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ABSTRACT

The worst-case training principle that minimizes the maximal adversarial loss, also
known as adversarial training (AT), has shown to be a state-of-the-art approach for
enhancing adversarial robustness against norm-ball bounded input perturbations.
Nonetheless, min-max optimization beyond the purpose of AT has not been rig-
orously explored in the research of adversarial attack and defense. In particular,
given a set of risk sources (domains), minimizing the maximal loss induced from
the domain set can be reformulated as a general min-max problem that is different
from AT. Examples of this general formulation include attacking model ensembles,
devising universal perturbation under multiple inputs or data transformations, and
generalized AT over different types of attack models. We show that these problems
can be solved under a unified and theoretically principled min-max optimization
framework. We also show that the self-adjusted domain weights learnt from our
method provides a means to explain the difficulty level of attack and defense
over multiple domains. Extensive experiments show that our approach leads to
substantial performance improvement over the conventional averaging strategy1.

1 INTRODUCTION

Training a machine learning model that is capable of assuring its worst-case performance against
all possible adversaries given a specified threat model is a fundamental yet challenging problem,
especially for deep neural networks (DNNs) (Szegedy et al., 2013; Goodfellow et al., 2015; Carlini
& Wagner, 2017). A common practice to train an adversarially robust model is based on a specific
form of min-max training, known as adversarial training (AT) (Goodfellow et al., 2015; Madry et al.,
2017), where the minimization step learns model weights under the adversarial loss constructed at
the maximization step in an alternative training fashion. On datasets such as MNIST and CIFAR-10,
AT has achieved the state-of-the-art defense performance against `p-norm-ball input perturbations
(Athalye et al., 2018b).

Motivated by the success of AT, one follow-up question that naturally arises is: Beyond AT, can
other types of min-max formulation and optimization techniques advance the research in adversarial
robustness? In this paper, we give an affirmative answer corroborated by the substantial performance
gain and the ability of self-learned risk interpretation using our proposed min-max framework on
several tasks for adversarial attack and defense.

We demonstrate the utility of a general formulation for min-max optimization minimizing the
maximal loss induced from a set of risk sources (domains). Our considered min-max formulation
is fundamentally different from AT, as our maximization step in taken over the probability simplex
of the set of domains. Moreover, we show that many problem setups in adversarial attacks and
defenses can in fact be reformulated under this general min-max framework, including attacking
model ensembles (Tramèr et al., 2018; Liu et al., 2018), devising universal perturbation to input
samples (Moosavi-Dezfooli et al., 2017) or data transformations (Athalye & Sutskever, 2018; Brown
et al., 2017), and generalized AT over multiple types of threat models (Tramèr & Boneh, 2019; Araujo
et al., 2019). However, current methods for solving these tasks often rely on simple heuristics (e.g.,
uniform averaging), resulting in significant performance drops when comparing to our proposed
min-max optimization framework.

1For reproducibility, the code and trained models will be released accompanying this paper.
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Specifically, based on the general min-max framework, we show that these problems can be solved
under the same optimization procedure and prove the rate of its algorithmic convergence. As a
byproduct and an exclusive feature, by tracking the weighting factor associated with the probability
simplex during training, our method can provide tools for self-adjusted risk assessment and obtain
novel insights on the set of domains for the associated tasks.

Contributions (1) We indicate the utility of min-max optimization beyond AT by proposing a
general and theoretically grounded framework on adversarial attack and defense. (2) We demonstrate
the effectiveness of our min-max framework by evaluating the proposed APGD attack on MNIST
and CIFAR-10. In theory, we show that APGD has an O(1/T ) convergence rate, where T is number
of iterations. In practice, we show that APGD obtains 17.48%, 35.21% and 9.39% improvement
on average compared with PGD attack on CIFAR-10. (3) We propose a generalized AT scheme
under mixed types of adversarial attacks, and demonstrate that the diversified attack ensemble helps
adversarial robustness. Compared with vanilla AT, our new training scheme leads to better worst-case
robustness even if the defender lacks prior knowledge of the strengths of attacks. (4) We show how
the weighting factors of the probability simplex help to obtain novel insights for associated tasks and
interpreting the importance of candidates in domains.

Related Work Recent studies have identified that DNNs are highly vulnerable to adversarial
manipulations in various applications (Szegedy et al., 2013; Carlini et al., 2016; Jia & Liang, 2017;
Lin et al., 2017; Huang et al., 2017; Carlini & Wagner, 2018; Zhao et al., 2018; Eykholt et al.,
2018; Chen et al., 2018a;c; Lei et al., 2019), thus leading to an arms race between adversarial
attacks (Carlini & Wagner, 2017; Athalye et al., 2018b; Goodfellow et al., 2014; Papernot et al.,
2016a; Moosavi Dezfooli et al., 2016; Chen et al., 2018b; 2017) and defenses (Madry et al., 2017;
Papernot et al., 2016b; Meng & Chen, 2017; Xie et al., 2017; Xu et al., 2018). One intriguing property
of adversarial examples is the transferability across multiple domains (Liu et al., 2017; Tramèr et al.,
2017; Papernot et al., 2017; Su et al., 2018), which indicates a more challenging yet promising
research direction – devising universal adversarial perturbations over model ensembles (Tramèr
et al., 2018; Liu et al., 2018), input samples (Moosavi-Dezfooli et al., 2017; Metzen et al., 2017)
and data transformations (Athalye et al., 2018b; Athalye & Sutskever, 2018; Brown et al., 2017).
However, current approaches suffer from a significant performance loss for resting on the uniform
averaging strategy. We will compare these works with our min-max method in Sec. 4. As a natural
extension following min-max attack, we study the generalized AT under multiple perturbations
(Tramèr & Boneh, 2019; Araujo et al., 2019; Kang et al., 2019; Croce & Hein, 2019). Finally, our
min-max framework is adapted and inspired by previous literature on robust learning over multiple
domains (Qian et al., 2018; Rafique et al., 2018; Lu et al., 2018; 2019a).

2 MIN-MAX POWER IN ADVERSARIAL EXPLORATION AND ROBUSTNESS

We begin by introducing the principle of robust learning over multiple domains and its connection to a
specialized form of min-max optimization. We then show that the resulting min-max formulation fits
into various attack settings for adversarial exploration: a) ensemble adversarial attack, b) universal
adversarial perturbation and c) robust perturbation over data transformations. Finally, we propose a
generalized adversarial training (AT) framework under mixed types of adversarial attacks to improve
model robustness.

