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ABSTRACT

For typical sequence prediction problems like language generation, maximum
likelihood estimation (MLE) has been commonly adopted as it encourages the
predicted sequence most consistent with the ground-truth sequence to have the
highest probability of occurring. However, MLE focuses on a once-for-all match-
ing between the predicted sequence and gold-standard consequently, treating all
incorrect predictions as being equally incorrect. We call such a drawback nega-
tive diversity ignorance in this paper. Treating all incorrect predictions as equal
unfairly downplays the nuance of these sequences’ detailed token-wise structure.
To counteract this, we augment the MLE loss by introducing an extra KL diver-
gence term which is derived from comparing a data-dependent Gaussian prior and
the detailed training prediction. The proposed data-dependent Gaussian prior ob-
jective (D2GPo) is defined over a prior topological order of tokens, poles apart
from the data-independent Gaussian prior (L2 regularization) commonly adopted
for smoothing the training of MLE. Experimental results show that the proposed
method can effectively make use of more detailed prior in the data and signif-
icantly improve the performance of typical language generation tasks, includ-
ing supervised and unsupervised machine translation, text summarization, sto-
rytelling, and image caption.

1 INTRODUCTION

Language understanding is the crown jewel of artificial intelligence. As the well-known dictum by
Richard Feynman states, “what I cannot create, I do not understand;” language generation reflects the
level of development of language understanding. Language generation models have seen remarkable
advances in recent years, especially under the rapid development of deep neural networks (DNNs).
There are several typical models for language generation such as sequence-to-sequence (seq2seq)
models (Kalchbrenner & Blunsom, 2013; Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Vaswani et al., 2017), generative adversarial networks (GANs) (Goodfellow et al., 2014), vari-
ational autoencoders (VAEs) (Kingma & Welling, 2013), and auto-regressive networks (Larochelle
& Murray, 2011; Van Oord et al., 2016).

Language generation is usually modeled as a sequence prediction task, which adopts maximum like-
lihood estimation (MLE) as standard training criterion (i.e., objective). MLE has had much success
owing to its intuitiveness and flexibility. However, sequence prediction has a series of problems due
to MLE:

• Exposure bias: the model is not exposed to the full range of errors during training;
• Loss mismatch: during training, we maximize the log-likelihood, whereas, during infer-

ence, the model is evaluated by a different metric such as BLEU or ROUGE;
• Generation diversity: the generations are dull, generic (Sordoni et al., 2015; Serban et al.,

2016; Li et al., 2016a), repetitive, and short-sighted (Li et al., 2016b);
• Negative diversity ignorance: MLE fails to assign proper scores to different incorrect model

outputs, which means that all incorrect outputs are treated equally during training.

There has been a variety of work alleviating the above MLE training shortcomings apart from nega-
tive diversity ignorance. Negative diversity ignorance is a result of unfairly downplaying the nuance
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of sequences’ detailed token-wise structure. When the MLE objective compares its predicted and
ground-truth sequences, it takes a once-for-all matching strategy; the predicted sequence is given a
binary label, either correct or incorrect. However, these incorrect training predictions may be quite
diverse and letting the model be aware of which incorrect predictions are more incorrect or less in-
correct than others may more effectively guide model training. For instance, an armchair might be
mistaken with a deckchair, but it should usually not be mistaken for a mushroom.

To alleviate the issue of the negative diversity ignorance, we add an extra Gaussian prior objective to
augment the current MLE training with an extra Kullback-Leibler (KL) divergence loss term. The
extra loss is computed by comparing two probability distributions, the first of which comes from
the detailed model training prediction, and the second of which is from a ground-truth token-wise
distribution and is defined as a kind of data-dependent Gaussian prior distribution. The proposed
data-dependent Gaussian prior objective (D2GPo) is then injected into the final loss through a KL
divergence term. The D2GPo is poles apart from commonly adopted data-independent Gaussian
prior (L2 regularization) for the purpose of smoothing the training of MLE, which is also directly
added into the MLE loss.

Experimental results show that the proposed method can effectively make use of a more detailed
prior in the data and significantly improve the performance of typical language generation tasks,
including supervised and unsupervised machine translation, text summarization, storytelling, and
image caption.

2 RELATED WORK

Natural language generation (NLG) has long been considered the most challenging natural language
processing (NLP) task (Murty & Kabadi, 1987). NLG techniques have been widely adopted as
the critical module in various tasks, including control-free sentence or poem generation (Zhang
& Lapata, 2014) and input-conditioned language generation such as machine translation, image
caption, text summarization, storytelling (Vaswani et al., 2017; Lample et al., 2018; Karpathy & Fei-
Fei, 2015; Fan et al., 2018), and sentiment/tense controlled sentence generation (Hu et al., 2017). In
this work, we focus on input-conditioned language generation tasks, though, our proposed method
can also be applied in other language generation fields.

