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ABSTRACT

In this paper, we propose an end-to-end deep learning model, called E2Efold, for
RNA secondary structure prediction which can effectively take into account the
inherent constraints in the problem. The key idea of E2Efold is to directly pre-
dict the RNA base-pairing matrix, and use an unrolled algorithm for constrained
programming as the template for deep architectures to enforce constraints. With
comprehensive experiments on benchmark datasets, we demonstrate the superior
performance of E2Efold: it predicts significantly better structures compared to
previous SOTA (29.7% improvement in some cases in F1 scores and even larger
improvement for pseudoknotted structures), while being as efficient as the fastest
algorithms in terms of inference time.

1 INTRODUCTION
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Figure 1: Graph and matrix represen-
tations of RNA secondary structure.

Ribonucleic acid (RNA) is a molecule playing essential roles
in numerous cellular processes and regulating expression of
genes (Crick, 1970). It consists of an ordered sequence of nu-
cleotides, with each nucleotide containing one of four bases:
Adenine (A), Guanine (G), Cytosine (C) and Uracile (U). This
sequence of bases can be represented as

x := (x1, . . . , xL) where xi ∈ {A,G,C,U},
which is known as the primary structure of RNA. The bases
can bond with one another to form a set of base-pairs, which
defines the secondary structure. A secondary structure can be
represented by a binary matrix A∗ where A∗ij = 1 if the i, j-th
bases are paired (Fig 1). Discovering the secondary structure of RNA is important for understanding
functions of RNA since the structure essentially affects the interaction and reaction between RNA
and other cellular components. Although secondary structure can be determined by experimental
assays (e.g. X-ray diffraction), it is slow, expensive and technically challenging. Therefore, compu-
tational prediction of RNA secondary structure becomes an important task in RNA research and is
useful in many applications such as drug design (Iorns et al., 2007).

(ii) Pseudo-knot(i) Nested Structure

Figure 2: Nested and non-nested structures.

Research on computational prediction of RNA secondary
structure from knowledge of primary structure has been
carried out for decades. Most existing methods assume
the secondary structure a result of energy minimization,
i.e., A∗ = argminAEx(A). The energy function is ei-
ther estimated by physics-based thermodynamic exper-
iments (Lorenz et al., 2011; Bellaousov et al., 2013;
Markham & Zuker, 2008) or learned from data (Do et al., 2006). These approaches are faced with a
common problem that the search space of all valid secondary structures is exponentially-large with
respect to the length L of the sequence. To make the minimization tractable, it is often assumed
the base-pairing has a nested structure (Fig 2 left), and the energy function factorizes pairwisely.
With this assumption, dynamic programming (DP) based algorithms can iteratively find the optimal
structure for subsequences and thus consider an enormous number of structures in time O(L3).

Although DP-based algorithms have dominated RNA structure prediction, it is notable that they
restrict the search space to nested structures, which excludes some valid yet biologically important
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RNA secondary structures that contain ‘pseudoknots’, i.e., elements with at least two non-nested
base-pairs (Fig 2 right). Pseudoknots make up roughly 1.4% of base-pairs (Mathews & Turner,
2006), and are overrepresented in functionally important regions (Hajdin et al., 2013; Staple &
Butcher, 2005). Furthermore, pseudoknots are present in around 40% of the RNAs. They also assist
folding into 3D structures (Fechter et al., 2001) and thus should not be ignored. To predict RNA
structures with pseudoknots, energy based methods need to run more computationally intensive
algorithms to decode the structures.

In summary, in the presence of more complex structured output (i.e., pseudoknots), it is challenging
for energy function based approaches to simultaneously take into account the complex constraints
while being efficient. In this paper, we adopt a different view point by assuming that the secondary
structure is the output of a feed-forward function, i.e.,A∗ = Fθ(x), and propose to learn θ from data
in an end-to-end fashion. It avoids the second minimization step needed in energy function based
approach, and does not require the output structure to be nested. Furthermore, the feed-forward
model can be fitted by directly optimizing the loss that one is interested in.

