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ABSTRACT

Neural network pruning techniques have demonstrated it is possible to remove
the majority of weights in a network with surprisingly little degradation to top-
1 test set accuracy. However, this measure of performance conceals significant
differences in how different classes and images are impacted by pruning. We find
that certain examples, which we term pruning identified exemplars (PIEs), and
classes are systematically more impacted by the introduction of sparsity. Removing
PIE images from the test-set greatly improves top-1 accuracy for both sparse and
non-sparse models. These hard-to-generalize-to images tend to be mislabelled, of
lower image quality, entail abstract representations, atypical examples or require
fine-grained classification.

1 INTRODUCTION

Between infancy and adulthood, the number of synapses in our brain first grow and then fall. Synaptic
pruning improves efficiency by removing neurons that are redundant and strengthening synaptic
connections that are useful for the environment (Rakic et al., [1994). Despite losing 50% of all
synapses between age two and ten, the brain continues to function (Kolb & Whishaw| 2009; |Sowell
et al., |2004). ”Use it or lose it” is frequently used to describe the environmental influence of the
learning process on synaptic pruning, however there is little scientific consensus on what exactly is
lost (Casey et al.,|2000).

In this work, we ask what is lost when we prune a deep neural network. Work on pruning deep
neural networks has demonstrated a remarkable ability to sparsify a model to a fraction of the original
weights while giving up minimal test-set accuracy (Cun et al., [1990; |Hassibi et al.l [1993b; Han et al.|
2015} Ullrich et al., 2017} Liu et al., 2017; |[Louizos et al., 2017} |Collins & Kohli, |2014; |Weigend
et al.,[1991; Nowlan & Hinton| [1992; [Lee et al., [2018b). |Gale et al.|(2019) show it is possible to
prune 90% of all weights in a ResNet-50 network (He et al., 2015) trained on ImageNet (Deng et al.)
2009) and only lose less than 3% absolute in top-1 test set accuracy. The ability to prune networks
with seemingly so little degradation to accuracy is puzzling. In this work, we address the following
questions:

e Are certain types of examples or classes disproportionately affected by pruning?

e How does pruning impact robustness such as sensitivity to image corruptions (blur, noise,
contrast) and adversarial examples?

Answers for these question can provide intuition into the role of additional capacity in deep neural
networks and, perhaps more important, provide a principled framework for articulating the trade-
offs incurred by compressing deep neural networks. Many of the most promising use cases for
compressed models occur in sensitive domains, such as improving access to health care by using
machine learning driven diagnostics on mobile phones (Esteva et al.,|2017). Pruned or compressed
models are frequently favored for deploying deep neural networks onto devices because reducing
the number of network weights lowers energy consumption, memory footprint, and latency (Reagen
et al.| 2016} |Chen et al.,[2016; Theis et al.,[2018; Kalchbrenner et al.,2018};|Valin & Skoglund, |2018)).
For tasks where incorrect predictions can harm human welfare, it is critical that we understand when
a machine learning model is qualified to make decisions on real world inputs. To our knowledge, this
is the first work to shed light on the trade-offs pruning incurs by considering new measures beyond
test accuracy.
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The primary findings of our work can be summarized as follows:

1. In some settings, pruning has a non-uniform impact across classes; a fraction of classes are
disproportionately and systematically impacted by the introduction of sparsity. .

2. The examples most impacted by pruning, which we term Pruning Identified Exemplars
(PIEs), are more challenging for both sparse and non-sparse models to classify.

3. Pruning makes deep neural networks less robust to natural adversarial examples and
common image perturbations (such as blur, fog and contrast).

For @ and @ we establish consistent findings for different standard architectures on CIFAR-10
(Krizhevskyl 2009) and ImageNet (Deng et al., 2009). We identify Pruning Identified Exemplars
(PIEs) as images where the modal label differs between a set of sparse and non-sparse models. We
find that removing PIEs from the test-set improves top-1 accuracy for both a fully parameterized
non-sparse model as well as a sparse model (Figure [).

Toward finding (3), we measure changes to model sensitivity to both common image corruptions and
natural adversarial examples using two open source robustness benchmarks: ImageNet-C (Hendrycks
& Dietterichl|2019) and ImageNet-A (Hendrycks et al.,|2019).We find that both sparse and non-sparse
models are brittle and sensitive to ImageNet-A and C, and that this brittleness is amplified at highers
level of sparsity (Table[7).

Our findings provide important insights about when pruned models are qualified to make decisions
on real world inputs. Our PIE methodology identifies a tractable subset of images which are more
challenging for sparse and non-sparse models. Our work suggest that PIE could be useful for tasks
where it is important to choose not to classify certain examples when the model is uncertain (Bartlett
& Wegkampl, 2008} |Cortes et al., 2016bza; |Cortes et al., 2017), to aid interpretability as a case based
reasoning tool to explain model behavior (Kim et al., 2016} Gurumoorthy et al.,2017; |Caruanal [2000;
Hooker et al., 2018)) or to surface atypical examples for further human inspection (Leibig et al., [2017).