Input-conditioned language generation tasks are challenging because there is an information imbal-
ance between the input and output in these tasks, especially for cases with non-text input (Shapiro,
1992). Reiter & Dale (2000) discussed different ways of building complicated knowledge-based
systems for NLG. In recent years, neural networks (NNs), especially DNNs, have shown promising
results in many NLP tasks. Bengio et al. (2003) first proposed the NN language model (NNLM) to
exploit the advantages of NNs for language generation tasks. In an NNLM, the n-gram paradigm
is extended by the generalization ability of NNs. Mikolov et al. (2010) developed a more general
implementation for a language model (called the recurrent NN language model (RNNLM) by inte-
grating a Markov property using a recurrent NN (RNN) to address NNLMs’ theoretical inability to
capture long-term dependencies. RNNLM is an effective solution because it is designed to capture
long-term dependencies. Because of the vanishing gradient problem in RNNs, however, its long-
term dependency processing capability is limited. In contrast to an RNN, the Transformer (Vaswani
et al., 2017) provides us with a more structured memory for handling long-term dependencies in
text, resulting in robust performance across diverse tasks. Radford et al. (2018) proposed a Trans-
former language model called GPT, which uses a left-to-right architecture, where every token can
pay attention to previous tokens in the self-attention layers of the Transformer.

The generators of the most current language generation model use the RNNLM or Transformer
LM structure. However, as pointed out by Bengio et al. (2015), fitting the distribution of observed
data does not mean satisfactory text will be generated, because the model is not exposed to the full
range of errors during training. This is called the exposure bias problem. Reinforcement learning,
GANs (Goodfellow et al., 2014; Yu et al., 2017), and end-to-end re-parameterization (Kusner &
Hernández-Lobato, 2016) techniques have been proposed to solve it. The exposure bias is no longer
an issue in reinforcement learning models because the training sequences are generated by the model
itself.
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Using MLE for the training objective leads to the problem of loss mismatch. Ranzato et al. (2015)
incorporated the evaluation metric into the training of sequence-to-sequence(seq2seq) models and
proposed the mixed incremental cross-entropy reinforce (MIXER) training strategy, which is similar
to the idea of minimum risk training (Smith & Eisner, 2006; Li & Eisner, 2009; Ayana et al., 2016;
Shen et al., 2016). MIXER uses decoder hidden states to predict the bias term and hence reduce
the variance, while minimum risk training renormalizes the predicted probabilities. Zhang & Zhao
(2018) introduced a new training criterion based on the Hellinger distance for the seq2seq model
and empirically compared the models of two optimization categories: minimum divergence and
maximum margin.

For the generation diversity problem, Serban et al. (2017) applied a latent variable hierarchical
encoder–decoder dialog model to introduce utterance-level variations and facilitate longer responses.
Zhao et al. (2017) presented a novel framework based on conditional variational autoencoders that
improves generation diversity by sampling a latent variable z and optionally adding linguistic fea-
tures to constrain the style further.

There is an increasing interest in incorporating problem field knowledge in machine learning ap-
proaches (Taskar et al., 2004; Ganchev et al., 2010; Hu et al., 2016). One common way is to de-
sign specialized network architectures or features for specific knowledge (e.g., Liang et al. (2017;
2018)). In contrast, for structured probabilistic models, posterior regularization (PR) and related
frameworks (Ganchev et al., 2010; Liang et al., 2009; Bellare et al., 2009) provide a general means
to impose knowledge constraints during model estimation. Hu et al. (2018) established a mathe-
matical correspondence between posterior regularization and reinforcement learning, and, based on
this connection, expanded posterior regularization to learn knowledge constraints as the extrinsic
reward in reinforcement learning. Our approach can be seen as incorporating a prior knowledge of
the language field into language generation learning.

3 BACKGROUND

Consider a conditional probability model for sequence prediction y ∼ pθ(x) with parameters θ. The
target sequence y can be conditioned on any type of source x (e.g., phrase, sentence, and passage
in human languages or even image), which are omitted for simplicity of notation. For the sequence
y = 〈y1,y2, ...,yl〉, the probability pθ(y|x) is

pθ(y|x) = pθ(y1|x)pθ(y2|x,y1)...pθ(yl|x,y1:l−1). (1)

Commonly, sequence prediction models are trained using MLE (also known as teacher forcing)
(Williams & Zipser, 1989). Supposing y∗ is the desired output, MLE minimizes the negative log-
likelihood of pθ(y∗|x) as follows:

LMLE(θ) = − log pθ(y
∗|x) = −

l∑
i=1

log pθ(y
∗
i |x,y∗<i). (2)

Optimizing the MLE objective LMLE(θ) is straightforward and meets the principle of empirical risk
minimization while focusing on only minimizing losses of the correct target on the training data set.