Despite the above advantages of using a feed-forward model, the architecture design is challenging.
To be more concrete, in the RNA case, Fθ is difficult to design for the following reasons:

(i) RNA secondary structure needs to obey certain hard constraints (see details in section 3.2.1),
which means certain kinds of pairings cannot occur at all (Steeg, 1993). Ideally, the output of
Fθ needs to satisfy these constraints.

(ii) The number of RNA data points is limited, so we cannot expect that a naive fully connected
network can learn the predictive information and constraints directly from data. Thus, inductive
biases need to be encoded into the network architecture.

(iii) One may take a two-step approach, where a post-processing step can be carried out to enforce
the constraints whenFθ predicts an invalid structure. However, in this design, the deep network
trained in the first stage is unaware of the post-processing stage, making less effective use of
the potential prior knowledge encoded in the constraints.

All Binary Structures

Output Space of E2Efold

*All Valid Structures*

Nested Structures

with constraints

(DP applicable)

Figure 3: Output space of E2Efold.

In this paper, we present an end-to-end deep learning solution
which integrates the two stages. The first part of the archi-
tecture is a transformer-based deep model called Deep Score
Network which represents sequence information useful for
structure prediction. The second part is a multilayer network
called Post-Processing Network which gradually enforces the
constraints and restrict the output space. It is designed based
on an unrolled algorithm for solving a constrained optimiza-
tion. These two networks are coupled together and learned
jointly in an end-to-end fashion. Therefore, we call our model E2Efold.

By using an unrolled algorithm as the inductive bias to design Post-Processing Network, the output
space of E2Efold is constrained (see Fig 3 for an illustration), which makes it easier to learn a good
model in the case of limited data and also reduces the overfitting issue. Yet, the constraints encoded
in E2Efold is flexible enough such that pseudoknots are included in the output space. In summary,
E2Efold strikes a nice balance between model biases for learning and expressiveness for valid RNA
structures.

We conduct extensive experiments to compare E2Efold with state-of-the-art (SOTA) methods on
several RNA benchmark datasets, showing superior performance of E2Efold including:

• being able to predict valid RNA secondary structures including pseudoknots;
• running as nearly efficient as the fast algorithm in terms of inference time;
• producing structures that are closest to the true structure;
• 29.7% improvement in terms of the F1 score over previous SOTA in some cases.

Although in this paper we focus on RNA secondary structure prediction, which presents an impor-
tant and concrete problem where E2Efold leads to significant improvements, our method is generic
and can be applied to other problems where constraints need to be enforced or prior knowledge is
provided. We imagine that our design idea of learning unrolled algorithm to enforce constraints can
also be transferred to problems such as protein folding and natural language understanding problems
(e.g., building correspondence structure between different parts in a document).

2



Under review as a conference paper at ICLR 2020

2 RELATED WORK

Classical RNA folding methods identify candidate structures for an RNA sequence energy min-
imization through DP and rely on thousands of experimentally-measured thermodynamic parame-
ters. A few widely used methods such as RNAstructure (Bellaousov et al., 2013), Vienna RNAfold
(Lorenz et al., 2011) and UNAFold (Markham & Zuker, 2008) adpoted this approach. These meth-
ods typically scale O(L3) in time and O(L2) in storage (Mathews, 2006), making them slow for
long sequences. A recent advance called LinearFold (Huang et al., 2019) achieved linear run time
O(L) by applying beam search, but it can not handle pseudoknots in RNA structures. The prediction
of lowest free energy structures with pseudoknots is NP-complete (Lyngsø & Pedersen, 2000), so
pseudoknots are not considered in most algorithms. Heuristic algorithms such as HotKnots (An-
dronescu et al., 2010) and Probknots (Bellaousov & Mathews, 2010) have been made to predict
structures with pesudoknots, but the predictive accuracy and efficiency still need to be improved.

Learning-based RNA folding methods such as ContraFold (Do et al., 2006) and ContextFold (Za-
kov et al., 2011) have been proposed for energy parameters estimation due to the increasing avail-
ability of known RNA structures, resulting in higher prediction accuracies, but these methods still
rely on the above DP-based algorithms for energy minimization. A recent deep learning model,
CDPfold (Zhang et al., 2019), applied convolutional neural networks to predict base-pairings, but it
adopts the dot-bracket representation for RNA secondary structure, which can not represent pseu-
doknotted structures. Moreover, it requires a DP-based post-processing step whose computational
complexity is prohibitive for sequences longer than a few hundred.

