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ABSTRACT

We propose the differentially private lottery ticket mechanism (DPLTM). An
end-to-end differentially private training paradigm based on the lottery ticket
hypothesis. Using “high-quality winners”, selected via our custom score func-
tion, DPLTM significantly outperforms state-of-the-art. We show that DPLTM
converges faster, allowing for early stopping with reduced privacy budget con-
sumption. We further show that the tickets from DPLTM are transferable across
datasets, domains, and architectures. Our extensive evaluation on several public
datasets provides evidence to our claims.

1 INTRODUCTION

Learning while preserving the privacy of the contributing users is a priority for neural networks
trained on sensitive data. Especially, when it is known that neural networks tend to “remember”
training data instances (such as a patient’s healthcare information) (Carlini et al., 2018; Fredrikson
et al., 2015; Song et al., 2017; Wu et al., 2016). Differential privacy (Dwork et al., 2006) has be-
come the de facto standard for protecting an individual’s privacy in machine learning. Differentially
private training of neural networks ensures that the model does not unduly disclose any sensitive
information. The most often used approach to achieve this goal is the method of gradient perturba-
tion, where we add controlled noise to the gradients during the training phase. Differentially Private
Stochastic Gradient Descent (DPSGD) (Abadi et al., 2016) is the current state-of-the-art, used exten-
sively for training privacy-preserving neural networks. DPSGD, however, falls short on the utility
front, the main reason for which we discuss below.

DPSGD, for a given minibatch, first computes the per-observation gradient, g(xi), and then clips
g(xi) in l2 norm, g(xi)/max(1,||g(xi)||2/C) (Line 6 in Abadi et al. (2016), Algorithm 1). We can see that
the norm will be large (proportional to the number of model parameters), especially for a multi-layer
neural network, leading to a large “clipping impact” on the gradient, resulting in “smaller” clipped-
gradient magnitude, easily overwhelmed by noise, required for preserving differential privacy. This
leads to diminished utility, especially, for scenarios where we require tight privacy (large noise).

An obvious solution is to minimize the number of model parameters while maximizing the model’s
utility. This, however, is non-trivial for differentially private neural networks, especially when we
need to balance privacy and utility. Recently, it has been shown that there exist smaller sub-networks
within large neural networks, which when trained in isolation provide similar utility as the large net-
works (Frankle & Carbin, 2018; Frankle et al., 2019). The phenomenon, known as the lottery ticket
hypothesis is an encouraging step towards finding small, high-utility architectures. But, directly
using the lottery ticket hypothesis with differential privacy is non-trivial as we need to ensure the
complete process (from ticket selection to training the winning ticket) is end-to-end differentially
private.

As a potential solution to improve the privacy-utility bottleneck in differentially private neural net-
works, we propose the Differentially Private Lottery Ticket Mechanism (DPLTM). To ensure differ-
ential privacy in DPLTM, we use a three-tiered approach. In phase 1, we create the lottery tickets
following the principles of the lottery ticket mechanism. In phase 2, we select the winning ticket
with differential privacy, making sure that we pick the ticket with a small number of parameters and
with high utility via our custom score function (details in Section 3.3.1). After differentially private
selection of the winning ticket, our phase 3 trains the winning architecture with differential privacy.
In summary, our main contributions in this work are as follows:
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1. We propose DPLTM, the differentially private lottery ticket mechanism. An end-to-end
differentially private extension of the lottery ticket hypothesis. We design a custom score
function to ensure the differentially private selection of “best” winners, which aids DPLTM
to significantly improve the privacy-utility trade-off for differentially private neural net-
works.

2. Due to the reduced noise impact in DPLTM, we show that DPLTM converges at a faster rate
compared to DPSGD, leading to consumption of smaller privacy budget and better utility
if early stopping is desired.

3. We show that the winning tickets in DPLTM are “transferable” across datasets, domains,
and model architectures. Leading to the possibility of ticket generation and selection on
any public dataset, resulting in lower privacy cost.

4. Using five real-life datasets, we show that DPLTM significantly outperforms DPSGD on
all datasets, and for all privacy budgets.

2 PRELIMINARIES

We use this section to introduce differential privacy and the lottery ticket hypothesis.