2.1 GENERAL IDEA: ROBUST LEARNING OVER MULTIPLE DOMAINS

Consider K loss functions {Fi(v)} (each of which is defined on a learning domain), the problem
of robust learning over K domains can be formulated as (Qian et al., 2018; Rafique et al., 2018; Lu
et al., 2018)

minimize
v∈V

maximize
w∈P

∑K
i=1 wiFi(v), (1)

where v and w are optimization variables, V is a constraint set, and P denotes the probability simplex
P = {w |1Tw = 1, wi ∈ [0, 1],∀i}. Since the inner maximization problem in (1) is a linear function
of w over the probabilistic simplex, problem (1) is thus equivalent to

minimize
v∈V

maximize
i∈[K]

Fi(v), (2)
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where [K] denotes the integer set {1, 2, . . . ,K}.

Benefit and computation challenge of (1) Compared to multi-task learning in a finite-sum formu-
lation which minimizes K losses on average, problem (1) provides consistently robust worst-case
performance across all domains. This can be explained from the epigraph form of (2),

minimize
v∈V,t

t, subject to Fi(v) ≤ t, i ∈ [K], (3)

where t is an epigraph variable (Boyd & Vandenberghe, 2004) that provides the t-level robustness at
each domain.

Although the min-max problem (1) offers a great robustness interpretation as in (3), solving it
becomes more challenging than solving the finite-sum problem. It is clear from (2) that the inner
maximization problem of (1) always returns the one-hot value of w, namely, w = ei, where ei is the
ith standard basis vector, and i = arg maxi{Fi(v)}. The one-hot coding reduces the generalizability
to other domains and induces instability of the learning procedure in practice. Such an issue is often
mitigated by introducing a strongly concave regularizer in the inner maximization step (Lu et al.,
2018; Qian et al., 2018).

Regularized problem formulation Spurred by (Qian et al., 2018), we penalize the distance be-
tween the worst-case loss and the average loss over K domains. This yields

minimize
v∈V

maximize
w∈P

∑K
i=1 wiFi(v)− γ

2 ‖w − 1/K‖22, (4)

where γ > 0 is a regularization parameter. As γ → 0, problem (4) is equivalent to (1). By contrast,
it becomes the finite-sum problem when γ → ∞ since w → 1/K. In this sense, the trainable w
provides an essential indicator on the importance level of each domain. The larger the weight is,
the more important the domain is. We call w domain weights in this paper. We next show how the
principle of robust learning over multiple domains can fit into various settings of adversarial attack
and defense problems.

2.2 ROBUST ADVERSARIAL ATTACKS

The general goal of adversarial attack is to craft an adversarial example x′ = x0 + δ ∈ Rd to mislead
the prediction of machine learning (ML) or deep learning (DL) systems, where x0 denotes the natural
example with the true label t0, and δ is known as adversarial perturbation, commonly subject to
`p-norm (p ∈ {0, 1, 2,∞}) constraint X := {δ | ‖δ‖p ≤ ε, x0 + δ ∈ [0, 1]d} for a given small
number ε. Here the `p norm enforces the similarity between x′ and x0, and the input space of ML/DL
systems is normalized to [0, 1]d.

Ensemble attack over multiple models Consider K ML/DL models {Mi}Ki=1, the goal is to find
robust adversarial examples that can fool all K models simultaneously. In this case, the notion of
‘domain’ in (4) is specified as ‘model’, and the objective function Fi in (4) signifies the attack loss
f(δ;x0, y0,Mi) given the natural input (x0, y0) and the modelMi. Thus, problem (4) becomes

minimize
δ∈X

maximize
w∈P

∑K
i=1 wif(δ;x0, y0,Mi)− γ

2 ‖w − 1/K‖22, (5)

where w encodes the difficulty level of attacking each model.

Universal perturbation over multiple examples Consider K natural examples {(xi, yi)}Ki=1 and
a single modelM, our goal is to find the universal perturbation δ so that all the corruptedK examples
can foolM. In this case, the notion of ‘domain’ in (4) is specified as ‘example’, and problem (4)
becomes

minimize
δ∈X

maximize
w∈P

∑K
i=1 wif(δ;xi, yi,M)− γ

2 ‖w − 1/K‖22, (6)

where different from (5), w encodes the difficulty level of attacking each example.
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Adversarial attack over data transformations Consider K categories of data transformation
{pi}, e.g., rotation, lightening, and translation (Athalye et al., 2018a), our goal is to find the adversarial
attack that is robust to data transformations. In this case, the notion of ‘domain’ in (4) is specified as
‘data transformer’, and problem (4) becomes

minimize
δ∈X

maximize
w∈P

∑K
i=1 wiEt∼pi [f(t(x0 + δ); y0,M)]− γ

2 ‖w − 1/K‖22, (7)

where Et∼pi [f(t(x0+δ); y0,M)] denotes the attack loss under the distribution of data transformation
pi, and w encodes the difficulty level of attacking each type of transformed example x0.

2.3 ADVERSARIAL TRAINING (AT) UNDER MIXED TYPES OF ADVERSARIAL ATTACKS

Conventional AT is restricted to a single type of norm-ball constrained adversarial attack (Madry
et al., 2017). For example, AT under `∞ attack yields

minimize
θ

E(x,y)∈D maximize
‖δ‖∞≤ε

ftr(θ, δ;x, y), (8)

where θ ∈ Rn denotes model parameters, δ denotes ε-tolerant `∞ attack, and ftr(θ, δ;x, y) is the
training loss under perturbed examples {(x + δ, y)}. However, there possibly exist blind attacking
spots across multiple types of adversarial attacks so that AT under one attack would not be strong
enough against another attack (Araujo et al., 2019). Thus, an interesting question is how to generalize
AT under multiple types of adversarial attacks. One possible way is to use the finite-sum formulation

minimize
θ

E(x,y)∈D maximize
{δi∈Xi}

1

K

K∑
i=1

ftr(θ, δi;x, y), (9)

where δi ∈ Xi is the ith type of adversarial perturbation defined on Xi, e.g., different `p attacks.

Moreover, one can map ‘attack type’ to ‘domain’ considered in (1). We then perform AT against the
strongest adversarial attack across K attack types in order to avoid blind attacking spots. That is,
upon defining Fi(θ) := maximizeδi∈Xi ftr(θ, δi;x, y), we solve the problem of the form (2),

minimize
θ

E(x,y)∈D maximize
i∈[K]

Fi(θ). (10)

In fact, problem (10) is in the min-max-max form, however, Lemma 1 shows that problem (10) can
be further simplified to the min-max form.
Lemma 1. Problem (10) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

K∑
i=1

wiftr(θ, δi;x, y), (11)

where w ∈ RK represent domain weights, and P has been defined in (1).