Learning with differentiable algorithms is a useful idea that inspires a series of recent works (Be-
langer et al., 2017; Ingraham et al., 2018; Chen et al., 2018; Shrivastava et al., 2019), which shared
similar idea of using differentiable unrolled algorithms as a building block in neural architectures.
Some models are also applied to structured prediction problems (Belanger et al., 2017; Pillutla et al.,
2018; Ingraham et al., 2018), but they did not consider the challenging RNA secondary structure
problem or discuss how to properly incorporating constraints into the architecture. OptNet (Amos
& Kolter, 2017) integrates constraints by differentiating KKT conditions, but it has cubic complexity
in the number of variables and constraints, which is prohibitive for the RNA case.

3 E2EFOLD: DEEP LEARNING MODEL BASED ON UNROLLED ALGORITHM

In the RNA secondary structure prediction problem, the input is the ordered sequence of bases x =
(x1, . . . , xL) and the output is the RNA secondary structure represented by a matrixA∗ ∈ {0, 1}L×L
which can represent all types of secondary structures.

In the literature on feed-forward networks for structured prediction, most models are designed using
traditional deep learning architectures. However, for RNA secondary structure prediction, directly
using these architectures does not work well due to the limited amount of RNA data points and the
hard constraints on forming an RNA secondary structure. These challenges motivate the design of
our E2Efold deep model, which combines a Deep Score Network with a Post-Processing Network
based on an unrolled algorithm for solving a constrained optimization problem.

3.1 DEEP SCORE NETWORK

The first part of E2Efold is a Deep Score Network Uθ(x) whose output is an L × L symmetric
matrix. Each entry of this matrix, i.e., Uθ(x)ij , indicates the score of nucleotides xi and xj being
paired. The x input to the network here is the L × 4 dimensional one-hot embedding. The specific
architecture of Uθ is shown in Fig 4. It mainly consists of

• a position embedding matrix P which distinguishes {xi}Li=1 by their exact and relative positions:

Pi = MLP
(
ψ1(i), . . . , ψ`(i), ψ`+1(i/L), . . . , ψn(i/L)

)
, (1)

where {ψj} is a set of n feature maps such as sin(·), poly(·), sigmoid(·), etc, and MLP(·) de-
notes multi-layer perceptions. Such position embedding idea has been used in natural language
modeling such as BERT (Devlin et al., 2018), but we adapted for RNA sequence representation;
• a stack of Transformer Encoders (Vaswani et al., 2017) which encode the sequence information

and the global dependency between nucleotides;
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• a 2D Convolution layers for outputting the pairwise scores.
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Figure 4: Architecture of Deep Score Network.

With the representation power of neural networks,
the hope is that we can learn an informative Uθ
such that higher scoring entries in Uθ(x) corre-
spond well to actual paired bases in RNA struc-
ture. Once the score matrix Uθ(x) is computed,
a naive approach to use it is to choose an offset
term s ∈ R (e.g., s = 0) and let Aij = 1 if
Uθ(x)ij > s. However, such entry-wise inde-
pendent predictions of Aij may result in a ma-
trix A that violates the constraints for a valid RNA
secondary structure. Therefore, a post-processing
step is needed to make sure the predicted A is
valid. This step could be carried out separately af-
ter Uθ is learned. But such decoupling of base-pair
scoring and post-processing for constraints may
lead to sub-optimal results, where the errors in
these two stages can not be considered together
and tuned together. Instead, we will introduce
a Post-Processing Network which can be trained
end-to-end together with Uθ to enforce the con-
straints.

3.2 POST-PROCESSING NETWORK

The second part of E2Efold is a Post-Processing
Network PPφ which is an unrolled and parameter-
ized algorithm for solving a constrained optimization problem. We first present how we formulate
the post-processing step as a constrained optimization problem and the algorithm for solving it.
After that, we show how we use the algorithm as a template to design deep architecture PPφ.