However, there may be noise in the training data, and forcibly learning the distribution of a train-
ing set cannot enable the obtained model to reach good generalization. Additionally, for sequence
prediction, models trained subject to MLE cursorily evaluate all predictions as either correct or in-
correct and ignores the similarity between the correct and “less incorrect” predictions. Incorrect
predictions might range from nearly perfect (i.e., one token is mistaken with a synonym) to com-
pletely wrong, having nothing in common with the gold sequence. However, MLE training treats
all incorrect training predictions equally, which implies that MLE actually fails to accurately assign
scores to diverse (especially negative) model predictions.

4 D2GPO: DATA-DEPENDENT GAUSSIAN PRIOR OBJECTIVE

To capture the diversity of negative training predictions, we augment the MLE objective of model
with an additional objective O which more accurately models such a negative diversity. Without
loss of generality, we introduce a general evaluation function f(y) ∈ R independent of model
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prediction, such that with the golden target y∗, a higher f(y′i) value indicates a better pθ(y′i|x) for
a target candidate y′i. Note that f(·) can also involve other factors such as latent variables and extra
supervisions.

There are two main methods to learn f(·) in the model. If pθ is a GAN-like implicit generative
model or an explicit distribution that can be efficiently reparametrized (e.g., Gaussian) (Kingma &
Welling, 2013), then one effective method is maximizing Epθ [f(y)]. The other method is computing
the gradient ∇θEpθ [f(y)] using the log-derivative trick which can suffer from high variance but is
often used for the large set of non-parameterizable explicit distributions.

Corresponding to the probability distribution of model predictions pθ(·), we define a prior distribu-
tion q (for each target yi, it has its own unique distribution of qi) which is extracted and derived
from the ground-truth data (e.g., language text in language generation tasks). To guide the proba-
bility distribution of model predictions pθ(·) to match the prior probability distributions q, we adopt
KullbackLeibler (KL) divergence. Considered with the learning of the evaluation function f(y), the
loss for objective O is calculated as follows:

LO(θ, q) = KL(pθ(y|x)‖q(y))− αEq [f(y)] , (3)

where α is a weight for the evaluation function learning term. Since we derive the prior distribution
q(y) from the ground-truth data (which is independent of model parameters θ), so that Eq [f(y)]=0.
Hence, Eq. (3) becomes

LO(θ, q) = KL(pθ(y|x)‖q(y)), (4)

in which KL-divergence can be expanded as

KL(pθ||q) = Ep(log(
p

q
)) =

∑
i

pi ∗ log(pi)−
∑
i

pi ∗ log(qi). (5)

The final objective for learning the model is written as follows:

minθ LMLE(θ) + λLO(θ, q), (6)

where λ is the balancing hyperparameter. Because optimizing the original model objective LMLE(θ)
is straightforward, in the following, we omit the discussion of LMLE(θ) and focus on the proposed
LO(θ, q).
The prior probability distribution qi on yi can be obtained from the evaluation function f(·) with
a softmax operation. To expose the mass of the distribution over the classes, Hinton et al. (2015)
introduced a softmax temperature mechanism, therefore, the relationship between qi and f(·) is:

qi =
exp(f(y′i)/T )∑
j exp(f(y

′
j)/T )

, (7)

where T is a temperature parameter. When T → 0, the distribution becomes a Kronecker dis-
tribution (and is equivalent to a one-hot target vector); when T → +∞, it becomes a uniform
distribution. The softmax operation always turns any evaluation function f(·) into a form of prob-
ability distribution no matter what the form of the original f(·) is, thus then we will only focus on
f(·).
To find a good evaluation function, we have to mine token-wise diversity about every yi. Consider-
ing all token types yi put into a vocabulary, with respect to each yi, there exists a prior topological
order ORDER(yi) among all the known tokens, in which yi is always ranked top priority. Then
the f(·) can be defined as a monotonic function over the corresponding topological order so that it
gives maximal value only when the input is yi itself. Note that defining f(·) in this way leads to the
resulting qi also monotonic over the corresponding topological order. Considering that qi is a priori,
it will be fixed throughout the learning process.

The remaining questions are about how to find a meaningful evaluation function f(·) for the dis-
tribution q. In language generation tasks, we may conveniently take word embedding as the token
representation, and let embedding distance determine such an order ORDER(yi) for each yi. In this
work, we adopt the cosine similarity of pre-trained embeddings to sort the token (word / subword)
order.