2 A COMPARISON OF SPARSE AND DENSE MODELS

We consider a supervised classification problem where a deep neural network is trained to approximate
the function F' that maps an input variable X to an output variable Y, formally ' : X — Y. The
model is trained on a training set of N images D = {(z;, yi)}f\il, and at test time makes a prediction
y; for each image in the test set. The true labels y; are each assumed to be one of C' classes, such
thaty; = [1, ..., C].

A reasonable response to our desire for more compact representations is to simply train a network
with fewer weights. However, as of yet, starting out with a compact dense model has not yielded
competitive test-set performance. Instead, research has centered on training strategies where models
are initialized with excess capacity” which is then subsequently removed through a pruning process.
A pruning method P identifies the subset of weights to remove (i.e. set to zero). A sparse model
function, Ftp, is one where a fraction ¢ € [0, 1] of all model weights are set to zero. Equating weight
value to zero effectively removes the contribution of a weight as multiplication with inputs no longer
contributes to the activation. A non-sparse model function, Fo, is one where all weights are trainable.

ImageNet and CIFAR-10 Setup We consider two classification tasks and models; a wide ResNet
model (Zagoruyko & Komodakis| 2016) trained on CIFAR-10 and a ResNet-50 model (He et al.|
2015) trained on ImageNet, both using batch normalization (loffe & Szegedyl |2015). A key goal
of our analysis is to produce findings that are not anecdotal as would be the case when analyzing
one trained model of each type. Instead we independently train a population of 30 models for each
experimental setting. We train for 32, 000 steps (approximately 90 epochs) on ImageNet with a batch
size of 1024 images and 80, 000 steps with a batch size of 128 for CIFAR-10. For ImageNet, the
baseline non-sparse model obtains a mean top-1 accuracy of 76.68% and mean top-5 accuracy of
93.25% across 30 models. For CIFAR-10, mean baseline top-1 accuracy is 94.35%.

We prune over the course of training to obtain a target end sparsity level ¢ €
{0.0,0.1,0.3,0.5,0.7,0.9}. For example, ¢ = 0.9 indicates that 90% of model weights are removed
by pruning, leaving a maximum of 10% non-zero weights.



Under review as a conference paper at ICLR 2020

| — 0%
— 10%

| — 30%
— 50%

| — 70%
— 90%

070 0.71 072 073 074 075 076 0.77 078 0.89 0.90 0.91 0.92 0.93 0.94 0.930 0.935 0.9‘40 0.9‘45 0.9‘50 0.9‘55 0.960
ImageNet top-1 accuracy ImageNet top-5 accuracy CIFAR-10 top-1 accuracy

o
®

[— 0%
— 10%

T— 30%
— 50%

S 04-— 0%
"

K] —— 90%

6 — 0%
A — 10%
— 30%
4
3

I3
Y

°

@
°
P

— 50%
— 70%
— 90%

distribution)

o,
o.
o.
o.

o
s

02 -

°
N

01-

% of models (distribution)
of models (distribution)

% of model
o
N

o

o

o
%

°

.0

°

Figure 1: Distributions of top-1 and top-5 model accuracy for populations of independently trained
sparse and non-sparse models on ImageNet and CIFAR-10. The distributions for CIFAR-10 top-5
accuracy (not shown) are tightly clustered and overlapping in [0.9965, 1.0]. The distributions are
fairly tight with one outlier for the ImageNet baseline model.
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true label: dog airplane airplane  automobile truck horse
non-sparse: dog airplane airplane  automobile automobile cat
sparse: cat ship ship truck cat horse

Figure 2: Visualization of pruning identified exemplars (PIE3() for the CIFAR-10 dataset. This subset
of impacted images is identified by considering a set of 30 non-sparse wide ResNet models and 30
models trained to 30% sparsity.

Across all experiments, we use magnitude pruning as proposed by [Zhu & Guptal (2017) to identify
the weights to remove. Magnitude pruning is a simple rule-based method that thresholds weights at
zero that fall below a certain absolute magnitude. It has been shown to outperform more sophisticated
Bayesian pruning methods and is considered state-of-the-art across both computer vision and language
models 2019). The choice of magnitude pruning also allowed us to specify and precisely
vary the final model sparsity for purposes of our analysis, unlike regularizer approaches that allow
the optimization process itself to determine the final level of sparsity (Liu et al. 2017; [Louizos et all}
2017} [Collins & Kohli, 2014; [Wen et al 2016} [Weigend et al. [1991; [Nowlan & Hinton, [1992).
Although the ability to precisely vary sparsity is required for this experimental framework, we note
that our methodology can be extended to other methods. Figure [I]shows the distributions of model
accuracy across model populations for the non-sparse and sparse models for ImageNet and CIFAR-10.