Proof: see Appendix A.

Similar to (4), a strongly concave regularizer −γ/2‖w − 1/K‖22 can be added into the inner
maximization problem of (11), which can boost the stability of the learning procedure and strike a
balance between the max and the average attack performance. However, solving problem (11) and its
regularized version is more complicated than (8) since the inner maximization involves both domain
weights w and adversarial perturbations {δi}.
We finally remark that there was an independent work (Tramèr & Boneh, 2019) which also proposed
the formulation (10) for AT under multiple perturbations. However, what we propose here is the
regularized formulation of (11). As will be evident later, the domain weights w in our formulation
have strong interpretability, which learns the importance level of different attacks. Most significantly,
our work has different motivation from (Tramèr & Boneh, 2019), and our idea applies to not only AT
but also attack generation in Sec. 2.2.

3 PROPOSED ALGORITHM AND THEORY

In this section, we delve into technical details on how to efficiently solve problems of robust
adversarial attacks given by the generic form (4) and problem (11) for generalized AT under mixed
types of adversarial attacks.

4



Under review as a conference paper at ICLR 2020

3.1 ALTERNATING ONE-STEP PGD FOR ROBUST ADVERSARIAL ATTACK GENERATION

Algorithm 1 APGD to solve problem (4)

1: Input: given w(0) and δ(0).
2: for t = 1, 2, . . . , T do
3: outer min.: fixing w = w(t−1), call PGD

(13) to update δ(t)

4: inner max.: fixing δ = δ(t), update w(t)

via (14)
5: end for

We propose the alternating one-step projected
gradient descent (APGD) method (Algorithm 1)
to solve problem (4). For clarity, we repeat prob-
lem (4) under the adversarial perturbation δ and
its constraint set X defined in Sec. 2.2,

minimize
δ∈X

maximize
w∈P

∑K
i=1 wiFi(δ). (12)

We show that at each iteration, APGD takes
only one-step PGD for outer minimization and
one-step projected gradient ascent for inner max-
imization (namely, PGD for its negative objective function). We also show that each alternating step
has a closed-form expression, and the main computational complexity stems from computing the
gradient of the attack loss w.r.t. the input. Therefore, APGD is computationally efficient like PGD,
which is commonly used for design of conventional single `p-norm based adversarial attacks (Madry
et al., 2017).

Outer minimization Considering w = w(t−1) and F (δ) :=
∑K
i=1 w

(t−1)
i Fi(δ) in (4), we per-

form one-step PGD to update δ at iteration t,

δ(t) = projX
(
δ(t−1) − α∇δF (δ(t−1))

)
, (13)

where proj(·) denotes the Euclidean projection operator, i.e., projX (a) = arg minx∈X ‖x− a‖22 at
the point a, α > 0 is a given learning rate, and∇δ denotes the first order gradient w.r.t. δ.

In (13), the projection operation becomes the key to obtain the closed-form of the updating rule (13).
Recall from Sec. 2.2 that X = {δ|‖δ‖p ≤ ε, č ≤ δ ≤ ĉ}, where p ∈ {0, 1, 2,∞}, and č = −x0

and ĉ = 1 − x0 (implying č ≤ 0 ≤ ĉ). If p = ∞, then the projection function becomes the clip
function. However, when p ∈ {0, 1, 2}, the closed-form of projection operation becomes non-trivial.
In Proposition 1, we derive the solution of projX (a) under different `p norms.

Proposition 1. Given a point a ∈ Rd and a constraint set X = {δ|‖δ‖p ≤ ε, č ≤ δ ≤ ĉ}, the
Euclidean projection δ∗ = projX (a) has a closed-form solution when p ∈ {0, 1, 2}.

Proof: See Appendix B. �

Inner maximization By fixing δ = δ(t) and letting ψ(w) :=
∑K
i=1 wiFi(δ

(t))− γ
2 ‖w − 1/K‖22

in problem (4), we then perform one-step PGD (w.r.t. −ψ) to update w,

w(t) = projP

(
w(t−1) + β∇wψ(w(t−1))︸ ︷︷ ︸

b

)
= (b− µ1)+ , (14)

where β > 0 is a given learning rate, ∇wψ(w) = φ(t) − γ(w − 1/K), and φ(t) :=
[F1(δ(t)), . . . , FK(δ(t))]T . In (14), the second equality holds due to the closed-form of projection op-
eration onto the probabilistic simplex P (Parikh et al., 2014), where (·)+ denotes the elementwise non-
negative operator, i.e., (x)+ = max{0, x}, and µ is the root of the equation 1T (b−µ1)+ = 1. Since
1T (b −mini{bi}1 + 1/K)+ ≥ 1T1/K = 1, and 1T (b −maxi{bi}1 + 1/K)+ ≤ 1T1/K = 1,
the root µ exists within the interval [mini{bi} − 1/K,maxi{bi} − 1/K] and can be found via the
bisection method (Boyd & Vandenberghe, 2004).

Convergence analysis We remark that APGD follows the gradient primal-dual optimization frame-
work (Lu et al., 2019a), and thus enjoys the same optimization guarantees. In Theorem 1, we
demonstrate the convergence rate of Algorithm 1 for solving problem (4).
Theorem 1. (inherited from primal-dual min-max optimization) Suppose that in problem (4) Fi(δ)
has L-Lipschitz continuous gradients, and X is a convex compact set. Given learning rates α ≤ 1

L

and β < 1
γ , then the sequence {δ(t),w(t)}Tt=1 generated by Algorithm 1 converges to a first-order

stationary point2 of problem (4) under the convergence rate O( 1
T ).