2.1 DIFFERENTIAL PRIVACY

Differential privacy (Dwork et al., 2006) provides us with formal and provable privacy guarantees,
with the intuition that a randomized algorithm behaves similarly on “similar” input datasets, for-
mally
Definition 1. (Differential privacy (Dwork et al., 2006)) A randomized mechanismM : Dn → Rd
preserves (ε, δ)-differentially privacy if for any pair of neighbouring databases (x, y ∈ Dn) such
that d(x, y) = 1, and for all sets S of possible outputs:

Pr[M(x) ∈ S] ≤ eεPr[M(y) ∈ S] + δ

Intuitively, Definition 1 states that for any pair of two neighboring datasets, x, y, differing on any
one row, a randomized mechanism M’s outcome does not change by more than a multiplicative
factor of eε. Moreover, the guarantee fails with probability no larger than δ. If δ = 0, we have
pure-ε differential privacy.

The Exponential Mechanism (EM) (McSherry & Talwar, 2007) is a well-known tool for providing
differential privacy. Defined by a rangeR, privacy parameter ε, and a score function u : XN ×R →
R that maps a dataset to the utility scores, given a dataset D ∈ XN , the EM defines a probability
distribution over R according to the utility score. In other words, the EM is more likely to output
some r ∈ R with higher utility scores, formally
Definition 2. (Exponential Mechanism (McSherry & Talwar, 2007)) The exponential mechanism
M(D,u,R) selects and outputs an element r ∈ R with probability proportional to

exp

(
εu(D, r)

2∆u

)
where ∆u is the sensitivity (∆u = maxr∈RmaxX,X′:||X−X′||1≤1 |u(X, r)−u(X ′, r)|) of the score
function.

In terms of privacy guarantees, the exponential Mechanism provides ε- differential privacy (McSh-
erry & Talwar, 2007)

2.2 LOTTERY TICKET HYPOTHESIS

The Lottery Ticket Hypothesis was proposed by Frankle & Carbin (2018), where interestingly, it was
shown that randomly initialized neural networks contain small subnetworks, which when trained in
isolation, can provide similar utility as the full network. To get the subnetworks, we train a network
for I iterations, prune p% of its weights (of smallest magnitude), and reset the weights of the pruned
network to original initialization, to be trained again. This process ensures that for n rounds, each
round prunes p1/n% of the weights. Such pruned, small subnetworks, with high utility are known
as “winning tickets” from the lottery mechanism.
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3 DIFFERENTIALLY PRIVATE LOTTERY TICKET MECHANISM

3.1 OVERVIEW

We start by providing an overview of DPLTM. Using the input dataset, X , we generate and store
multiple “lottery-tickets”, each with a varying number of model parameters. Then we use the ex-
ponential mechanism (McSherry & Talwar, 2007) to pick a winning ticket using a custom utility
function (details follow), that provides us with the desired balance between the number of model
parameters and the model utility. After selecting the winner, we train the winning architecture with
differential privacy. Our total privacy cost, hence, is composed of two separate parts, selecting
the winning ticket and training the winning ticket. We present the complete process succinctly as
Algorithm 1 followed by a walk-through.

Algorithm 1 Differentially Private Lottery Ticket Mechanism (DPLTM)

Require: Dataset: X , Total privacy budget: (ε, δ), Pruning percent: p, Number of tickets: T ,
Ticket training iterations: I, final model training iterations: I , Neural Network: f , Initial model
parameters: θ0, Initial mask: m, Privacy budget for ticket selection: ε1, Privacy budget for ticket
training: ε2, δ, Constant for score function: ν, Minibatch size: L, Clipping factor: C, Learning
rate: η

Phase 1 - Generating Lottery Tickets
1: procedure LTH(f ,m, θ0)
2: Randomly initialize f(X,m� θ0);m = 1|θ0| . m is the initial mask
3: for i ∈ T do
4: Train f(X,m� θ0) for I iterations, to get f(X,m� θI)
5: Prune p% of parameters from θI , creating a new mask m′ . m′[j] = 0, where θI is

pruned
6: Reset the remaining parameters to their values in θ0

7: f(X,m′ � θ0) is the lottery ticket
8: Store the mask m′, initial parameters θ0

9: Store the proportion of remaining model parameters, c, in the lottery ticket
10: Store the performance of the lottery ticket, a, on the test set
11: Let m = m′