2.1 CLASS LEVEL PERFORMANCE

Comparisons of the effects of different pruning algorithms or levels of sparsity on classification tasks
such as ImageNet have largely centered on top-line metrics such as top-1 or top-5 test-set accuracy
averaged across classes, but reliance on these measures hides detail in the model’s performance.
Comparing only top-1 model accuracy between a baseline and a pruned model amounts to assuming
that class accuracies are expected to maintain their relative relationships to the top-1 model accuracy
before and after pruning. In this work, we consider whether this is a valid assumption. Is relative
performance unaltered by pruning or are some classes impacted more than others?

For a given model, we compute the class accuracy 5§ for class ¢ € C and sparsity ¢ € [0,1]. We
compute overall model accuracy from the set of class metrics:

1
5{M=mcezcﬁf*]vc

where [V, is the number of examples in class ¢ and N is the total number of examples in the data
set. If the impact of pruning was uniform, we would expect each class accuracy to shift by the same
number of percentage points as the difference in top-1 accuracy between the sparse and non-sparse
model. This forms our null hypothesis (H,) — the shift in accuracy for class ¢ before and after



Under review as a conference paper at ICLR 2020

pruning is the same as the shift in top-1 accuracy. For each class ¢ we consider whether to reject H
and accept the alternate hypothesis (/) that pruning disparately affected the class’s accuracy in
either a positive or negative direction:

Ho : 5 — 8" = Bf — B
Hy : B — By # 57 — B

Neural net training is most often done in a non-deterministic fashion, and we consider each model
k in its population of K = 30 models to be a sample of some underlying distribution. Given a
class ¢ and a population of K models trained at a sparsity ¢, we construct a set of samples Sy of the
mean-shifted class accuracy as S§ = {ff;, — 6%},5:1.

Evaluating whether the difference between a sample of mean-shifted class accuracy from sparse
and non-sparse models is “real” amounts to determining whether two data samples are drawn from
the same underlying distribution, which is the subject of a large body of goodness of fit literature
(D’ Agostino & Stephens), 1986 |Anderson & Darling |1954; Huber-Carol et al.| 2002). In this work,
we use a two-sample, two-tailed, independent Welch’s t-test (Welchl [1947) to determine whether the
means of the samples S and S§ differ significantly. If the two samples were drawn from distributions
with different means with 95% or greater probability (p-value <= 0.05), then we reject the null
hypothesis and consider the class to be disparately affected by ¢-sparsity pruning relative to the
baseline.

After finding the subset of classes for a given t-sparsity that show a statistically significant change
relative to the baseline, we can quantify the degree of deviation, which we refer to as normalized
recall difference, by comparing the average t-sparse and baseline class accuracies after normalizing
for their respective average model accuracies:

1 K 1 Ko
E; (B — BR) — E; (B, — BL) (1)

2.2  PRUNING IDENTIFIED EXEMPLARS

How does pruning impact model performance on individual images? A natural extension of the
hypothesis testing in the prior section is to consider whether to reject or retain the null hypothesis that
the output probability for a given image for a dense and sparse models is equal. However, recent work
has highlighted that deep neural networks produce output probabilities that are uncalibrated (Guo
et al., 2017} Kendall & Gal, [2017 |Lakshminarayanan et al.l|2017) and thus cannot be interpreted as a
measure of certainty. Deep neural networks do not know what they do not know, and often ascribe
high probabilities to out-of-distribution data points or are overly sensitive to adversarially perturbed
inputs (Hendrycks & Gimpell 2016} Nguyen et al.,[2014).

We are interested in how model predictive behavior changes through the pruning process. Given
the limitations of uncalibrated probabilities in deep neural networks, we focus on the level of
disagreement between the predictions of sparse and non-sparse networks on a given image. Let /' ,
be the prediction of the kth ¢-sparse model of its population for image 7 where ¢ = 0 denotes an
unpruned model, and let Y%, = {y; k,t}kK:1 be the set of predictions for the ¢-sparse model population
on exemplar i. For set V", we find the modal label, i.e. the class predicted most frequently by the

t-sparse model population for exemplar ¢, which we denote y% . Exemplar ; is classified as PIE, if
and only if the modal label is different between the ¢-sparse model and the unpruned (non-sparse)
model:

PIEit = 1 ifyf% 7& yl]’V{
’ 0 otherwise

We note that there is no constraint that the non-sparse predictions for PIEs match the true label, thus
the detection of PIEs is an unsupervised protocol that could in principal be performed at test time.
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Sparsity Model Significant Largest increase Largest decrease
® ac:;;‘g .l #incr. # decr. class norm. diff. class norm. diff.
0.1 -0.0002 29 22 toaster 0.025 am. chameleon -0.026
0.3 -0.002 35 34 bathtub 0.036 cleaver -0.045
0.5 -0.008 91 54 petri dish 0.034 frying pan -0.047
0.7 -0.017 189 128 cd player 0.050 tow truck -0.069
0.9 -0.041 337 245 cd player 0.088 muzzle -0.128

Table 1: Summary of class-level results for ImageNet. Only classes passing the significance test are
included. The model accuracy difference column reports mean 3" — 3! as the percentage point
difference between the pruned and baseline model accuracies; a negative value means the pruned
model’s average accuracy is lower than the baseline model’s.

0.05

0.00

% point difference

—0.05

Figure 3: Normalized recall difference (bars) and absolute recall difference (points) per class for 70%
sparsity (left) and 90% sparsity (right). The class labels are sampled for readability; there are 317
significant classes for 70% sparsity and 582 significant classes for 90%. Note the difference in scale
on the y-axis.

3 RESULTS AND DISCUSSION

3.1 IMPACT OF SPARSITY ON CLASS LEVEL PERFORMANCE

The impact of magnitude pruning on ImageNet classification is disparate across classes and amplified
as sparsity increases. For example, at 10% sparsity only 51 of 1,000 classes in the ImageNet test
set exhibit statistically significant change in class accuracy, however at 90% sparsity, accuracy is
impacted for 582 classes in a statistically significant way.

The directionality and magnitude of the impact is nuanced and surprising. Our results show that
certain classes are relatively robust to the overall degradation experienced by the model whereas
others degrade in performance far more than the model itself. This amounts to selective “brain
damage” with performance on certain classes evidencing far more sensitivity to the removal of model
capacity. Table[T] shows that more classes show a significant relative increase in accuracy than a
decrease at every level, though the overall model accuracy decreases at every pruning level, indicating
that the magnitude of class decreases must be larger in order to pull the model accuracy lower.
Figure 3] visualizes the magnitude of the normalized recall differences for 70% and 90% pruning and
highlights the degree to which the classes spread from model average.

We performed the same analysis on the CIFAR-10 models and found that while pruning presents a
non-uniform impact there are fewer classes that are statistically significant. One class out of ten was
significantly impacted at 10%, 30%, and 50%, and two classes were impacted at 90%. We suspect
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Figure 4: Excluding pruning identified exemplars (PIE) improves test-set top-1 accuracy for both Ima-
geNet and CIFAR-10. This holds for PIE images identified at all levels of sparsity considered. Sparse
model find generalizing to PIE more challenging, and inference on PIE images alone substantially
degrades generalization performance. Left: Average top-1 test-set accuracy across 30 non-sparse
ResNet-50 models when inference is restricted to PIE images (blue), non-PIE images (dark purple)
and a random sample of the test set (black line) which is a constant independent of PIE sparsity level.
Right: Average top-1 test-set accuracy across 30 non-sparse wide ResNets trained on CIFAR-10.

that we found less disparate impact for CIFAR-10 because, while the model has less capacity, the
number of weights is still sufficient to model the limited number of classes and lower dimension
dataset.

3.2 IMPACT OF SPARSITY ON INDIVIDUAL EXEMPLARS

At every level of sparsity, for both CIFAR-10 and ImageNet we identify a subset of PIE images. At
10% and 90% sparsity, we classify 3.34% and 10.27% of all ImageNet test-set images respectively
as PIEs. For CIFAR-10, PIEs constitute 0.97% and 2.16% of the test set at 10% and 90% sparsity.

PIEs are more difficult for both sparse and non-sparse models to classify. In Fig.[d we compare
the test-set performance of a fully parameterized non-sparse model on a fixed number of randomly
selected (1) PIE images, (2) non-PIE images and (3) a random sample of the test set. The results
are consistent across both CIFAR-10 and ImageNet datasets; removing PIE images from the test-
set improves top-1 accuracy for both sparse and non-sparse models relative to a random sample.
Inference restricted to only PIE images greatly impairs the generalization performance of a model. In
the appendix, we include additional plots that show that while all models perform far worse on PIE
images, the degradation to performance is amplified as model sparsity increases.

The most challenging PIEs are identified at low levels of sparsity. In Figure[d] the lowest test-set
accuracy for both sparse and non-sparse models occurs when inference is restricted to PIEs identified
at 10% sparsity. Test-set accuracy steadily increases for PIEs identified at higher levels of sparsity.
This suggests that sparsity first erodes performance on the images that the model finds the most
challenging.