3.2.1 POST-PROCESSING WITH CONSTRAINED OPTIMIZATION

Hard constraints on the forming of an RNA secondary structure dictate that certain kinds of pairings
cannot occur at all (Steeg, 1993). Formally, these constraints are:

(i) Only three types of nucleotides combinations, B := {AU,UA}∪
{GC,CG} ∪ {GU,UG}, can form base-pairs.

∀i, j, if xixj /∈ B,
then Aij = 0.

(ii) No sharp loops are allowed. ∀|i− j| < 4, Aij = 0.

(iii) There is no overlap of pairs, i.e., it is a matching. ∀i,
∑L
j=1Aij ≤ 1.

(i) and (ii) prevent pairing of certain base-pairs based on their types and relative locations. Incorpo-
rating these two constraints can help the model exclude lots of illegal pairs. (iii) is a global constraint
among the entries of A∗. The space of all valid secondary structures contains all symmetric matrices
A ∈ {0, 1}L×L that satisfy the above three constraints. This space is much smaller than the space of
all binary matrix {0, 1}L×L. Therefore, if we could incorporate these constraints in our deep model,
the reduced output space can help us train a better predictive model with less training data. We do
this by using an unrolled algorithm as the inductive bias to design deep architecture, so next we will
present the post-processing step as a constrained optimization and the algorithm for solving it.

Formulation of constrained optimization. Given the scores predicted by Uθ(x), we define the
total score 1

2

∑
i,j(Uθ(x)ij − s)Aij as the objective to maximize, where s is an offset term. Clearly,

without structure constraints, the optimal solution is to take Aij = 1 when Uθ(x)ij > s. In-
tuitively, the objective measure the covariation between the entries in the scoring matrix and the
A matrix. With constraints, the exact maximization becomes intractable. To make it tractable,
we consider a convex relaxation of this discrete optimization to a continuous one by allowing
Aij ∈ [0, 1]. Consequently, the solution space that we consider to optimize over is A(x) :={
A ∈ [0, 1]L×L | A is symmetric and satisfies constraints (i)-(iii)

}
.
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To further simplify the search space, we define a nonlinear transformation T on RL×L as T (Â) :=
1
2

(
Â◦ Â+(Â◦ Â)>

)
◦M(x), where ◦ denotes element-wise multiplication. MatrixM is defined as

M(x)ij := 1 if xixj ∈ B and also |i− j| ≥ 4, and M(x)ij := 0 otherwise. From this definition we
can see that M(x) encodes both constraint (i) and (ii). With transformation T , the resulting matrix
is non-negative, symmetric, and satisfies constraint (i) and (ii). Hence, by defining A := T (Â), the
solution space is simplified as A(x) = {A = T (Â) | Â ∈ RL×L, A1 ≤ 1}.

Finally, we introduce a `1 penalty term ‖Â‖1 :=
∑
i,j |Âij | to make A sparse and formulate the

post-processing step as: (〈·, ·〉 denotes matrix inner product, i.e., sum of entry-wise multiplication)

maxÂ∈RL×L
1
2

〈
Uθ(x)− s,A := T (Â)

〉
+ ρ‖Â‖1 s.t. A1 ≤ 1

The advantages of this formulation are the variables Âij are free variables in R and there are only
L inequality constraints A1 ≤ 1. This system of linear inequalities can be replaced by a set of
nonlinear equalities relu(A1− 1) = 0 so that the constrained problem can be easily transformed
into an unconstrained problem by introducing a Lagrange multiplier λ ∈ RL+:

min
λ≥0

max
Â∈RL×L

1
2 〈Uθ(x)− s,A〉 − 〈λ, relu(A1− 1)〉︸ ︷︷ ︸

f

−ρ‖Â‖1. (2)

Algorithm for solving it. We use proximal gradient for maximization and gradient descent for
minimization. In each iteration, Â and λ are updated alternatively by:

gradient step: Ȧt+1 ← Ât + α · γtα · Ât ◦M(x) ◦
(
∂f/∂At + (∂f/∂At)