12: end for
13: return C,A,M, θ0 . The collection of parameter proportions, model utilities, masks, and

initial parameters, ci ∈ C, ai ∈ A,m′i ∈M ; i ∈ [1, T ]
14: end procedure
Phase 2 - Selecting a Winning Ticket
15: procedure DPWT(C,A, ε1)
16: Calculate score S(C,A) = A(1− νC)

17: Select a winning ticket, T , with probability, P =
exp(ε1S)

2∆∑
T

exp(ε1S)
2∆

18: return T . The winning ticket
19: end procedure
Phase 3 - Training the Winning Ticket
20: procedure DPTWT(T )
21: Initialize the network,f , with mask and initial values from the winning ticket
22: for k ∈ I do
23: Take a minibatch with sampling probability L/N . N is the total dataset size
24: For each xi ∈ L, compute gradient gk(xi) = ∇θkL(θk, xi)
25: ĝk = 1

L (
∑
i
gk(xi)/max(1,

||gk(xi)||2
C ) +N (0, σ2C2I))

26: θk+1 → θk − ηkĝk
27: end for
28: end procedure
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3.2 DPLTM WALKTHROUGH

Next we provide phase by phase walkthrough of DPLTM.
Phase 1 (Generating lottery tickets): We start with generating lottery tickets required for DLPTM.
At this stage, we are not yet concerned about privacy. So we use the non-private lottery ticket
mechanism with our input dataset X , and generate T number of lottery tickets (ti; i ∈ [1, · · · , T ]).
Specifically, we use iterative pruning version of the lottery ticket mechanism, where using the prun-
ing parameter, p, at each ticket iteration, we remove p% of model parameters with the smallest
magnitude. This results in T tickets with a successively smaller number of parameters. Results from
each ticket (accuracy on the test set, Ai, i ∈ [1, T ]) are stored along with the fraction of parameters
(Ci, i ∈ [1, T ]) remaining in the model. For further use, we also store the mask m′i from each ticket
and the randomly initialized initial parameters θ0.

Phase 2 (Selecting a winning ticket with differentially privacy): After generating candidate tickets,
we need to select a winning ticket that can be subsequently trained with differential privacy. But,
picking a winner is non-trivial for two reasons, first as the tickets are generated using sensitive data,
we cannot directly pick a winner, that is, we need differential privacy for selecting the winning
ticket, second, we need to pick a winner such that the winner has an adequate balance between the
number of model parameters (smaller the better) and the model performance (higher the better). As
a solution, we use the Exponential Mechanism (EM) (McSherry & Talwar, 2007) to pick our winner
with differential privacy. And to balance the number of model parameters and the utility, we define
our custom score function using the combination of the accuracy achieved by the ticket on the test
set and the proportion of parameters left in the network (more details in Sections 3.3.1 and 3.4).

Phase 3 (Training the winning ticket with differential privacy): After we select our winning ticket
with differential privacy in phase 2, now we need to train our “winner” architecture so the final model
is differentially private. We do so by using the method similar to the differentially private stochastic
gradient descent (DPSGD) (Abadi et al., 2016) for the training of our winning ticket. This, in
contrast to DPSGD’s naive implementation, now only trains a “sub-network” with a significantly
small number of parameters. And hence provides significantly better utility, reasons for which we
discussed at length in the Introduction. Our extensive empirical evaluation in Section 4 provides
evidence for this claim.

Next, we provide formal privacy guarantees for DPLTM. We start with introducing the EM for
DPLTM with our custom score function.

3.3 DIFFERENTIAL PRIVACY GUARANTEES OF DPLTM

As seen in Algorithm 1, our first phase of generating candidate tickets is non-private. Differential
privacy comes into play in phase 2, where we pick a winning ticket with differential privacy. Hence,
we start with privacy guarantees of phase 2.

3.3.1 SELECTING A WINNING TICKET

For the Exponential Mechanism (EM), as discussed in preliminaries, we need to define a score/utility
function that assigns a higher score to “good” outputs. For DPLTM, we define the score function as
follows

S(C,A) = A× (1− (νC)) (1)
whereA is the classification accuracy on the test set for the given network configuration (ticket), C is
the proportion of remaining weights in the network, and ν is a constant. We discuss some properties
of the score function in detail in the following section (Section 3.4).