4



Under review as a conference paper at ICLR 2020

Discussion For the evaluation function f(·) of qi, we adopt the Gaussian probability density func-
tion (PDF), though later we also present experimental results from other types of functions in the
ablation study. As the adopted Gaussian prior used in the training objective is derived from data-
dependent token-wise distribution, we thus call it data-dependent Gaussian prior objective (D2GPo),
a big departure from the Gaussian prior commonly adopted for smoothing in MLE training (we call
it data-independent Gaussian prior). The following briefly explains why we chose the Gaussian PDF
and how our D2GPo mathematically differs from dada-independent Gaussian prior.

The central limit theorem indicates that suitably standardized sums of independent random variables
have an approximately normal distribution. Thus, any random variable that arises as the sum of a
sufficiently large number of small random components can be modeled accurately by a normal
distribution. Embedding has a linear additive property (e.g., king - man + woman ≈ queen). The
additive property of embedding can be explained by inspecting the training objective (Mikolov et al.,
2013). Each dimension of an embedding represents a potential feature of the token. Considering
each potential feature as an independent random variable, the sum follows a Gaussian distribution
centered on the correct vocabulary unit y∗ according to the linear additive property. Therefore, we
can use a Gaussian distribution for the embedding distance determined order to effectively model
distribution qi. The overview of the concepts underlying D2GPo is illustrated in Appendix A.1.

The D2GPo in this paper is different from the data-independent Gaussian prior in machine learning
optimization theory. We hypothesize and experimentally verify that the embedding feature extracted
from the data obeys the Gaussian distribution. The distribution from the prior knowledge of language
data is used as a soft target to guide the model language generation process using knowledge distilla-
tion. The Gaussian prior in the machine learning optimization theory assumes that each component
in the parameter θ is subject to a zero-mean Gaussian prior distribution, which is equivalent to L2
regularization. In general, our Gaussian prior objective is to act on the guiding target probability,
while the Gaussian prior in machine learning is applied to the selection of model parameters.

5 EXPERIMENTS AND RESULTS

In this section, we describe the experimental evaluation of the D2GPo on a variety of typical lan-
guage generation tasks: neural machine translation (NMT), text summarization, storytelling, and
image caption.

5.1 EMBEDDING PRE-TRAINING

Our proposed D2GPo approach for experimental tasks require either word embeddings or byte-
pair-encoding (BPE) (Sennrich et al., 2016b) subword embeddings. We generated the pretrained
embeddings using fastText (Bojanowski et al., 2017) with an embedding dimension of 512, a context
window of size 5 and 10 negative samples. For NMT, fastText was applied on the concatenation
of source and target language monolingual corpora, which results in cross-lingual BPE subword
embedding. For text summarization, we generated the BPE subword embedding only on the English
monolingual corpora, while for the storytelling, and image caption, we obtained the word embedding
also on the English monolingual corpora.

5.2 SUPERVISED NMT

We evaluated the model on several widely used translation tasks: WMT14 English-to-German (EN–
DE), English-to-French (EN–FR), and WMT16 English-to-Romanian (EN–RO)1 tasks, which all
have standard large-scale corpora for NMT evaluation. Due to the space limit, the data details are
provided in Appendix A.3. The sentences were encoded using sub-word types based on BPE, which
has a shared vocabulary of 40K sub-word units for all three tasks. We chose the Transformer NMT
(Vaswani et al., 2017) model as our baseline. For the hyperparameters of the Transformer (base/big)
models, we followed the settings used in Vaswani et al. (2017)’s work. The BLEU (Papineni et al.,
2002) score with multi-bleu.pl was calculated during the evaluation.

In Table 1, we report the performance of our full model, the baseline, and existing systems. Our
baseline model obtains similar results to Vaswani et al. (2017), the existing strong model on these

1The results for EN–RO are evaluated on the dataset with diacritics removed in the reference text.
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System EN–DE EN–FR EN–RO EN–RO + STD

Vaswani et al. (2017) (base) 27.30 38.10 - -
Vaswani et al. (2017) (big) 28.40 41.00 - -

Transformer (base) 27.35 38.44 33.22 36.68
+ D2GPo 27.93++ 39.23++ 34.00+ 37.11+

Transformer (big) 28.51 41.05 33.45 37.55
+ D2GPo 29.10+ 41.77++ 34.13+ 37.92+

Table 1: Comparison with the baseline and existing systems on the supervised translation tasks.
Here, “++/+” after the BLEU score indicate that the proposed method was significantly better than
the corresponding baseline Transformer (base or big) at significance levels p <0.01/0.05. “STD”
represents synthetic training data from (Sennrich et al., 2016b).

tasks. The results indicate that our method obtained significant improvements over strong baselines
in all language pairs. Our model has not only improved in the translation model of large-scale
training sets but also achieved considerable improvement in small-scale training sets.

