(

32edB
∏d
i=1 ‖θαi ‖2 qi

√
ci log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

F




≤ 1 +
∑
i

log

7m+ 2 log

 ki

γ2/
(

32edB
∏d
i=1 ‖θαi ‖2

√
log(4dN2)

)2

+ α2
i

∥∥θFi − θ0
i

∥∥2

F




≤ 1 +
∑
i

log

(
7m+ 2 log(ki)− 4 log

(
αi
∥∥θFi − θ0

i

∥∥
F + γ/32edB

d∏
i=1

‖θαi ‖2
√

log(4dN2)

))
.

C DETAILS ON EXPERIMENTAL SETUP

For all our experiments, we use CIFAR10 dataset. To train our networks we used Stochastic Gradient
Descent (SGD) with momentum 0.9 to minimize multi-class cross-entropy loss. Each model is
trained until the cross-entropy loss on the training dataset falls below 0.15. The ResNets and VGGs
were trained using a stage-wise constant learning rate scheduling with a starting learning rate of 0.1
and with a decrease by a multiplicative factor of 0.2 every 60 epochs. FCN was trained with an
initial learning rate of 0.1 with a decrease by a multiplicative factor of 0.2 every 200 epochs. Batch
size of 128 was used for all models and weight decay with factor 5e-4 was used to train all networks.

We mainly study three types of neural network architectures:

• Fully Connected Networks (FCNs): The FCNs consist of 2 fully connected layers with
5000 and 1000 hidden units respectively. Each of these hidden layers is followed by a
batch normalization layer and a ReLU activation. The final output layer (that follows the
ReLU activation in the second layer) has an output dimension of 10 (number of classes).

• VGGs: Architectures from (Simonyan & Zisserman, 2014) that consists of multiple convo-
lutional layers, followed by multiple fully connected layers and a final classifier layer (with
output dimension 10). We study the VGG with 16 layers.

• ResNets: Architectures used are ResNets V1 (He et al., 2016). All convolutional layers
(except downsample convolutional layers) have kernel size 3×3 with stride 1. Downsample
convolutions have stride 2. All the ResNets have five stages (0-4) where each stage has
multiple residual/downsample blocks. These stages are followed by a maxpool layer and a
final linear layer. Here are further details about the ResNets used in the paper:

– ResNet18: All ResNet18s studied in the paper (in Table 2 and Figure 5b) have 1
convolutional layer in Stage 0 (64 ouput channels), Stage 1 has 2 residual blocks (64
output channels), Stage 2 has one downsample block and one residual block (128
output channels), Stage 3 has one downsample block and one residual block (256
output channels) and Stage 4 again has one downsample block and a residual block
(512 output channels).
For the ResNets studied in Table 3, ResNet (1x width) has the same architecture as
described above but with 16, 16, 32, 64 and 128 output channels in the stages 0-4.

– ResNet34: ResNet34 architectures in this paper have 5 stages. Stage 0 has 1 convo-
lutional layer with 64 output channels followed by a ReLU activation. Stage 1 has 3
residual blocks (64 output channels), Stage 2 has 1 downsample block and 3 residual
blocks (128 output channels), Stage 3 has 1 downsample block and 5 residual blocks
(256 output channels) and, Stage 4 has 1 downsample block and 2 residual blocks
(512 output channels).
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(a) Rewind analysis of (Zhang et al., 2019a)(b) We rewind each module, whereas (Zhang
et al., 2019a) rewind each block

(c) The effect of rewinding on train loss (d) The effect of rewinding on test error

Figure 6: Analysis of rewinding modules to initialization for ResNet-18 architecture. Each row
represents a layer in ResNet18-v1 that has been rewound to the initialization value and each column
represents a particular training epoch.

– ResNet101: ResNet34 architectures in this paper again have 5 stages. Stage 0 has 1
convolutional layer with 64 output channels followed by a ReLU activation. Stage 1
has 1 downsample block and 2 residual blocks (256 output channels), Stage 2 has 1
downsample block and 3 residual blocks (512 output channels), Stage 3 has 1 down-
sample block and 22 residual blocks (1024 output channels) and, Stage 4 has 1 down-
sample block and 2 residual blocks (2048 output channels).

The ResNets and VGGs in the paper are trained without batch normalization.

During training on CIFAR10, images are padded with 4 pixels of zeros on all sides, then randomly
flipped (horizontally) and cropped. Global mean and standard deviation are computed on all training
images and applied to normalize the inputs of CIFAR10.

While training a ResNet18 on the CIFAR10 dataset with 20% of the labels randomly corrupted, we
do not augment the training set with images that are randomly flipped and cropped. We also do not
use weight decay during training these networks.

D FIGURES
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(a) Fixup initialization (b) Adam optimizer

Figure 7: Criticality pattern of Resnet18-v2 when trained with Fixup initialization, Adam optimizer

Figure 8: Operator norm of difference from initialization
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(a) Rewind an ambient module (b) Rewind a critical module

Figure 9: Similarity in activation patterns when an ambient or critical module is rewound. Darker
green denotes higher similarity

Figure 10: 0/1 loss and cross-entropy loss for critical and non-critical modules, for given different
values of σ and α in from Definition 3.1.
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