After defining the score function, we sample our winning ticket with probability

P =
exp(ε1S)

2∆∑
T

exp(ε1S)
2∆

(2)

where P is the probability of picking a ticket, ε1 is the privacy budget for EM, and ∆ is the sensitivity
of the score/utility function. Tickets with “higher” score function have a higher probability of getting
selected compared to the tickets with a lower score.
Lemma 1. Sensitivity (∆) of the score function,S, is directly proportional to ν.
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Proof. Sketch: The classification accuracy (A), and the proportion of remaining parameters in the
model (C) are bounded by [0, 1]. The change of a single record can “at-worse” impact the product
of (A, C) by 1. Hence the overall sensitivity is proportional to the constant, ν. Full, formal proof is
provided in the Appendix for space constraints.

Theorem 1. Phase 2 (Selecting a winning ticket) is (ε1) - differentially private.

Proof. Sketch: We get the proof using our custom score function with an instantiation of EM. It is
provided in the Appendix for space constraints.

3.3.2 TRAINING THE WINNING TICKET

After we select our winning ticket with differential privacy in phase 2. Our next step is to train the
winning architecture in a differentially private fashion. For this step, we use the training process
similar to DPSGD (Abadi et al., 2016). Specifically, after calculating the per-observation gradients
for a minibatch, we clip the gradients (line 25 in Algorithm 1) by their l2 norm, scaled by a constant
C, to enforce sensitivity, and then add appropriate Gaussian noise to ensure differential privacy,
formally
Theorem 2. Phase 3 (Training the winning ticket) is (ε2, δ) - differentially private, if we chose

σ ≥ cL/N
√
I log(1/δ)

ε2

Proof. Proof is argued in the same way as DPSGD (Abadi et al., 2016) using ε2 and I . It is omitted
here for space constraints.

3.3.3 PUTTING IT ALL TOGETHER

After generating the lottery tickets, selecting the winner with differential privacy, and the differen-
tially private training of the winning ticket, we are now ready to “put it all together” and state the
overall privacy guarantees of our proposed method (DPLTM).
Theorem 3. Algorithm 1 is (ε, δ) - differentially private, with ε > 0, δ > 0

Proof. We have already seen that phase 2 is ε1-differentially private and phase 3 is ε2, δ-
differentially private. Using the “naive” composition (Dwork et al., 2006)1, it is easy to see that
the Algorithm 1 is ε, δ-differentially private, with ε = ε1 + ε2 and δ = δ.

3.4 DISCUSSION

We use this section to discuss some interesting properties of DPLTM. A first observation is the
seamless integration of differential privacy with the lottery ticket mechanism in DPLTM, making it
accessible for implementation, while providing significantly better utility compared to the “naive”
DPSGD (Experiments in Section 4 support this claim). As per earlier discussions, the success of
our method is hinged on the existence of a winning ticket with fewer number of model parameters
and high utility. So it is vital that out of all available tickets, the probability of selecting the winner
with a small number of model parameters and high accuracy is high. Our custom utility function
S, strives to achieve this goal. In particular, the utility function assigns more weight to the models
with high accuracy and a low number of model parameters, which we modulate using the constant
ν. Large ν assigns more weight to C (proportion of model parameters in the ticket). For good utility
with tight privacy, we advocate using large values for ν. 2

As we observe from Theorem 3, total privacy budget for our method is composed of two parts. The
privacy budget from the EM phase used to select the winning ticket and the privacy budget to train
the winning ticket. Hence, we need to decide on the overall privacy budget split. That is, the portion
of the budget to allocate to the drawing of the winning ticket and the portion of the privacy budget for
the training of the winning ticket. We advocate dedicating a large proportion of the privacy budget

1As we are only composing two mechanisms, advanced composition is not necessary.
2If most tickets are performing similarly, which is often the case, it is of best interest to pick the ticket with

the smallest number of model parameters.
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to the training of the winning ticket and a small portion for selecting the winning ticket. With
our defined utility function, a small privacy budget suffices for selecting a “good” ticket (empirical
evidence provided in Section 4). A question a reader might ask: Why can’t we train the full network
differentially privately when generating tickets? That is, why do we produce non-private tickets first
and then train a differentially private model? The answer is simple, as differential privacy composes
by iteration, training multiple networks using the methodology described in Algorithm 1 would
result in a large privacy budget, and hence, noisier models, providing worse utility compared to our
proposed method.

4 EXPERIMENTS

Here we provide empirical evidence on various datasets to support our claim that our proposed
method (DPLTM) outperforms DPSGD. We begin by describing the datasets.