2The stationarity is measured by the `2 norm of gradient of the objective in (4) w.r.t. (δ,w).
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Proof: Note that the objective function of problem (4) is strongly concave w.r.t. w with parameter γ,
and has γ-Lipschitz continuous gradients. Moreover, we have ‖w‖2 ≤ 1 due to w ∈ P . Using these
facts and (Lu et al., 2019a, Theorem 1) or (Lu et al., 2019b, Theorem 1) completes the proof. �

3.2 ALTERNATING MULTI-STEP PGD FOR GENERALIZED AT

We next propose the alternating multi-step projected gradient descent (AMPGD) method to solve the
regularized version of problem (11), which is repeated as follows

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

ψ(θ,w, {δi}) :=
K∑
i=1

wiftr(θ, δi;x, y)−
γ

2
‖w − 1/K‖22. (15)

Algorithm 2 AMPGD to solve problem (15)

1: Input: given θ(0), w(0), δ(0) and K > 0.
2: for t = 1, 2, . . . , T do
3: given w(t−1) and δ(t−1), perform SGD to

update θ(t) (Madry et al., 2017)
4: given θ(t), perform R-step PGD to update

w(t) and δ(t)

5: end for

Problem (15) is in a more general non-convex
non-concave min-max setting, where the inner
maximization involves both domain weights w
and adversarial perturbations {δi}. It was shown
in (Nouiehed et al., 2019) that the multi-step
PGD is required for inner maximization in or-
der to approximate the near-optimal solution.
This is also in the similar spirit of AT (Madry
et al., 2017), which executed multi-step PGD
attack during inner maximization. We summa-
rize AMPGD in Algorithm 2. At step 4 of Algorithm 2, each PGD step to update w and δ can be
decomposed as

w
(t)
r = projP

(
w

(t)
r−1 + β∇wψ(θ(t),w

(t)
r−1, {δ

(t)
i,r−1})

)
,∀r ∈ [R],

δ
(t)
i,r = projXi

(
δ

(t)
i,r−1 + β∇δψ(θ(t),w

(t)
r−1, {δ

(t)
i,r−1})

)
,∀r ∈ [R],∀i ∈ [K]

where let w(t)
1 := w(t−1) and δ

(t)
i,1 := δ

(t−1)
i . Here the subscript t represents the iteration index of

AMPGD, and the subscript r denotes the iteration index of R-step PGD. Clearly, the above projection
operations can be derived for closed-form expressions through (14) and Lemma 1. To the best of our
knowledge, it is still an open question to build theoretical convergence guarantees for solving the
general non-convex non-concave min-max problem like (15), except the work (Nouiehed et al., 2019)
which proposed O(1/T ) convergence rate if the objective function satisfies Polyak- Łojasiewicz
conditions (Karimi et al., 2016).

Improved robustness via diversified `p attacks. It was recently shown in (Kariyappa & Qureshi,
2019; Pang et al., 2019) that the diversity of individual neural networks improves adversarial robust-
ness of an ensemble model. Spurred by that, one may wonder if the promotion of diversity among `p
attacks is beneficial to adversarial robustness? We measure the diversity between adversarial attacks
through the similarity between perturbation directions, namely, input gradients {∇δi

ftr(θ, δi;x, y)}i
in (15). We find that there exists a strong correlation between input gradients for different `p attacks.
Thus, we propose to enhance their diversity through the orthogonality-promoting regularizer used for
encouraging diversified prediction of ensemble models in (Pang et al., 2019),

h(θ, {δi};x, y) := log det(GTG), (16)

where G ∈ Rd×K is a d × K matrix, each column of which corresponds to a normalized input
gradient ∇δi

ftr(θ, δi;x, y) for i ∈ [K], and h(θ, {δi};x, y) reaches the maximum value 0 as input
gradients become orthogonal. With the aid of (16), we modify problem (15) to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

ψ(θ,w, {δi}) + λh(θ, {δi};x, y). (17)

The rationale behind (17) is that the adversary aims to enhance the effectiveness of attacks from
diversified perturbation directions (inner maximization), while the defender robustifies the model θ,
which makes diversified attacks less effective (outer minimization).

4 EXPERIMENTS

In this section, we first evaluate the proposed min-max optimization strategy on three attack tasks.
We show that our approach leads to substantial improvement compared with state-of-the-art attack
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Table 1: Comparison of average and min-max (APGD) ensemble attack over four models on MNIST. Acc (%)
represents the test accuracy of classifiers on adversarial examples. Here we set the iterations of APGD as 50 for
attack generation. The learning rates α, β and regularization factor γ are set as - `0 : α = 1, β = 1

100
, γ = 7,

`1 : α = 1
4
, β = 1

100
, γ = 5, `2 : α = 1

10
, β = 1

100
, γ = 3; `∞ : α = 1

4
, β = 1

50
, γ = 3.

Box constraint Opt. AccA AccB AccC AccD ASRall Lift (↑)

`0 (ε = 30) avg. 7.03 1.51 11.27 2.48 84.03 -
min max 3.65 2.36 4.99 3.11 91.97 9.45%

`1 (ε = 20) avg. 20.79 0.15 21.48 6.70 69.31 -
min max 6.12 2.53 8.43 5.11 89.16 28.64%

`2 (ε = 3.0) avg. 6.88 0.03 26.28 14.50 69.12 -
min max 1.51 0.89 3.50 2.06 95.31 37.89%

`∞ (ε = 0.2) avg. 1.05 0.07 41.10 35.03 48.17 -
min max 2.47 0.37 7.39 5.81 90.16 87.17%

methods such as ensemble PGD (Liu et al., 2018) and expectation over transformation (EOT) (Athalye
et al., 2018b; Brown et al., 2017; Athalye et al., 2018a). We next demonstrate the effectiveness of
the generalized AT for multiple types of adversarial perturbations. We show that the use of trainable
domain weights in problem (15) can automatically adjust the risk level of different attacks during the
training process even if the defender lacks prior knowledge on the strength of these attacks. We also
show that the promotion of diversity of `p attacks help improve adversarial robustness further.

We thoroughly evaluate our APGD/AMPGD algorithm on MNIST and CIFAR-10. A set of di-
verse image classifiers (denoted from Model A to Model H) are trained, including multi-layer
perceptrons (MLP), All-CNNs (Springenberg et al., 2015), LeNet (Lecun et al., 1998), LeNetV2,
VGG16 (Simonyan & Zisserman, 2015), ResNet50 (He et al., 2016), Wide-ResNet (Madry et al.,
2017; Zagoruyko & Komodakis, 2016) and GoogLeNet (Szegedy et al., 2015). More details about
model architectures and training process are provided in Appendix C.1.

4.1 ROBUST ADVERSARIAL ATTACKS

Most current works play a min-max game from a defender’s perspective, i.e., adversarial training.
However, we show the great strength of min-max optimization also lies at the side of attack generation.
Note that problem formulations (5)-(7) are applicable to both untargeted and targeted attack. Here
we focus on the former setting and use C&W loss function (Carlini & Wagner, 2017; Madry et al.,
2017). The details of crafting adversarial examples are available in Appendix C.2.