Why are PIEs impacted more by pruning? A qualitative inspection of PIEs (Figure [6) suggests
that these hard-to-generalize-to images tend to be of lower image quality, mislabelled, entail abstract
representations, require fine-grained classification or depict atypical class examples. We conducted a
limited human stud to inspect a random sample of 400 PIE and non-PIE ImageNet images. We
broadly group the properties we codify as indicative of 1) the exemplar being challenging or 2)
the task being ill-specified. We introduce these groupings below (after each bucket we report the
percentage of PIEs and non-PIEs in each category as a fraction of total PIEs and non-PIE codified):

1. Poorly specified task

!'The authors acted as labelers ahead of the deadline, though the PIE label was shuffled and hidden during
labeling. We will reproduce the study using other parties before publication.
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NON_PIE PIE

1) challenging exemplar
2) poorly specified task
both 1) and 2)

neither

Figure 5: Limited human study of the relative distribution of PIE and non-PIE properties. Challeng-
ing exemplars: images positively codified as showing common image corruptions such as blur or
overlaid text, or images where the object is in the form of an abstract representation or where the
exemplar requires fine grained classification. Poorly specified task: images where multiple classes
are visible in the same image, or images with incorrect or insufficient ground truth.

e incorrect ground truth or insufficient information — images where there is not
sufficient information for a human to arrive at the correct ground truth label. For
example in Fig. [6] the image of the plate of food with the label restaurant is
cropped such that it is impossible to tell whether the food is in a restaurant or in a
different setting. [2.9% of non-PIEs, 9.5% of PIEs]

o multiple labelled classes are clearly visible in the image — images depicting multiple
objects where a human may consider several labels to be appropriate (e.g., an image
which depicts both a paddle and canoe, desktop computer consisting of a
screen, mouse and monitor, abarber chairinabarber shop). [22.3%
of non-PIE, 50.8% of PIEs]

2. Challenging Exemplars

o fine grained classification task — involves classifying an object that is semantically
close to various other classes present the data set (e.g., rock crab and fiddler
crab, bassinet or cradle, cuirass and breastplate). [8.3% of non-PIEs,
38.2% of PIEs]

e exemplar corruptions — images exhibit common corruptions such as motion blur,
contrast, pixelation. We also include in this category images with super-imposed text,
an artificial frame and images that are black and white rather than the typical RBG
color images in ImageNet. [8.7% of non-PIE, 12.1% of PIE]

e exemplar abstractions — the surfaced exemplar depicts a class object in an abstract
form such a cartoon, painting, or sculptured incarnation of the object. [1.5% of non-PIE,
3.5% of PIE]

We find that PIEs overindex relative to non-PIEs on certain properties, such as having an incorrect
ground truth label or multiple objects. This suggests that the task itself is often incorrectly specified.
Both ImageNet and CIFAR-10 are single image classification tasks, however just over half of the
PIEs codified by humans were identified as multi-object images where multiple labels could be
considered reasonable (vs. 22.33% of non-PIEs). The over-indexing of incorrectly structured data
in PIE hints that the explosive growth in number of parameters in deep neural networks may be
solving a problem better addressed in the data cleaning pipeline. However, task mis-specification
alone does not fully explain the images where predictive behavior diverges as model capacity is
changed. We find that PIE also overindexes on low quality images that present corruptions like blur
or overlaid text and exemplars that require fine grained classification. This suggests that there may
be a relationship between number of model parameters and generalization to these types of images.
We explore the relationship between capacity and robustness to these types of corruptions more
thoroughly in Section [3.3]
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multi-object image image corruptions

true : tennis ball projectile lynx tricycle
non-sparse : tennis ball missile labrador retriever tricycle
sparse : racket projectile nematode shopping cart
ground truth label fine-grained .
inadequate classification abstract representation

true : restaurant cup cowboy hat butcher store
non-sparse : ice cream cup cowboy hat grocery store
sparse : cauliflower coffee mug plastic bag crayfish

Figure 6: Visualization of PI Egyy: images where modal label differs between 30 non-sparse ResNet-
50 models and 30 models trained to 90% sparsity on ImageNet. A qualitative inspection of PIEs
suggests that there are certain shared properties between the images most impacted by pruning; these
images tend to be of lower image quality and frequently exhibit image corruptions (overlaid text,
contrast, motion blur, zoom), mislabelled or unintuitive label, depict class in abstract form, require
fine-grained classification or depict atypical class examples.

3.3 THE ROLE OF ADDITIONAL CAPACITY

The PIE procedure surfaces exemplars that are harder for both sparse and non-sparse models to
classify. Given that PIE surfaces data points where there is the greatest divergence in behavior
between sparse and non-sparse models, it is useful to understand the directionality of some of the
properties described in the previous section. For example, we noted that PIE frequently surfaces
images with corruptions such as motion blur, contrast and pixelation. Are sparse models more brittle
to these type of corruptions? Many PIEs are often atypical or unusual class examples. We have
already noted that model degradation when restricted to inference on PIEs is amplified as sparsity
increases. Does this measure of model brittleness mirror other open source robustness benchmarks?