4.1 DATASETS

For our empirical evaluation, we use five publicly available datasets. Dataset details are provided in
Table 1.

Dataset Attributes Observations Class
MNIST 784 60000 10
HAR 521 10299 6
Fashion-MNIST 784 60000 10
Kuzushiji-MNIST 784 60000 10
ISOLET 617 7797 26

Table 1: Dataset details, Attributes is the dataset dimensionality, Observations are the number of
rows, and Class is the number of classes in the classification target.

4.2 SETUP

For generating lottery tickets (phase 1), our implementation is based on the publicly available source
code3. Our underlying base model is a fully connected neural network with three layers. Hidden
layers use ReLU (Nair & Hinton, 2010) as the activation function. Learning rate is kept fixed at 0.1
and minibatch size is kept fixed at 400. We set the pruning percent, p, at 30% for the first two layers
and 20% for the last layer. Which means that for each subsequent ticket, the model will prune 30%
of the weights compared to the previous ticket for the first two layers and 20% of the weights for the
final layer. To generate lottery tickets, the mechanism is run for 5000 iterations (I) for each ticket.
Differentially private training of the winning ticket is run for 50 epochs.

DPSGD’s implementation is based on the publicly available source code4. Clipping norm for
DPSGD and DPLTM is set at a constant of 1 for all experiments. All the rest of the hyperpa-
rameters, including the underlying model architecture, are the same for DPSGD as in DPLTM to
ensure a fair comparison.

If the input dataset does not have a predefined train/test partition, we use 80/20 split, with 20% of
the dataset used as the test set. All models are run for 10 iterations and we report the average results.
For privacy, δ is kept fixed at 10−5 with ε varied as required and reported. For our model, the privacy
budget split is set at 90/10. That is, we reserve 90% of the privacy budget for the differentially private
training of the winning ticket and 10% for the differentially private selection of the winning ticket.
ν is kept fixed at 50 for all experiments. Source code for our method is made publicly available5.

3https://github.com/google-research/lottery-ticket-hypothesis
4https://github.com/tensorflow/privacy
5Link available after de-anonymization
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Figure 1: Main comparison: Our proposed method, DPLTM (red line) significantly outperforms our
competitor, DPSGD (blue line) on all datasets and for all privacy budgets. The non-noisy model
(provided as an upper bound on the performance achievable using this architecture) is presented as
the green line. Error bars on the plot represent the standard deviation.

4.3 MAIN COMPARISON

Figure 1 shows the results of our main comparison with DPSGD. First and the obvious observation
is that our proposed model (DPLTM, red line) significantly outperforms our competitor (DPSGD,
blue line). This provides evidence for our earlier claim that our proposed method provides better
utility than DPSGD. The second observation is as the privacy budget gets tighter (ε decreases), the
performance gap between our proposed method (DPLTM) and DPSGD increases. That is, DPLTM
is “robust” compared to DPSGD.

We observe this utility boost due to the reasons discussed in the introduction. That is, in DPLTM,
the number of model parameters is “small” compared to the full model used for DPSGD6. Hence
the “clipping” has a relatively diminished impact on DPLTM’s performance compared to DPSGD.
Leading to overall better utility and robust models.

4.4 CONVERGENCE AND EARLY STOPPING

As we briefly mentioned earlier, DPLTM provides faster convergence compared to DPSGD, and
hence allows for early stopping with reduced consumption of the total privacy budget. This is made
possible by keeping track of the privacy loss at each iteration and stopping when the desired accu-
racy/privacy budget is reached. Here we investigate the claim in detail. We keep the experimental
setup the same as in the previous section, with the privacy budget fixed at ε = 1, δ = 10−5. Figure
2 shows the results. Main plots show the accuracy on the test set as a function of the number of
epochs. To focus on the convergence during earlier iterations (when privacy consumption is low),
we have provided “inset” plots that are the zoomed version of the highlighted area on the main plot
(including first 15 epochs).