5.3 UNSUPERVISED NMT

For unsupervised machine translation, we also used the three language pairs EN–DE, EN–FR, and
EN–RO as our evaluation targets. Note that the evaluation performed on EN–DE uses newstest2016
instead of newstest2014 to keep the results comparable to other works, unlike supervised machine
translation. We used the masked sequence to sequence pre-training (MASS) model (Song et al.,
2019) as our baseline. Following the practice of Song et al. (2019), we pretrained our model with
a masked sequence-to-sequence pre-training (MASS) objective (without D2GPo) on EN, FR, DE,
and RO monolingual data samples from the WMT 2007–2018 News Crawl datasets which cover
190M, 60M, 270M, and 10M sentences, respectively. Then, we fine-tuned the models on the same
monolingual data using back-translation cross-entropy loss (Lample et al., 2018) and our D2GPo
loss. For the training dataset, we filtered out sentences over 175 words long and also jointly learned
60K BPE sub-word units for every language pair.

Method EN–FR FR–EN EN–DE DE–EN EN–RO RO–EN

Artetxe et al. (2017) 15.13 15.56 6.89 10.16 - -
Lample et al. (2017) 15.05 14.31 9.75 13.33 - -
Yang et al. (2018) 16.97 15.58 10.86 14.62 - -
Lample et al. (2018) 25.14 24.18 17.16 21.00 21.18 19.44
XLM (Lample & Conneau, 2019) 33.40 33.30 27.00 34.30 33.30 31.80

MASS (Song et al., 2019) 37.50 34.90 28.30 35.20 35.20 33.10
MASS + D2GPo 37.92 34.94 28.42 35.62 36.31 33.41

Table 2: BLEU score comparisons between MASS and previous methods on unsupervised NMT.

As shown in Table 2, D2GPo achieved consistent improvement over MASS (the state-of-the-art
baseline) on all the unsupervised translation pairs. While MASS, XLM, etc. systems leverage large
scale monolingual pre-training, the decoder (generator, LM) can still be improved by our D2GPo
loss in the fine-tuning phase. This indicates the efficiency of the proposed method.

5.4 TEXT SUMMARIZATION

Text summarization is a typical language generation task which creates a short and fluent summary
of the given long text document. Song et al. (2019) fine-tuned the MASS pretrained model on
the text summarization task and achieved the state-of-the-art results. We chose this model as our
baseline, keeping the pre-training consistent with it, and using D2GPo loss for enhancements in the
fine-tuning phase. The Annotated Gigaword corpus is used as the benchmark, which is detailed
in Appendix A.4. During the evaluation, ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004) are
reported.
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Model ROUGE-1 ROUGE-2 ROUGE-L

Supervised RNN-based seq2seq 35.50 15.54 32.45
Nallapati et al. (2016) 34.97 17.17 32.70

Semi-supervised
MLM pre-training (Song et al., 2019) 37.75 18.45 34.85
DAE pre-training (Song et al., 2019) 35.97 17.17 33.14
MASS pre-training (Song et al., 2019) 38.73 19.71 35.96
MASS + D2GPo 39.23 20.11 36.48

Table 3: Performance on the text summarization task

Our results on text summarization is listed in Table 3. We compared our +D2GPo with our baseline
MASS which is the current state-of-the-art model; it consistently outperformed the baseline on all
evaluation metrics. The models with a semi-supervised setting yielded a large-margin improvement
compared to the model without any pre-training, which demonstrates that the supervised pre-training
is effective for the text summarization task.

5.5 STORYTELLING

Storytelling is at the frontier of current language generation technologies: stories must maintain a
consistent theme throughout the document and require very long-distance dependency modeling.
Additionally, stories require creativity and a high-level plot with planning ahead rather than word-
by-word generation (Wiseman et al., 2017).

We used the hierarchical story generation model (Fan et al., 2018) (which is introduced in Appendix
A.5) as our baseline to test the improvements of D2GPo over the storytelling task. In order to
guarantee the single variable principle, we only added the D2GPo loss to the story generation model.
The prompt generation model is consistent with Fan et al. (2018).