>
)
, (3)

where
{
∂f/∂At =

1
2 (Uθ(x)− s)− (λ ◦ sign(At1− 1))1>,

sign(c) := 1 when c > 0 and 0 otherwise,
(4)

soft threshold: Ât+1 ← relu(|Ȧt+1| − ρ · α · γtα), At+1 ← T (Ât+1), (5)

gradient step: λt+1 ← λt+1 + β · γtβ · relu(At+11− 1), (6)
where α, β are step sizes and γα, γβ are decaying coefficients. When it converges at T , an approx-
imate solution Round

(
AT = T (ÂT )

)
is obtained. With this algorithm operated on the learned

Uθ(x), even if this step is disconnected to the training phase of Uθ(x), the final prediction works
much better than many other existing methods (as reported in section 5). Next, we introduce how to
couple this post-processing step with the training of Uθ(x) to further improve the performance.

3.2.2 POST-PROCESSING NETWORK VIA AN UNROLLED ALGORITHM

We design a Post-Processing Network, denoted by PPφ, based on the above algorithm. After it is
defined, we can connect it with the deep score network Uθ and train them jointly in an end-to-end
fashion, so that the training phase of Uθ(x) is aware of the post-processing step.

Algorithm 1: Post-Processing Network PPφ(U,M)

Parameters φ := {w, s, α, β, γα, γβ , ρ}
U ← softsign(U − s) ◦ U
Â0 ← softsign(U − s) ◦ sigmoid(U)

A0 ← T (Â0); λ0 ← w · relu(A01− 1)
For t = 0, . . . , T − 1 do

λt+1, At+1, Ât+1 = PPcellφ(U,M,λt, At, Ât, t)

return {At}Tt=1

Algorithm 2: Neural Cell PPcellφ
Function PPcellφ(U,M,λ, A, Â, t):

G← 1
2U − (λ ◦ softsign(A1− 1))1>

Ȧ← Â+ α · γαt · Â ◦M ◦ (G+G>)

Â← relu(|Ȧ| − ρ · α · γαt)
Â← 1− relu(1− Â) [i.e.,min(Â, 1)]
A← T (Â); λ← λ+β·γβt·relu(A1−1)
return λ, A, Â

The specific computation graph of PPφ is given in Algorithm 1, whose main component is a recurrent
cell which we call PPcellφ. The computation graph is almost the same as the iterative update from
Eq. 3 to Eq. 6, except for several modifications:

• (learnable hyperparameters) The hyperparameters including step sizes α, β, decaying rate γα, γβ ,
sparsity coefficient ρ and the offset term s are treated as learnable parameters in φ, so that there
is no need to tune the hyperparameters by hand but automatically learn them from data instead.
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• (fixed # iterations) Instead of running the iterative updates until convergence, PPcellφ is applied
recursively for T iterations where T is a manually fixed number. This is why in Fig 3 the output
space of E2Efold is slightly larger than the true solution space.

• (smoothed sign function) Resulted from the gradient of relu(·), the update step in Eq. 4 contains a
sign(·) function. However, to push gradient through PPφ, we require a differentiable update step.
Therefore, we use a smoothed sign function defined as softsign(c) := 1/(1 + exp(−kc)), where
k is a temperature.

• (clip Â) An additional step, Â ← min(Â, 1), is included to make the output At at each itera-
tion stay in the range [0, 1]L×L. This is useful for computing the loss over intermediate results
{At}Tt=1, for which we will explain more in section 4.

With these modifications, the Post-Processing Network PPφ is a tuning-free and differentiable un-
rolled algorithm with meaningful intermediate outputs. Combining it with the deep score network,
the final deep model is

E2Efold : {At}Tt=1 =

Post-Process Network︷ ︸︸ ︷
PPφ( Uθ(x)︸ ︷︷ ︸

Deep Score Network

,M(x)) . (7)

4 END-TO-END TRAINING ALGORITHM

Given a dataset D containing examples of input-output pairs (x, A∗), the training procedure of
E2Efold is similar to standard gradient-based supervised learning. However, for RNA secondary
structure prediction problems, commonly used metrics for evaluating predictive performances are
F1 score, precision and recall, which are non-differentiable.