Ensemble attack over multiple models We craft adversarial examples against an ensemble of
known classifiers. The work (Liu et al., 2018, 5th place at CAAD-18) proposed an ensemble PGD
attack, which assumed equal importance among different models, namely, wi = 1/K in problem
(1). Throughout this task, we measure the attack performance via ASRall - the attack success
rate (ASR) of fooling model ensembles simultaneously. Compared to the ensemble PGD attack
(Liu et al., 2018), our approach results in 40.79% and 17.48% ASRall improvement averaged
over different `p-norm constraints on MNIST and CIFAR-10, respectively. In what follows, we
provide more detailed experiment results and analysis.

In Table 1, we show that our min-max APGD significantly outperforms ensemble PGD in ASRall.
Taking `∞-attack as an example, our min-max attack leads to a 90.16% ASRall, which largely
outperforms 48.17% (ensemble PGD). The reason is that Model C, D are more difficult to attack,
which can be observed from their higher test accuracy on adversarial examples. As a result, although
the adversarial examples crafted by assigning equal weights over multiple models are able to attack {A,
B} well, they achieve a much lower ASR (i.e., 1 - Acc) in {C, D}. By contrast, APGD automatically
handles the worst case {C, D} by slightly sacrificing the performance on {A, B}: 31.47% averaged
ASR improvement on {C, D} versus 0.86% degradation on {A, B}. More results on CIFAR-10 and
advanced DNNs (e.g., GoogLeNet) are provided in Appendix D.1.

Figure 1 depicts the ASR of four models under average/min-max attacks as well as the distribution
of domain weights during attack generation. For ensemble PGD (Figure 1a), Model C and D are
attacked insufficiently, leading to relatively low ASR and thus weak ensemble performance. By
contrast, APGD (Figure 1b) will encode the difficulty level to attack different models based on the
current attack loss. It dynamically adjusts the weight wi as shown in Figure 1c. For instance, the
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Figure 1: Ensemble attack against four DNN models on MNIST. (a) & (b): Attack success rate of adversarial
examples generated by average (ensemble PGD) or min-max (APGD) attack method. (c): Boxplot of weight w
in APGD adversarial loss for four models. Here we adopt the same `∞-attack as Table 1.
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Figure 2: ASR of average and min-max `∞ ensemble attack versus maximum perturbation magnitude ε.

weight for Model D is first raised to 0.45 because D is difficult to attack initially. Then it decreases to
0.3 once Model D encounters the sufficient attack power and the corresponding attack performance is
no longer improved. It is worth noticing that APGD is highly efficient because wi converges after a
small number of iterations. To perform a boarder evaluation, we repeat the above experiments (`∞
norm) under different ε in Figure 2. The ASR of min-max strategy is consistently better or on part
with the average strategy. Moreover, APGD achieves more significant improvement when moderate ε
is chosen: MNIST (ε ∈ [0.15, 0.25]) and CIFAR-10 (ε ∈ [0.03, 0.05]).

Lastly, we highlight that tracking domain weights w provides us novel insights for model robustness
and understanding attack procedure. From our theory, a model with higher robustness always
corresponds to a larger w because its loss is hard to attack and becomes the “worst” term. This
hypothesis can be verified empirically. According to Figure 1c, we have wc > wd > wa > wb –
indicating a decrease in model robustness for C, D, A and B, which is exactly verified by AccC >
AccD > AccA > AccB in Table 1 (`∞-norm).

Universal perturbation over multiple examples We evaluate APGD in universal perturbation
on MNIST and CIFAR-10, where 10,000 test images are randomly divided into equal-size groups
(containing K images per group) for universal perturbation. We measure two types of ASR (%),
ASRavg and ASRgp. Here the former represents the ASR averaged over all images in all groups,
and the latter signifies the ASR averaged over all groups but a successful attack is counted under a
more restricted condition: images within each group must be successfully attacked simultaneously by
universal perturbation. When K = 5, our approach achieves 42.63% and 35.21% improvement
over the averaging strategy under MNIST and CIFAR-10, respectively.

In Table 2, we compare the proposed min-max strategy (APGD) with the averaging strategy on the
attack performance of generated universal perturbations. As we can see, our method always achieves
higher ASRgp for different values of K. The universal perturbation generated from APGD can
successfully attack ‘hard’ images (on which the average-based PGD attack fails) by self-adjusting
domain weights, and thus leads to a higher ASRgp. Besides, the min-max universal perturbation also
offers interpretability of “image robustness” by associating domain weights with image visualization;
see Figure A8 and A9 (Appendix D.3) for an example in which the large domain weight corresponds
to the MNIST letter with clear appearance (e.g., bold letter).

Robust adversarial attack over data transformations EOT (Athalye et al., 2018a) achieves state-
of-the-art performance in producing adversarial examples robust to data transformations. From (7),
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Table 2: Comparison of average and minmax optimization on universal perturbation over multiple input
examples. The adversarial examples are generated by 20-step `∞-APGD with α = 1

6
, β = 1

50
and γ = 4.

Setting K = 2 K = 4 K = 5 K = 10

Dataset Model Opt. ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑) ASRavg ASRgp Lift (↑)

MNIST

MLP avg. 97.19 94.48 - 85.13 56.64 - 79.11 38.05 - 60.53 3.50 -
min max 98.15 96.96 2.62% 83.76 72.32 27.68% 72.28 53.70 41.13% 30.10 6.70 91.43%

All-CNNs avg. 97.76 95.52 - 85.19 51.92 - 80.02 31.25 - 65.79 2.10 -
min max 99.69 99.38 4.04% 90.11 75.64 45.69% 80.21 53.50 71.20% 43.54 4.30 104.8%

LeNet avg. 94.78 89.96 - 62.12 28.72 - 51.84 19.15 - 30.29 4.30 -
min max 96.60 94.58 5.14% 55.50 36.72 27.86% 42.79 25.80 34.73% 22.48 7.20 67.44%

LeNetV2 avg. 94.72 90.04 - 61.59 26.60 - 50.42 17.05 - 26.49 4.80 -
min max 97.33 95.68 6.26% 55.38 35.52 33.53% 40.22 21.05 23.46% 19.73 7.10 47.92%