Model Params Valid Perplexity Test Perplexity

LSTM seq2seq 110.3 M 46.83 46.79
Conv seq2seq 113.0 M 45.27 45.54
Conv seq2seq + self-attention 134.7 M 37.37 37.94

Ensemble: Conv seq2seq + self-attention 270.3 M 36.63 36.93
Fusion: Conv seq2seq + self-attention 255.4 M 36.08 36.56

Conv seq2seq + self-attention + D2GPo 134.7 M 35.56 35.74
Fusion: Conv seq2seq + self-attention + D2GPo 255.4 M 33.82 33.90

Table 4: Perplexity on WRITINGPROMPTS.

For automatic evaluation, we measured the model perplexity on the valid and test set. Table 4
shows the effect of the D2GPo. Results show that adding our D2GPo, Conv seq2seq + self-attention
model substantially improved the likelihood of human-generated stories and even outperformed the
ensemble or fusion models without increasing the parameters. With the fusion mechanism added,
the perplexity was further reduced. These results suggest that the D2GPo can improve the quality of
language generation greatly, especially in settings where there are fewer restrictions on such story
generation tasks.

5.6 IMAGE CAPTION

Image caption is a task which combines image understanding and language generation. It continues
to inspire considerable research at the boundary of computer vision and natural language processing.
In order to verify the performance of D2GPo on the language generation model of diverse types of
input, we elected to experiment with image captioning.

In our experiments, we evaluated our model on an ablated baseline (Top-down, detailed in Appendix
A.6) (Anderson et al., 2018) against prior work on MSCOCO 2014 captions dataset (Lin et al., 2014),
which has became the standard benchmark for image caption. For validation of model hyperparame-
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ters and offline testing, we used the ‘Karpathy’ splits (Karpathy & Fei-Fei, 2015) that have been used
extensively for reporting results in prior work. SPICE (Anderson et al., 2016), CIDEr (Vedantam
et al., 2015), METEOR (Denkowski & Lavie, 2014), ROUGE-L, and BLEU were used to evaluate
the caption quality.

BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Att2in (Rennie et al., 2017) - 31.3 26.0 54.3 101.3 -
Att2all (Rennie et al., 2017) - 30.0 25.9 53.4 99.4 -

Baseline: Top-down 74.5 33.4 26.1 54.4 105.4 19.2
Baseline + D2GPo 75.2 33.6 26.3 55.1 106.6 19.7

Baseline + SCST 77.8 34.4 26.6 56.1 114.3 19.9
Baseline + SCST + D2GPo 78.0 34.7 26.8 56.3 116.8 20.2

Table 5: Image caption performance on the MSCOCO Karpathy test split.

In Table 5, we report the performance of our full model and the ResNet Top-down baseline in com-
parison to the existing strong Self-critical Sequence Training (SCST) (Rennie et al., 2017) approach
on the test portion of the Karpathy splits. For a fair comparison, results are only reported for models
trained with standard cross-entropy loss (MLE). All results are reported for a single model with no
fine-tuning of the input ResNet model. Relative to the SCST models, our ResNet baseline obtained
slightly better performance. After incorporating our proposed D2GPo loss, our model shows further
improvements across all metrics.

6 ABLATION

According to the analysis in Section 4, for the embedding, we used the Gaussian PDF as our eval-
uation function f(·); however, to evaluate the effectiveness of different evaluation functions, we
changed it and tested the performance changes on supervised NMT EN-DE task. We followed the
same experiment settings as described in Section 5.2 and compare the BLEU score changes on the
test set, as listed in Table 6.

Evaluation Function BLEU 4
Baseline 27.35

Gaussian 27.93 0.58 ↑
Random 26.34 1.01 ↓

Linear 27.45 0.10 ↑
Cosine 27.62 0.27 ↑

Table 6: Ablation study on our proposed D2GPo with different evaluation function on supervised
NMT WMT14 EN-DE task, Transformer base model.

We observe that the performance of Gaussian density, linear, and cosine functions increased, while
the random one decreased. This shows that the distance information obtained from embedding can
effectively guide the generation process. Among these functions, the Gaussian density function ob-
tained the greatest improvement, which agrees with our analysis of the embedding features obeying
the Gaussian distribution. For the linear and cosine functions, we postulate that because these two
functions are a rough approximation of the Gaussian density function, they, therefore, function as
well as Gaussian.

7 CONCLUSION

This work proposes data-dependent Gaussian prior objective (D2GPo) for language generation tasks
with the hope of alleviating the difficulty of the negative diversity ignorance. D2GPo imposes the
prior from (linguistic) data over the sequence prediction models. Through experiments on classic
language generation tasks, i.e., neural machine translation, text summarization, storytelling, and
image caption tasks, D2GPo achieved significant improvement over strong baselines.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propo-
sitional image caption evaluation. In European Conference on Computer Vision, pp. 382–398.
Springer, 2016.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6077–6086, 2018.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised neural machine
translation. arXiv preprint arXiv:1710.11041, 2017.