Differentiable F1 Loss. To directly optimize these metrics, we mimic true positive (TP), false posi-
tive (FP), true negative (TN) and false negative (FN) by defining continuous functions on [0, 1]L×L:

TP = 〈A,A∗〉, FP = 〈A, 1−A∗〉, FN = 〈1−A,A∗〉, TN = 〈1−A, 1−A∗〉.
Since F1 = 2TP/(2TP + FP + FN), we define a loss function to mimic the negative of F1 score as:

L−F1(A,A
∗) := −2〈A,A∗〉/ (2〈A,A∗〉+ 〈A, 1−A∗〉+ 〈1−A,A∗〉) . (8)

Assuming that
∑
ij A

∗
ij 6= 0, this loss is well-defined and differentiable on [0, 1]L×L. Precision and

recall losses can be defined in a similar way, but we optimize F1 score in this paper.

It is notable that this F1 loss takes advantages over other differentiable losses including `2 and cross-
entropy losses, because there are much more negative samples (i.e. Aij = 0) than positive samples
(i.e. Aij = 1). A hand-tuned weight is needed to balance them while using `2 or cross-entropy
losses, but F1 loss handles this issue automatically.

Overall Loss Function. As noted earlier, E2Efold outputs a matrix At ∈ [0, 1]L×L in each itera-
tion. This allows us to add auxiliary losses to regularize the intermediate results, guiding it to learn
parameters which can generate a smooth solution trajectory. More specifically, we use an objective
that depends on the entire trajectory of optimization:

min
θ,φ

1

|D|
∑

(x,A∗)∈D

1

T

T∑
t=1

γT−tL−F1(At, A
∗), (9)

where {At}Tt=1 = PPφ(Uθ(x),M(x)) and γ ≤ 1 is a discounting factor. Empirically, we find it
very useful to pre-train Uθ using logistic regression loss. Also, it is helpful to add this additional
loss to Eq. 9 as a regularization.

5 EXPERIMENTS

We compare E2Efold with the SOTA and also the most commonly used methods in the RNA sec-
ondary structure prediction field on two benchmark datasets. It is revealed from the experimental
results that E2Efold achieves 29.7% improvement in terms of F1 score on RNAstralign dataset and
it infers the RNA secondary structure as fast as the most efficient algorithm (LinearFold) among ex-
isting ones. An ablation study is also conducted to show the necessity of pushing gradient through
the post-processing step.
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Table 1: Dataset Statistics

Type ArchiveII RNAStralign

length #samples length #samples
All 28∼2968 3975 30∼1851 30451
16SrRNA 73∼1995 110 54∼1851 11620
5SrRNA 102∼135 1283 104∼132 9385
tRNA 54∼93 557 59∼95 6443
grp1 210∼736 98 163∼615 1502
SRP 28∼533 928 30∼553 468
tmRNA 102∼437 462 102∼437 572
RNaseP 120∼486 454 189∼486 434
telomerase 382∼559 37 382∼559 37
23SrRNA 242∼2968 35 - -
grp2 619∼780 11 - -

Dataset. We use two benchmark datasets: (i) ArchiveII
(Sloma & Mathews, 2016), containing 3975 RNA struc-
tures from 10 RNA types, is a widely used benchmark
dataset for classical RNA folding methods. (ii) RNAS-
tralign (Tan et al., 2017), composed of 37149 structures
from 8 RNA types, is one of the most comprehensive col-
lections of RNA structures in the market. After removing
redundant sequences and structures, 30451 structures re-
main. See Table 1 for statistics about these two datasets.

Experiments On RNAStralign. We divide RNAStralign
dataset into training, testing and validation sets by strat-
ified sampling, so that each set contains all RNA types (see Table 7 and Fig 6 in appendix). We
compare the performance of E2Efold to six methods including CDPfold, LinearFold, Mfold,
RNAstructure (ProbKnot), RNAfold and CONTRAfold. Both E2Efold and CDPfold are learned
from the same training/validation sets. For other methods, we directly use the provided packages
or web-servers to generate predicted structures. We evaluate the F1 score, Precision and Recall for
each sequence in the test set. Averaged values are reported in Table 2. As suggested by Mathews
(2019), for a base pair (i, j), the following predictions are also considered as correct: (i + 1, j),
(i− 1, j), (i, j + 1), (i, j − 1), so we also reported the metrics when one-position shift is allowed.