We observe that irrespective of the dataset, DPLTM converges faster compared to DPSGD. The
highlighted area in the plots shows the scenario if we were to use early stopping, at the point when
the total privacy consumption is ε = 0.3. In the inset plot, the black dots represent the points where
both models (DPLTM and DPSGD) will consume that privacy budget. As DPLTM has extra privacy
cost of picking the winner, we see that DPLTM will run for “fewer” epochs compared to DPSGD.
But, irrespective of the fact that DPLTM runs for fewer epochs, it still outperforms DPSGD by a
margin on average of > 17%, which is sometimes greater than 50% (in case of ISOLET). A brief

6DPLTM consistently selects winning tickets with total parameters ≤ 10% of the full model.
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Figure 2: Convergence vs the number of epochs for DPLTM and DPSGD. Red line is our proposed
method (DPLTM), the blue line is the competitor (DPSGD). The X-axis shows the number of epochs
and Y-axis shows the accuracy on the test set. “Inset” plots show the zoomed version of the high-
lighted area to focus on the plot region when privacy consumption is low. Black dots on the zoomed
version signify the points where both models have consumed privacy, ε = 0.3. We can observe that
DPLTM converges much faster compared to DPSGD with a significant performance difference.

insight into this performance gain is as follows, as the updates in DPLTM are inherently “less noisy”
due to reduced number of model parameters, DPLTM converges much faster, using less number of
iterations compared to DPSGD.

4.5 TICKET TRANSFER

So far, we have seen that our proposed method significantly outperforms DPSGD on all datasets
and for all privacy budgets. We use this section to further explore DPLTM. Mainly, we answer
the question: As is recently discovered for generic lottery mechanism (Morcos et al. (2019)), that
a winning ticket can generalize across datasets, can we extend this notion to DPLTM? Where we
can use a publicly available dataset to get a winning ticket in a non-private setting, and then use
that winning ticket to train a differentially private model on our sensitive dataset. This has a unique
advantage of allowing us to “get rid” of the privacy cost related to the differentially private selection
of the winning ticket using EM, and allows us to focus our full privacy budget on the training of
the winning ticket. But, sometimes the publicly available datasets are not similar to the sensitive
data (different input dimensionality, different domain, different number of outcome classes, etc.).
For these scenarios, we investigate the feasibility of using “non-compatible” public datasets for
generating lottery tickets. We start with exploring the case where we transfer tickets across the
similar architectures (i.e. same dimensionality and outcome classes), and then move on to transfer
across non-compatible datasets.

A detailed evaluation is provided in the Appendix. In both cases (Transfer across similar archi-
tectures and Transfer across different architectures), DPLTM significantly outperforms DPSGD,
especially for tight privacy (small ε).

5 RELATED WORK

Our related work mainly falls into two categories. First is the prior work related to the lottery
ticket mechanism, and second is related to the differential privacy in neural networks. The lottery
ticket hypothesis was introduced in Frankle & Carbin (2018), and provides evidence that there exist
subnetworks within a large network, which when trained in isolation, can perform at-par with the
large network. This work was further extended in Frankle et al. (2019), where the initial idea was
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improved to work on larger, deeper networks. Lottery ticket mechanism since has been further
explored, it has been shown that the winning tickets can be used across datasets (Morcos et al.,
2019), and that the tickets occur in other domains as well, such as in NLP (Yu et al., 2019).

Perturbing the learning process to provide differential privacy has been studied in various contexts
(Rajkumar & Agarwal, 2012; Song et al., 2013; Abadi et al., 2016; Shokri & Shmatikov, 2015).
Where gradients are perturbed during the gradient descent, so the resulting weight updates, and
hence the model itself is differentially private. Differentially private stochastic gradient descent
(DPSGD), proposed in Abadi et al. (2016), is the most popular and most often used method for
differentially private training for a wide variety of neural networks (Xie et al., 2018; Beaulieu-Jones
et al., 2017; McMahan et al., 2017). DPSGD, however, falls short on the utility front, as the noise
required for preserving privacy in DPSGD scales up proportional to the model size, discussed at
length in the Introduction.

6 CONCLUSION

We have proposed DPLTM, an end-to-end differentially private version of the lottery ticket mech-
anism. Using our custom score function to “pick” differentially private winning tickets, we have
shown that DPLTM significantly outperforms DPSGD on a variety of datasets, tasks, and privacy
budgets. We have shown that DPLTM converges faster compared to DPSGD, leading to reduced pri-
vacy budget consumption with improved utility if early stopping is desired. We have further shown
that tickets in DPLTM are transferable across datasets, architectures, and domains. We would like
to focus our future work on the detailed study of the mechanism when used for differentially private
“transfer-learning” and to further improve the utility guarantees along with the extensions to various
“other” models such as the Generative Adversarial Networks (Goodfellow et al., 2014).
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A APPENDIX

A.1 TICKET TRANSFER

A.1.1 TRANSFER ACROSS SIMILAR ARCHITECTURES

To test the transfer across similar architectures, we use the Kuzushiji-MNIST dataset to select a
winning ticket7, and then use the winning ticket to train a differentially private model for MNIST
and Fashion-MNIST. Figure 3 shows the results. We observe that in the beginning, when the privacy
is “loose”, that is, in case of less noise, DPLTM trained on a ticket from “another” similar dataset
performs similar to DPSGD. But, as the privacy gets tight (decreasing ε), DPLTM outperforms
DPSGD by a significant margin.