ImageNet-C ImageNet-C (Hendrycks & Dietterich| [2019) is an open source data set that consists
of algorithmically generated corruptions (blur, noise) applied to the ImageNet test-set. We compare
top-1 accuracy given inputs with corruptions of different severity. As described by the methodology
of [Hendrycks & Dietterich| (2019), we compute the corruption error for each type of corruption by
measuring model performance rate across five corruption severity levels (in our implementation, we
normalize the per-corruption error by the performance of the sparse model on the clean ImageNet
dataset). ImageNet-C corruption substantially degrades mean top-1 accuracy of non-sparse models
Fig.[7] This sensitivity is amplified at high levels of sparsity, where there is a further steep decline
in top-1 accuracy. Sensitivity to different corruptions is remarkably varied, with certain corruptions
such as gaussian, shot an impulse noise consistently causing more degradation.

ImageNet-A ImageNet-A is a curated test set of 7,500 natural adversarial images designed to
produce drastically low test accuracy. We find that the sensitivity of sparse models to ImageNet-A
mirrors the patterns of degradation to ImageNet-C and sets of PIEs. As sparsity increase, top-1 and
top-5 accuracy further erode, suggesting that sparse models are more brittle to adversarial examples.
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Figure 7: Sparse models are less robust to natural adversarial examples. At high levels of sparsity,
models are also more brittle to common image corruptions. We measure the relative Top-1 and Top-5
test set ResNet-50 accuracy normalized by average sparse model performance on an uncorrupted
ImageNet test set. Left: Mean test-set accuracy on ImageNet-A (across 30 models). Right: Test-set
performance on a subset of ImageNet-C corruptions. An extended list of all corruptions considered is
included in the appendix.

4 RELATED WORK

Model compression is diverse and includes research directions such as reducing the precision or bit
size per model weight (quantization) (Courbariaux et al., 2014;Hubara et al., 2016 Gupta et al.| [2015),
efforts to start with a network that is more compact with fewer parameters, layers or computations
(architecture design) (Howard et al., [2017; landola et al., 2016; [Kumar et al., 2017) and student
networks with fewer parameters that learn from a larger teacher model (model distillation) (Hinton
et al.,2015) and finally pruning by setting a subset of weights or filters to zero (Louizos et al., 2017}
Wen et al., 20165 (Cun et al., [1990; [Hassibi et al., [1993a; |Strml, |1997; [Hassibi et al., [{1993b; [Zhu &
Gupta, 2017} |See et al,|2016; Narang et al., 2017). Articulating the trade-offs of compression has
overwhelming centered on change to overall accuracy. Our contribution, while limited in scope to
model compression techniques that prune deep neural networks, is the first work to our knowledge to
consider the limitations of these aggregate performance measures and demonstrate that the impact of
pruning in deep neural networks at a class and exemplar level is non-uniform.

We also consider how pruning impacts robustness to natural adversarial examples and image corrup-
tions. We note that recent work by (Hendrycks & Dietterichl 2019; Hendrycks et al.l 2019) considers
complimentary variant of this question by benchmark ImageNet-A and ImageNet-B robustness across
a limited set of dense non-sparse architectures with different numbers of parameters (for example
ResNet-50 vs ResNet-101). While our work is focused on understanding the impact of sparsity on an
exemplar and class level, one of our key findings is that PIE is far more challenging to classify for
both sparse and non-sparse models. Leveraging this subset of data points for interpretability purposes
or to cleanup the dataset fits into a broader and non-overlapping body of literature that aims to classify
input data points as prototypes — “most typical” examples of a class — ((Carlini et al.| 2018 |Stock &
Cisse, [2017)) or outside of the training distribution (OOD) (Hendrycks & Gimpel, [2016; Lee et al.,
2018a; [Liang et al., [2018} [Lee et al.l 2018a; [Masana et al.,|2018)) and work on calibrating deep neural
network predictions (Lakshminarayanan et al., 2017; Guo et al., 2017; | Kendall & Gal, 2017).