Table 2: Results on RNAStralign test set. “(S)” indi-
cates the results when one-position shift is allowed.

Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.866 0.788 0.821 0.880 0.798 0.833
CDPfold 0.633 0.597 0.614 0.720 0.677 0.697

LinearFold 0.620 0.606 0.609 0.635 0.622 0.624
Mfold 0.450 0.398 0.420 0.463 0.409 0.433

RNAstructure 0.537 0.568 0.550 0.559 0.592 0.573
RNAfold 0.516 0.568 0.540 0.533 0.587 0.558

CONTRAfold 0.608 0.663 0.633 0.624 0.681 0.650 Figure 5: Distribution of F1 score.

As shown in Table 2, traditional methods can achieve a F1 score ranging from 0.433 to 0.624,
which is consistent with the performance reported with their original papers. The two learning-based
methods, CONTRAfold and CDPfold, can outperform classical methods with reasonable margin on
some criteria. E2Efold, on the other hand, significantly outperforms all previous methods across all
criteria, with at least 20% improvement. Notice that, for almost all the other methods, the recall is
usually higher than precision, while for for E2Efold, the precision is higher than recall. That can be
the result of incorporating constraints during neural network training. Fig 5 shows the distributions
of F1 scores for each method. It suggests that E2Efold has consistently good performance.

Test On ArchiveII Without Re-training. To mimic the real world scenario where the users want to
predict newly discovered RNA’s structures which may have a distribution different from the training
dataset, we directly test the model learned from RNAStralign training set on the ArchiveII dataset,
without re-training the model. To make the comparison fair, we exclude sequences that are over-
lapped with the RNAStralign dataset. We then test the model on sequences in ArchiveII that have
overlapping RNA types (5SrRNA, 16SrRNA, etc) with the RNAStralign dataset. Results are shown
in Table 3. It is understandable that the performances of classical methods which are not learning-
based are consistent with that on RNAStralign. The performance of E2Efold, though is not as good
as that on RNAStralign, is still better than all the other methods across different evaluation criteria.

Table 3: Performance comparison on ArchiveII
Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.734 0.66 0.686 0.758 0.676 0.704
CDPfold 0.557 0.535 0.545 0.612 0.585 0.597

LinearFold 0.641 0.617 0.621 0.668 0.644 0.647
Mfold 0.428 0.383 0.401 0.450 0.403 0.421

RNAstructure 0.563 0.615 0.585 0.590 0.645 0.613
RNAfold 0.565 0.627 0.592 0.586 0.652 0.615

CONTRAfold 0.607 0.679 0.638 0.629 0.705 0.662

Table 4: Inference time on RNAStralign
Method total run time time per seq

E2Efold (Pytorch) 19m (GPU) 0.40s
CDPfold (Pytorch) 440m*32 threads 300.107s
LinearFold (C) 20m 0.43s
Mfold (C) 360m 7.65s
RNAstructure (C) 3 days 142.02s
RNAfold (C) 26m 0.55s
CONTRAfold (C) 1 day 30.58s
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Inference Time Comparison. We record the running time of all algorithms for predicting RNA
secondary structures on the RNAStralign test set, which is summarized in Table 4. LinearFold is the
most efficient among baselines because it uses beam pruning heuristic to accelerate DP. CDPfold,
which achieves higher F1 score than other baselines, however, is extremely slow due to its DP
post-processing step. Since we use a gradient-based algorithm which is simple to design the Post-
Processing Network, E2Efold is fast. On GPU, E2Efold has similar inference time as LinearFold.