A.1.2 TRANSFER ACROSS DIFFERENT ARCHITECTURES

Now we investigate an interesting case, where the publicly available dataset is “quite” different from
our sensitive data. Not only in the terms of the domain but also the dimensionality and outcome.
To test this scenario, we use the same, Kuzushiji-MNIST dataset to create a winning ticket, and we
use the winning ticket to train differentially private models for HAR and ISOLET datasets. As the

7Winning ticket, in this case, is the smallest model closest to the test accuracy on the full model, such that
the model parameters in the small model are ≤ 10% of the full model.
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Figure 3: DPLTM transfer across similar architectures. Red line (DPLTM) is our method, whereas
blue line (DPSGD) is the competitor. We can see as the privacy cost increases, our method, trained
on a ticket from Kuzushiji-MNIST, outperforms DPSGD by a significant margin.

dimensionality and the output are different between Kuzushiji-MNIST, HAR, and ISOLET, we add
an extra layer to the network during ticket generation, which acts as a projection layer to match the
dimensionality of HAR or ISOLET. Then during the differentially private training, we remove the
top-most layer (projection layer) and the output layer from the selected ticket.

Figure 4 shows the results of this evaluation. We observe a similar trend as before, where we
observe similar performance between DPLTM and DPSGD when privacy is “loose”, but DPLTM
significantly outperforms DPSGD as we decrease ε (tight privacy). The performance, however, is
not “as good” as in the case of transfer across similar datasets. Which is intuitive as we loose some
“signal” by crossing the domain and dropping layers from the winning ticket. We leave further
exploration of this idea for future studies.
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Figure 4: DPLTM transfer across different datasets and domains. We observe that as the privacy
cost increases, our method (DPLTM, red line), significantly outperforms DPSGD (blue line)

A.2 PROOFS

Lemma 1. Sensitivity (∆) of the score function,S, is directly proportional to ν.

Proof. We can write the score function as

S(C,A) = A× (1− (νC))
= A−AνC (3)

Sensitivity is defined as

|max((A−AνC))− (A′ −A′νC′))| (4)
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where A′, C′ are “neighbouring” to A, C.

|max(A−AνC − A′ +A′νC′)|
= |max(A−A′ −AνC +A′νC′)|
= |max(1− ν(AC −A′C′))|

(5)

which for the worse case scenario, we get S(C,A) = |1− ν|

Theorem 1. Phase 2 (Selecting a winning ticket) is (ε1) - differentially private.

Proof. We consider the scenario where the EM outputs some element r ∈ R on two neighbouring
datasets, X,X ′.

Pr[M(X,u,R) = r]

Pr[M(X ′, u,R) = r]
=

( exp(
ε1u(X, r)

2∆u
)∑

r′∈R exp(
ε1u(X, r′)

2∆u
)

)

( exp(
ε1u(X ′, r)

2∆u
)∑

r′∈R exp(
ε1u(X ′, r′)

2∆u
)

)

=

( exp(
ε1u(X, r)

2∆u
)

exp(
ε1u(X ′, r)

2∆u
)

)
.

( ∑
r′∈R exp(

ε1u(X, r′)

2∆u
)∑

r′∈R exp(
ε1u(X ′, r′)

2∆u
)

)

= exp

(
ε1(u(X, r′)− u(X ′, r′))

2∆u

)
.

( ∑
r′∈R exp(

ε1u(X, r′)

2∆u
)∑

r′∈R exp(
ε1u(X ′, r′)

2∆u
)

)

≤ exp(
ε1
2

). exp(
ε1
2

).

( ∑
r′∈R exp(

ε1u(X, r′)

2∆u
)∑

r′∈R exp(
ε1u(X ′, r′)

2∆u
)

)
≤ exp(ε1)
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