5 CONCLUSION

We show that deep neural networks pruned to different levels of sparsity “forget” certain classes and
examples more than others. While a subset of classes are systematically impacted, the direction of
this impact is surprising and nuanced. Our results show certain classes are relatively impervious to
the reduction in model capacity while others bear the brunt of degradation in performance. Pruning
identified exemplars are a subset of exemplars where there is a high level of disagreement between
sparse and non-sparse models. We show that this subset is universally challenging for models levels at
all levels of sparsity to classify and mirrors the sensitivity of sparse models to open source robustness
benchmarks ImageNet-C and ImageNet-A.
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6 APPENDIX

6.1 MAGNITUDE PRUNING

There are various pruning methodologies that use the absolute value of the weight as way to rank
importance and remove from the network weights that are below a user specified threshold. This
is often over the course of training; training is punctuated at certain pruning steps and a fraction of
weights are set to zero. Many different magnitude pruning methods have been proposed (Collins
& Kohli, [2014; |Guo et al., 20165 Zhu & Gupta, [2017)) that largely differ in whether the weights are
removed permanently or can “recover’ by still receiving subsequent gradient updates. This would
allow certain weights to become non-zero again if pruned incorrectly. While magnitude pruning is
often used as a criteria to remove individual weights, it can be adapted to remove entire neurons or
filters by extending the ranking criteria to a set of weights and setting the threshold appropriately.
Recent work on evolutionary strategies has also leveraged an interative version of magnitude pruning
(Mocanu et al., 2018)).

In this work, we use the magnitude pruning methodology proposed by |Zhu & Gupta) (2017). Pruning
is introduced over the course of training and removed weights continue to receive gradient updates
after being pruned. For ImageNet, each model trains for a total of 32,000 steps. We prune every 500
steps between 1,000 and 9,000 steps. For CIFAR-10, we train the model for 80,000 steps. We prune
every 2,000 steps between 1,000 and 20,000 steps. These hyperparameter choices were based upon a
limited grid search which suggested that these particular settings minimized degradation to test-set
accuracy across all sparsity levels. At the end of training, the final pruned mask is fixed and during
inference only the remaining weights contribute to the model prediction.

6.2 ADDITIONAL CLASS-LEVEL RESULTS

Tables [2] and [3] provide top-line metrics for ImageNet and CIFAR-10, respectively.

The class-level analysis summary for CIFAR-10 is in Table Relative to ImageNet, the percentage
of classes significantly impacted at 90% pruning is small: 20% for CIFAR-10 versus 58% for
ImageNet. As discussed in the main body, we suspect this is due to CIFAR-10 being a simpler task
and the network we started from having much more capacity than necessary for the task.

Fraction Pruned Top1l TopS5 # Signif classes # PIEs

0 76.68 93.25 - -
0.10 76.66  93.25 51 1,694
0.30 76.46  93.17 69 1,819
0.50 75.87  92.86 145 2,193
0.70 75.02 9243 317 3,073
0.90 72.60 91.10 582 5,136

Table 2: ImageNet top-1 and top-5 accuracy at all levels of sparsity, averaged over all runs. The
fourth column is the number of classes significantly impacted by pruning.

Fraction Pruned Top 1 # Signif classes # PIEs

0 94.53 - -
0.1 94.51 1 97
0.3 94.47 1 114
0.5 94.39 1 144
0.7 94.30 0 137
0.9 94.14 2 216

Table 3: CIFAR-10 top-1 accuracy at all levels of sparsity, averaged over runs. Top-5 accuracy
for CIFAR-10 was 99.8% for all levels of sparsity. The fourth column is the number of classes
significantly impacted by pruning.
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Sparsity Model Significant Largest increase Largest decrease
® acill;il;lcy #incr. #decr. class norm. diff. class norm. diff.
0.1 -0.0002 0 1 - - automobile -0.0016
0.3 -0.0006 1 0 frog 0.0022 - -
0.5 -0.0014 1 0 truck 0.0022 - -
0.7 -0.0023 0 0 - - - -
0.9 -0.0039 2 0 truck 0.0030 - -

Table 4: Summary of class-level results for CIFAR-10. Only classes passing the significance test are
included. The model accuracy difference column reports mean 3" — 3! as the percentage point
difference between the pruned and baseline model accuracies; a negative value means the pruned
model’s average accuracy is lower than the baseline model’s. The normalized difference is calculated
using Equation [I]

Figure [3|in the main body of the paper visualizes the relative increases and decreases in performance
across classes at 70% and 90% pruning on ImageNet. Those figures were shrunk for space; Figure §]
shows the full chart for 70% sparsity for clarity.

6.3 ADDITIONAL PIE RESULTS

In the body of the paper we show the performance of the unpruned model on PIE images found at
varying levels of sparsity and showed that performance is worst for PI F1, images which we suspect
are the most difficult and performance is still poor but better for PIE; for larger values of ¢. In
Figure (10| we plot the performance of the pruned models on PIEs identified at different levels of
sparsity and show that the behavior of the pruned models track the behavior of the unpruned model in
this regard.