CIFAR-10

All-CNNs avg. 91.09 83.08 - 85.66 54.72 - 82.76 40.20 - 71.22 4.50 -
min max 92.22 85.98 3.49% 87.63 65.80 20.25% 85.02 55.74 38.66% 65.64 11.80 162.2%

LeNetV2 avg. 93.26 86.90 - 90.04 66.12 - 88.28 55.00 - 72.02 8.90 -
min max 93.34 87.08 0.21% 91.91 71.64 8.35% 91.21 63.55 15.55% 82.85 25.10 182.0%

VGG16 avg. 90.76 82.56 - 89.36 63.92 - 88.74 55.20 - 85.86 22.40 -
min max 92.40 85.92 4.07% 90.04 70.40 10.14% 88.97 63.30 14.67% 79.07 30.80 37.50%

GoogLeNet avg. 85.02 72.48 - 75.20 32.68 - 71.82 19.60 - 59.01 0.40 -
min max 87.08 77.82 7.37% 77.05 46.20 41.37% 71.20 33.70 71.94% 45.46 2.40 600.0%

Table 3: Comparison of average and min-max optimization on robust attack over multiple data transformations
on CIFAR-10. Acc (%) represents the test accuracy of classifiers on adversarial examples (20-step `∞-APGD
(ε = 0.03) with α = 1

2
, β = 1

100
and γ = 10) under different transformations.

Model Opt. Accori Accflh Accflv Accbri Accgam Acccrop ASRavg ASRgp Lift (↑)

A avg. 10.80 21.93 14.75 11.52 10.66 20.03 85.05 55.88 -
min max 12.14 18.05 13.61 13.52 11.99 16.78 85.65 60.03 7.43%

B avg. 5.49 11.56 9.51 5.43 5.75 15.89 91.06 72.21 -
min max 6.22 8.61 9.74 6.35 6.42 11.99 91.78 77.43 7.23%

C avg. 7.66 21.88 15.50 8.15 7.87 15.36 87.26 56.51 -
min max 8.51 14.75 13.88 9.16 8.58 13.35 88.63 63.58 12.51%

D avg. 8.00 20.47 13.46 7.73 8.52 15.90 87.65 61.13 -
min max 9.19 13.18 12.72 8.79 9.18 13.11 88.97 67.49 10.40%

we could derive EOT as a special case when the weights satisfy wi = 1/K (average case). For each
input sample (ori), we transform the image under a series of functions, e.g., flipping horizontally
(flh) or vertically (flv), adjusting brightness (bri), performing gamma correction (gam) and cropping
(crop), and group each image with its transformed variants. Similar to universal perturbation, ASRavg
and ASRgp are reported to measure the ASR over all transformed images and groups of transformed
images (each group is successfully attacked signifies successfully attacking an example under all
transformers). In Table 3, compared to EOT, our approach leads to 9.39% averaged lift in
ASRgp over given models on CIFAR-10 by optimizing the weights for various transformations.
Due to limited space, we leave the details of transformers in Append C.3 and the results under
randomness (e.g., flipping images randomly w.p. 0.8; randomly clipping the images at specific range)
in Appendix D.1.

4.2 ADVERSARIAL TRAINING FOR MULTIPLE ADVERSARIAL PERTURBATIONS

Compared to vanilla AT, we show the generalized AT scheme produces models robust to multiple types
of perturbation, thus leads to stronger “overall robustness”. We measure the training performance
using two types of Acc (%): Accmax

adv and Accavg
adv , where Accmax

adv denotes the test accuracy over
examples with the strongest perturbation (`∞ or `2), and Accavg

adv denotes the averaged test accuracy
over examples with all types of perturbations (`∞ and `2). Moreover, we measure the overall
worst-case robustness Sε in terms of the area under the curve ‘Accmax

adv vs. ε’ (see Figure 3b).

In Table 4, we present the test accuracy of MLP in different training schemes: a) natural training,
b) single-norm: vanilla AT (`∞ or `2), c) multi-norm: generalized AT (avg and min max), and d)
generalized AT with diversity-promoting attack regularization (DPAR, λ = 0.1 in problem (16)). If
the adversary only performs single-type attack, training and testing on the same attack type leads to the
best performance (diagonal of `∞-`2 block). However, when facing `∞ and `2 attacks simultaneously,
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Table 4: Adversarial training of MNIST models on single attacks (`∞ and `2) and multiple attacks (avg. and
minmax). The perturbation magnitude ε for `∞ and `2 attacks are 0.2 and 2.0, respectively. Top 2 test accuracy
on each metric are highlighted. Complete table for varied ε is given in Table A7 (Appendix D.2).

(a) MLP

Opt. Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

natural 98.30 2.70 13.86 0.85 8.28

`∞ 98.08 77.70 69.17 66.34 73.43
`2 98.72 70.03 81.74 69.14 75.88

avg. 98.62 75.09 79.00 72.23 77.05
+ DPAR 98.50 76.75 79.67 74.14 78.21

min max 98.59 75.96 79.15 73.43 77.55
+ DPAR 98.58 76.92 79.74 74.29 78.35

(b) LeNet

Opt. Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

natural 99.25 17.93 39.32 17.57 28.63

`∞ 99.18 93.80 78.97 78.80 86.39
`2 99.22 85.84 87.31 84.06 86.58

avg. 99.22 88.96 85.59 84.29 87.28
+ DPAR 99.25 89.96 86.49 85.44 88.23

min max 99.32 89.21 85.98 84.82 87.60
+ DPAR 99.22 90.19 86.47 85.47 88.33
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Figure 3: (a): Violin plot of weight w in APGD versus perturbation magnitude ε of `2-attack in AT; (b) & (c):
Robustness of MLP under different AT schemes. Supplementary result for LeNet is provided in Figure A1
(Appendix D.2).

multi-norm generalized AT achieves better Accmax
adv and Accavg

adv than single-norm AT. In particular,
the min-max strategy slightly outperforms the averaging strategy under multiple perturbation norms.
DPAR further boosts the adversarial test accuracy, which implies that the promotion of diversified `p
attacks is a beneficial supplement to adversarial training.