Shiqi Shen Ayana, Zhiyuan Liu, and Maosong Sun. Neural headline generation with minimum risk
training. arXiv preprint arXiv:1604.01904, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

Kedar Bellare, Gregory Druck, and Andrew McCallum. Alternating projections for learning with ex-
pectation constraints. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 43–50. AUAI Press, 2009.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, pp. 1171–1179, 2015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017. ISSN 2307-387X.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 933–941. JMLR. org, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for
any target language. In Proceedings of the ninth workshop on statistical machine translation, pp.
376–380, 2014.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar, et al. Posterior regularization for structured
latent variable models. Journal of Machine Learning Research, 11(Jul):2001–2049, 2010.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, pp. 1243–
1252, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

9



Under review as a conference paper at ICLR 2020

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2410–2420, 2016.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Controllable text
generation. arXiv preprint arXiv:1703.00955, 4, 2017.

Zhiting Hu, Zichao Yang, Ruslan R Salakhutdinov, LIANHUI Qin, Xiaodan Liang, Haoye Dong,
and Eric P Xing. Deep generative models with learnable knowledge constraints. In Advances in
Neural Information Processing Systems, pp. 10501–10512, 2018.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700–1709,
2013.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3128–3137, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.
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A APPENDIX

A.1 CONCEPTS UNDERLYING D2GPO
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Figure 1: Overview of the concepts underlying D2GPo with the example of sentence the little boy
sits on the armchair.

A.2 TOPOLOGICAL ORDER

Specifically, for target yi, we calculate the embedding cosine similarity as the distance dist(i, j) of
yi and all other token types in the vocabulary y′j , which are used to show the distance as follows:

disti,j = cosine similarity(emb(yi), emb(y
′
j)). (8)

Sorting by distance from small to large to obtain a topological order for each token types yields

ORDER(yi) = sort([disti,1, disti,2, ..., disti,N ]). (9)

A.3 SUPERVISED NMT DATA

For the EN–DE translation task, 4.43M bilingual sentence pairs from the WMT’14 dataset, which
includes the Common Crawl, News Commentary, and Europarl v7 datasets, were used as training
data. The newstest2013 and newstest2014 datasets were used as the dev set and test set, respectively.

For the EN–FR translation task, 36M bilingual sentence pairs from the WMT’14 dataset were used
as training data. The newstest2012 and newstest2013 datasets were combined for validation and
newstest2014 was used as the test set, following the configuration of Gehring et al. (2017).

For the EN–RO task, we tested two settings, one uses only the officially provided parallel corpus:
Europarl v7 and SETIMES2, which yields 600K sentence pairs for a low-resource supervised ma-
chine translation study. Alternatively, following the work of Sennrich et al. (2016a), we used the
synthetic training data (STD) provided by Sennrich et al. (2016a), which obtained 2.8M sentence
pairs for training. We used newsdev2016 as the dev set and newstest2016 as the test set. The re-
sults on EN-RO we reported is evaluated on the reference which removed the diacritics from the
Romanian.
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A.4 TEXT SUMMARIZATION DATA

The Annotated Gigaword corpus (Napoles et al., 2012) was used as the benchmark (Rush et al.,
2015). This data set is derived from news articles and consists of pairs of the main sentences in
the article (longer), and the headline (shorter). The article and the headline were used as the source
input sentence and reference, respectively. The data includes approximately 3.8M training samples,
400K validation samples, and 2K test samples.

A.5 HIERARCHICAL STORY GENERATION MODEL

Hierarchical story generation model (Fan et al., 2018) was proposed to tackle the challenges which
first generates a sentence called prompt describing the theme topic for the upcoming story genera-
tion, and then conditions on the prompt when generating the story. Specifically, Fan et al. (2018)
used a self-attention gated convolutional language model (GCNN) (Dauphin et al., 2017) as the
sequence-to-sequence prompt generation model with the top-k random sampling. For the prompt-
to-story generation, they collected a dataset from Reddit’s WRITINGPROMPTS forum in which each
prompt have multiple story responses. With the dataset, they trained a story generation model which
gain further improvements with a novel form of model fusion that improved the relevance of the
story to the prompt and adding a new gated multi-scale self-attention mechanism to model the long-
range context.

A.6 TOP-DOWN IMAGE CAPTION MODEL

Top-down image caption model uses a ResNet (He et al., 2016) CNN pretrained on ImageNet (Deng
et al., 2009) to encode each image. Similarly to previous work (Rennie et al., 2017), they encoded
the full-sized input image with the final convolutional layer of Resnet-101 and used bilinear inter-
polation to resize the output to a fixed size spatial representation of 10×10. This is equivalent to the
maximum number of spatial regions used in our full model.