6.4 ADDITIONAL CORRUPTION AND ADVERSARIAL RESULTS

Sparse models are less robust to natural adversarial examples. At high levels of sparsity, models are
also more brittle to common image corruptions. We include the raw ImageNet-C results in Figure 5]

6.5 HUMAN STUDY

A balanced sampled PIE and non-PIE were selected at random and shuffled. The classification as PIE
or non-PIE was not known or available in the sample. Questions codified for every image considered:

Does label 1 accurately label an object in the image? (0/1)
Does this image depict a single object? (0/1)

Would you consider labels 1,2 and 3 to be semantically very close to each other? (does this image
require fine grained classification) (0/1)

Do you consider the object in the image to be a typical exemplar for the class indicated by label 1?
(0/1)

Is the image quality corrupted (some common image corruptions — overlaid text, brightness, contrast,
filter, defocus blur, fog, jpeg compression, pixelate, shot noise, zoom blur, black and white vs. rbg)?
(0/1)

Is the object in the image an abstract representation of the class indicated by label 1? [[an abstract
representation is an object in an abstract form, such as a painting, drawing or rendering using a

different material.]] (0/1)
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Figure 8: Expanded version of the 70% sparsity chart from Figure[3] Normalized recall difference
(bars) and absolute recall difference (points) per class. Every third class label is shown.
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Subset of Image Corruptions and Abstract Representations Surfaced by PIE

black and
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Figure 9: Images surfaced by PIE evidence common corruptions such as motion blur, defocus or
post-processing with overlaid text. Many PIE images depict objects in an abstract form, such as a
painting, drawing or rendering using a different material. PIEs displayed were identified by comparing
the modal label of a set of 90% sparse and non-sparse ResNet-50 models.
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Figure 10: Excluding pruning identified exemplars (PIE) improves test-set top-1 accuracy for both
ImageNet and CIFAR-10. The sensitivity to PIE images is amplified at higher levels of sparsity.
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ImageNet Robustness to ImageNet-C Corruptions (By Level of Sparsity)

Corruption Type Pruning Fraction Top-1 Top-5 Top-1 Relative Top-5 Relative
brightness 0.0 0.69 0.89 90.90 95.53
brightness 0.3 0.69 0.89 90.51 95.35
brightness 0.7 0.67 0.88 90.01 95.08
brightness 0.9 0.64 0.86 88.39 94.02
contrast 0.0 0.42 0.62 55.32 66.35
contrast 0.3 0.42 0.62 55.15 66.27
contrast 0.7 0.41 0.62 55.13 66.64
contrast 0.9 0.38 0.58 52.44 64.16
defocus blur 0.0 0.50 0.72 65.10 77.79
defocus blur 0.3 0.49 0.72 64.65 77.52
defocus blur 0.7 0.47 0.71 63.33 76.50
defocus blur 0.9 0.45 0.68 61.60 74.95
elastic 0.0 0.57 0.77 74.68 82.36
elastic 0.3 0.57 0.77 74.33 82.18
elastic 0.7 0.55 0.75 73.46 81.48
elastic 0.9 0.53 0.74 72.80 80.84
fog 0.0 0.56 0.79 73.52 85.08
fog 0.3 0.56 0.79 73.31 85.04
fog 0.7 0.54 0.78 72.62 84.68
fog 0.9 0.50 0.75 69.42 82.46
gaussian noise 0.0 0.45 0.66 59.42 70.50
gaussian noise 0.3 0.45 0.65 58.44 69.63
gaussian noise 0.7 0.42 0.62 56.03 67.52
gaussian noise 0.9 0.33 0.51 45.32 56.53
impulse noise 0.0 0.42 0.63 55.24 67.81
impulse noise 0.3 0.41 0.62 53.97 66.74
impulse noise 0.7 0.38 0.59 50.55 63.65
impulse noise 0.9 0.25 0.43 34.86 47.36
jpeg compression 0.0 0.66 0.86 86.00 92.61
jpeg compression 0.3 0.65 0.86 85.35 92.24
jpeg compression 0.7 0.63 0.85 84.64 91.78
jpeg compression 0.9 0.61 0.83 83.50 90.89
pixelate 0.0 0.57 0.78 75.00 83.80
pixelate 0.3 0.57 0.78 74.47 83.46
pixelate 0.7 0.55 0.76 73.25 82.43
pixelate 0.9 0.51 0.73 70.73 80.13
shot noise 0.0 0.44 0.64 57.32 68.78
shot noise 0.3 0.43 0.63 56.12 67.73
shot noise 0.7 0.40 0.60 53.19 64.97
shot noise 0.9 0.31 0.49 42.46 53.65

Table 5: Sparse models are more sensitive to image corruptions that are meaningless to a human. We
measure the average Top-1 and Top-5 test set accuracy of models trained to varying levels of sparsity
on the ImageNet-C test-set (the models were trained on uncorrupted ImageNet). For each corruption
we consider and the relative measures see appendix (Table.[5))) we compute the average accuracy of
50 trained models across all 5 levels of corruption severity.
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