In Figure 3, we offer deeper insights on the performance of generalized AT. During the training
procedure we fix ε`∞ (ε for `∞ attack during training) as 0.2, and change ε`2 from 0.2 to 5.6 (ε`∞×

√
d)

so that the `∞ and `2 balls are not completely overlapped (Araujo et al., 2019). In Figure 3a, as ε`2
increases, `2-attack becomes stronger so the corresponding w also increases, which is consistent with
min-max spirit – defending the strongest attack. We remark that min max or avg training does not
always lead to the best performance on Accmax

adv and Accavg
adv, especially when the strengths of two

attacks diverge greatly (see Table A7). This can be explained by the large overlapping between `∞
and `2 balls (see Figure A2). However, Figure 3b and 3c show that AMPGD is able to achieve a rather
robust model no matter how ε changes (red lines), which empirically verifies the effectiveness of
our proposed training scheme. In terms of the area-under-the-curve measure Sε, AMPGD achieves
the highest worst-case robustness: 6.27% and 17.64% improvement compared to the vanilla
AT with `∞ and `2 attacks. Furthermore, we show in Figure A3a that our min-max scheme leads to
faster convergence than the averaging scheme due to the benefit of self-adjusted domain weights.

5 CONCLUSION

In this paper, we propose a general min-max framework applicable to both adversarial attack and
defense settings. We show that many problem setups can be re-formulated under this general
framework. Extensive experiments show that proposed algorithms lead to significant improvement on
multiple attack and defense tasks compared with previous state-of-the-art approaches. In particular,
we obtain 17.48%, 35.21% and 9.39% improvement on attacking model ensembles, devising universal
perturbation to input samples, and data transformations under CIFAR-10, respectively. Our min-
max scheme also generalizes adversarial training (AT) for multiple types of adversarial attacks,
attaining faster convergence and better robustness compared to the vanilla AT and the average strategy.
Moreover, our approach provides a holistic tool for self-risk assessment by learning domain weights.
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APPENDIX

A PROOF OF LEMMA 1

Lemma 1. Problem (10) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

K∑
i=1

wiftr(θ, δi;x, y),

where w ∈ RK represent domain weights, and P has been defined in (1).

Proof of Lemma 1:

Similar to (1), problem (10) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P

K∑
i=1

wiFi(θ). (18)

Recall that Fi(θ) := maximizeδi∈Xi
ftr(θ, δi;x, y), problem can then be written as

minimize
θ

E(x,y)∈D maximize
w∈P

K∑
i=1

[wi maximize
δi∈Xi

ftr(θ, δi;x, y)]. (19)

According to proof by contradiction, it is clear that problem (19) is equivalent to

minimize
θ

E(x,y)∈D maximize
w∈P,{δi∈Xi}

K∑
i=1

wiftr(θ, δi;x, y). (20)

�

B PROOF OF PROPOSITION 1

Proposition 1. Given a point a ∈ Rd and a constraint set X = {δ|‖δ‖p ≤ ε, č ≤ δ ≤ ĉ}, the
Euclidean projection δ∗ = projX (a) has the closed-form solution when p ∈ {0, 1, 2}.
1) If p = 1, then δ∗ is given by

δ∗i =

{
P[či,ĉi](ai)

∑d
i=1 |P[či,ĉi](ai)| ≤ ε

P[či,ĉi](sign(ai) max {|ai| − λ1, 0}) otherwise,
(21)

where xi denotes the ith element of a vector x; P[či,ĉi](·) denotes the clip function over the in-
terval [či, ĉi]; sign(x) = 1 if x ≥ 0, otherwise 0; λ1 ∈ (0,maxi |ai| − ε/d] is the root of∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| = ε.

2) If p = 2, then δ∗ is given by

δ∗i =

{
P[či,ĉi](ai)

∑d
i=1(P[či,ĉi](ai))

2 ≤ ε2
P[či,ĉi] (ai/(λ2 + 1)) otherwise,

(22)

where λ2 ∈ (0, ‖a‖2/ε− 1] is the root of
∑d
i=1(P[či,ĉi](ai/(λ2 + 1)))2 = ε2.

3) If p = 0 and ε ∈ N+, then δ∗ is given by

δ∗i =

{
δ′i ηi ≥ [η]ε
0 otherwise, ηi =


√

2aiči − č2i ai < či√
2aiĉi − ĉ2i ai > ĉi
|ai| otherwise.

(23)

where [η]ε denotes the ε-th largest element of η, and δ′i = P[či,ĉi](ai).

Proof of Proposition 1:
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`1 norm When we find the Euclidean projection of a onto the set X , we solve

minimize
δ

1
2‖δ − a‖22 + I[č,ĉ](δ)

subject to ‖δ‖1 ≤ ε,
(24)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is

L =
1

2
‖δ − a‖22 + I[č,ĉ](δ) + λ1(‖δ‖1 − ε) (25)

=

d∑
i=1

(
1

2
(δi − ai)2 + λ1|δi|+ I[či,ĉi](δi))− λ1ε. (26)

The minimizer δ∗ minimizes the Lagrangian, it is obtained by elementwise soft-thresholding

δ∗i = P[či,ĉi](sign(ai) max {|ai| − λ1, 0}).

where xi is the ith element of a vector x, P[či,ĉi](·) is the clip function over the interval [či, ĉi].

The primal, dual feasibility and complementary slackness are

λ1 = 0, ‖δ‖1 =

d∑
i=1

|δi| =
d∑
i=1

|P[či,ĉi](ai)| ≤ ε (27)

or λ1 > 0, ‖δ‖1 =

d∑
i=1

|δi| =
d∑
i=1

|P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| = ε. (28)

If
∑d
i=1 |P[či,ĉi](ai)| ≤ ε, δ∗i = P[či,ĉi](ai). Otherwise δ∗i = P[či,ĉi](sign(ai) max {|ai| − λ1, 0}),

where λ1 is given by the root of the equation
∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| − λ1, 0})| = ε.

Bisection method can be used to solve the above equation for λ1, starting with the initial interval
(0,maxi |ai| − ε/d]. Since

∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| − 0, 0})| =

∑d
i=1 |P[či,ĉi](ai)| >

ε in this case, and
∑d
i=1 |P[či,ĉi](sign(ai) max {|ai| −maxi |ai|+ ε/d, 0})| ≤∑d

i=1 |P[či,ĉi](sign(ai)(ε/d))| ≤
∑d
i=1(ε/d) = ε.

`2 norm When we find the Euclidean projection of a onto the set X , we solve

minimize
δ

‖δ − a‖22 + I[č,ĉ](δ)

subject to ‖δ‖22 ≤ ε2,
(29)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is

L = ‖δ − a‖22 + I[č,ĉ](δ) + λ2(‖δ‖22 − ε2) (30)

=

d∑
i=1

((δi − ai)2 + λ2δ
2
i + I[či,ĉi](δi))− λ2ε

2. (31)

The minimizer δ∗ minimizes the Lagrangian, it is

δ∗i = P[či,ĉi](
1

λ2 + 1
ai).