A.7 EXAMPLES OF IMAGE CAPTION

Top-down: a woman holding an umbrella in her hand
+ D2GPo: a woman is holding an umbrella
+ SCST: a woman holding an umbrella in a street
+ SCST+ D2GPo: a woman is holding an umbrella in the street

Top-down: a large airplane sitting on top of an airport runway
+ D2GPo: an airplane is sitting on top of an airport runway
+ SCST: a large jetliner sitting on top of an airport runway
+ SCST+ D2GPo: a large jetliner is sitting on top of an airport runway

Top-down: a woman holding a surf board in the ocean
+ D2GPo: a woman is standing on the beach with a surfboard
+ SCST: a woman holding a surfboard on the beach
+ SCST+ D2GPo: a woman is standing on the beach with a surfboard

Top-down: a traffic light with a traffic light on it
+ D2GPo: a traffic light on the side of a traffic light
+ SCST: a yellow traffic light on the side of a street
+ SCST+ D2GPo: yellow traffic lights on the side of a street

Table 7: Captions generated for the left image by the various models described in the paper. The
models trained with SCST return a more accurate and more detailed summary of the image. The
models trained with D2GPo return a more grammatically complete sentence.
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A.8 EXAMPLES OF STORYTELLING

Example Prompt: The scientists have discovered something terrible .

Generation with Conv seq2seq + Self-Attention (PPL 37.37):
The discovery of the discovery was a long and boring process . It was a small , 〈unk〉 , and a simple and
elegant solution . The scientists , scientists in charge , and the scientific community , was able to decipher
the meaning of the universe .
The theory that the universe was not a very real one , was that the universe itself was not a planet , but a
very , very real planet .
The discovery of a particular object in the universe that the universe was not . We found something that
resembled something that could not be described , but something that could not be described .
We found a way to make the object a lot more specific . We found that it was a very , very large thing , a
small , very small and very large .
It was the first thing we noticed that we found that it was a massive , large , enormous , enormous , giant ,
giant .
We found a way to make the whole thing.
We found that the entire

Generation with Conv seq2seq + Self-Attention + D2GPo (PPL 35.74):
“ I don ’t understand . Why did you tell us about it ? ” The scientist ’s assistant , Dr. harry , looked up from
his tablet and back at the scientist .
“ It ’s ... you see. ” He looked back up at Dr. harry . ” What ’s it mean ? ”
“ It means that the experiment is on the cusp of time . It ’s not the same as it looks . There ’s no explanation
. It ’s just that ”
“ How is it possible that the experiment is going to fail ? ” The scientist looked ut the window and then back
at Dr. harry , who was still looking out the window , at the vast blackness of the room .
“ You think they ’ll do it ? ”
“ Well , no , we can ’t be sure , Dr. harry . They ’ll do it. ”
Dr. harry turned to the scientist in front of him . ” We can ’t risk losing our best friend in the world

Generation with Fusion of Conv seq2seq + Self-Attention (PPL 36.08):
We thought that we should be able to see our entire species . The scientists were n’t sure what we would
find . But they had to be prepared for it . They could n’t be ready .
The scientists had never seen anything like this , and yet they had n’t seen anything like this 〈unk〉 in months
. The scientists were just about to be in their own business , when they saw the results . They were n’t ready
for anything .
We thought that we should take a deep breath before we go . But it was n’t .
There was n’t any sign of any other intelligent life in the universe . It was nothing .
The scientists had no idea what was going on . They just watched , waiting for a signal .
They had no idea what it would mean .
But they could n’t see us .
The scientists just knew . They were all afraid of what they would see . They could n’t see the future .
They could n’t see the future .

Generation with Fusion of Conv seq2seq + Self-Attention + D2GPo (PPL 33.82):
“ I ’m afraid I wo n’t be able to find out why my experiment is working . ”
“Well , we ’ve been working on the project for about a month now . ”
“ It ’s been a month and a half since I last saw it . ”
“ We ’re all looking at the results . ”
“ You ’ve already been working on it for months now . You think we ’ve found that ? ”
“ I do n’t know, but we do have a lot of research to do . ”
“ But it ’s not like it was working , is it ? ”
“ We do n’t know . We ’re not looking for a breakthrough , it ’s just an experiment . ”
“ It ’s just an experiment ? People will die and the world may be destroyed . The disaster is about to happen,
we have to act.”
“ What do you mean , it ’ll not . It ’s just an experiment . ”
“ No , no , no , it is something terrible we cannot ignore .”

Table 8: Example stories generated by the baselines and our full models.
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