Table 5: Evaluation of pseudoknot prediction

Method Set F1 TP FP TN FN

E2Efold 0.710 1312 242 1271 0
RNAstructure 0.472 1248 307 983 286

Pseudoknot Prediction. Even though E2Efold does
not exclude pseudoknots, it is not sure whether it ac-
tually generates pseudoknotted structures. Therefore,
we pick all sequences containing pseudoknots and com-
pute the averaged F1 score only on this set. Besides, we
count the number of pseudoknotted sequences that are
predicted as pseudoknotted and report this count as true positive (TP). Similarly we report TN, FP
and FN in Table 5 along with the F1 score. Most tools exclude pseudoknots while RNAstructure is
the most famous one that can predict pseudoknots, so we choose it for comparison.

E2Efold RNAstructure CONTRAfold true structure RNAstructure CONTRAfoldE2Efoldtrue structure

true structure E2Efoldtrue structure E2Efold

Visualization. We visualize predicted
structures of three RNA sequences in the
main text. More examples are provided
in appendix (Fig 7 to 13). In these fig-
ures, purple lines indicate edges of pesu-
doknotted elements. Although CDPfold
has higher F1 score than other baselines,
its predictions are visually far from the
ground-truth. Instead, RNAstructure and
CONTRAfold produce comparatively more reasonable visualizations among all baselines, so we
compare with them. These two methods can capture a rough sketch of the structure, but not good
enough. For most cases, E2Efold produces structures most similar to the ground-truths. Moreover,
it works surprisingly well for some RNA sequences that are long and very difficult to predict.

Table 6: Ablation study
Method Prec Rec F1 Prec(S) Rec(S) F1(S)

E2Efold 0.866 0.788 0.821 0.880 0.798 0.833
Uθ+PP 0.755 0.712 0.621 0.782 0.737 0.752

Ablation Study. To exam whether integrating the two
stages by pushing gradient through the post-process
is necessary for performance of E2Efold, we conduct
an ablation study (Table 6). We test the performance
when the post-processing step is disconnected with the
training of Deep Score Network Uθ. We apply the post-processing step (i.e., for solving augmented
Lagrangian) after Uθ is learned (thus the notation “Uθ + PP” in Table 6). Although “Uθ + PP”
performs decently well, with constraints incorporated into training, E2Efold still has significant ad-
vantages over it.

Discussion. Despite the superior performance of E2Efold as demonstrated above, we found it not
performing equally well on all RNA types. For telomerase class, which only contains 37 samples in
the dataset, E2Efold performs worse than classic methods. This is understandable since E2Efold is
learning-based and structures of different RNA types may not always share similarity. This suggests
us to conduct studies related to few-shot learning in the future.

6 CONCLUSION

We propose a novel DL model, E2Efold, for RNA secondary structure prediction, which incorpo-
rates hard constraints in its architecture design. Comprehensive experiments are conducted to show
the superior performance of E2Efold, no matter on quantitative criteria, running time, or visualiza-
tion. Further studies need to be conducted to deal with the RNA types with less samples. Finally, we
believe the idea of unrolling constrained programming and pushing gradient through post-processing
can be generic and useful for other constrained structured prediction problems.
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A APPENDIX

Figure 6: The RNAStralign length distribution.

Table 7: RNAStralign dataset splits statistics

RNA type All Training Validation Testing
16SrRNA 11620 9325 1145 1150
5SrRNA 9385 7687 819 879

tRNA 6443 5412 527 504
grp1 1502 1243 123 136
SRP 468 379 36 53

tmRNA 572 461 50 61
RNaseP 434 360 37 37

telomerase 37 28 4 5
RNAStralign 30451 24895 2702 2854

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 7: Visualization of 5S rRNA, B01865.
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E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 8: Visualization of 16S rRNA, DQ170870.

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 9: Visualization of Group I intron, IC3, Kaf.c.trnL.

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 10: Visualization of RNaseP, A.salinestris-184.

12



Under review as a conference paper at ICLR 2020

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 11: Visualization of SRP, Homo.sapi. BU56690.

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 12: Visualization of tmRNA, uncu.bact. AF389956.

E2Efold RNAstructure CDPfoldtrue structure

LinearFold MfoldCONTRAfold RNAfold

Figure 13: Visualization of tRNA, tdbD00012019.
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