The primal, dual feasibility and complementary slackness are

λ2 = 0, ‖δ‖22 =

d∑
i=1

δ2
i =

d∑
i=1

(P[či,ĉi](ai))
2 ≤ ε2 (32)

or λ2 > 0, ‖δ‖22 =

d∑
i=1

δ2
i = (P[či,ĉi](

1

λ2 + 1
ai))

2 = ε2. (33)
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If
∑d
i=1(P[či,ĉi](ai))

2 ≤ ε2, δ∗i = P[či,ĉi](ai). Otherwise δ∗i = P[či,ĉi]

(
1

λ2+1ai

)
, where λ2 is

given by the root of the equation
∑d
i=1(P[či,ĉi](

1
λ2+1ai))

2 = ε2. Bisection method can be used to

solve the above equation for λ2, starting with the initial interval (0,
√∑d

i=1(ai)2/ε − 1]. Since∑d
i=1(P[či,ĉi](

1
0+1ai))

2 =
∑d
i=1(P[či,ĉi](ai))

2 > ε2 in this case, and
∑d
i=1(P[či,ĉi](

1
λ2+1ai))

2 =∑d
i=1(P[či,ĉi](εai/

√∑d
i=1(ai)2))2 ≤ ε2

∑d
i=1(ai)

2/(
√∑d

i=1(ai)2)2 = ε2.

`0 norm For `0 norm in X , it is independent to the box constraint. So we can clip a to the box
constraint first, which is δ′i = P[či,ĉi](ai), and then project it onto `0 norm.

We find the additional Euclidean distance of every element in a and zero after they are clipped to the
box constraint, which is

ηi =


√
a2
i − (ai − či)2 ai < či√
a2
i − (ai − ĉi)2 ai > ĉi

|ai| otherwise.

(34)

It can be equivalently written as

ηi =


√

2aiči − č2i ai < či√
2aiĉi − ĉ2i ai > ĉi

|ai| otherwise.
(35)

To derive the Euclidean projection onto `0 norm, we find the ε-th largest element in η and call it [η]ε.
We keep the elements whose corresponding ηi is above or equals to ε-th, and set rest to zeros. The
closed-form solution is given by

δ∗i =

{
δ′i ηi ≥ [η]ε
0 otherwise. (36)

�

Difference to (Hein & Andriushchenko, 2017, Proposition 4.1). We remark that Hein & An-
driushchenko (2017) discussed a relevant problem of generating `p-norm based adversarial examples
under box and linearized classification constraints. It was shown in (Hein & Andriushchenko, 2017,
Proposition 4.1) that the problem is convex and the solution can be derived using KKT conditions.
However, Proposition 1 in our paper is different from (Hein & Andriushchenko, 2017, Proposition
4.1). First, we place `p norm as a hard constraint rather than minimizing it in the objective function.
This difference will make our Lagrangian function more involved with a newly introduced non-
negative Lagrangian multiplier. Second, the problem of our interest is projection onto the intersection
of box and `p constraints. Such a projection step can then be combined with an attack loss (no need
of linearization) for generating adversarial examples. Third, we cover the case of `0 norm.

C EXPERIMENT SETUP

C.1 MODEL ARCHITECTURES AND TRAINING DETAILS

For a comprehensive evaluation of proposed algorithms, we adopt a set of diverse DNN models
(Model A to H), including multi-layer perceptrons (MLP), All-CNNs Springenberg et al. (2015),
LeNet Lecun et al. (1998), LeNetV23, VGG16 Simonyan & Zisserman (2015), ResNet50 He et al.
(2016), Wide-ResNet Madry et al. (2017) and GoogLeNet Szegedy et al. (2015). For the last four
models, we use the exact same architecture as original papers and evaluate them only on CIFAR-10
dataset. The details for model architectures are provided in Table A1. For compatibility with our
framework, we implement and train these models based on the strategies adopted in pytorch-cifar4

and achieve comparable performance on clean images; see Table A2. To foster reproducibility, all
the trained models are publicly accessible in the anonymous link. Specifically, we trained MNIST

3An enhanced version of original LeNet with more layers and units (see Table A1 Model D).
4https://github.com/kuangliu/pytorch-cifar
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classifiers for 50 epochs with Adam and a constant learning rate of 0.001. For CIFAR-10 classifers,
the models are trained for 250 epochs with SGD (using 0.8 nesterov momentum, weight decay 5e−4).
The learning rate is reduced at epoch 100 and 175 with a decay rate of 0.1. The initial learning rate
is set as 0.01 for models {A, B, C, D, H} and 0.1 for {E, F, G}. Note that no data augmentation is
employed in the training.

Table A1: Neural network architectures used on the MNIST and CIFAR-10 dataset. Conv: convolutional layer,
FC: fully connected layer, Globalpool: global average pooling layer.

A (MLP) B (All-CNNs, 2015) C (LeNet, 1998) D (LeNetV2)

FC(128) + Relu Conv([32, 64], 3, 3) + Relu Conv(6, 5, 5) + Relu Conv(32, 3, 3) + Relu
FC(128) + Relu Conv(128, 3, 3) + Dropout(0.5) Maxpool(2, 2) Maxpool(2, 2)
FC(64) + Relu Conv([128, 128], 3, 3) + Relu Conv(16, 5, 5) + Relu Conv(64, 3, 3) + Relu

FC(10) Conv(128, 3, 3) + Dropout(0.5) Maxpool(2, 2) Maxpool(2, 2)
Softmax Conv(128, 3, 3) + Relu FC(120) + Relu FC(128) + Relu

Conv(128, 1, 1) + Relu FC(84) + Relu Dropout(0.25)
Conv(10, 1, 1) + Globalpool FC(10) FC(10)

Softmax Softmax Softmax

E (VGG16, 2015) F (ResNet50, 2016) G (Wide-ResNet, 2017) H (GoogLeNet, 2015)

Table A2: Clean test accuracy of DNN models on MNIST and CIFAR-10. We roughly derive the model
robustness by attacking models separately using FGSM Goodfellow et al. (2014). The adversarial examples are
generated by FGSM `∞-attack (ε = 0.2).

MNIST CIFAR-10

Model Acc. FGSM Model Acc. FGSM Model Acc. FGSM

A: MLP 98.20% 18.92% A: MLP 55.36% 11.25% E: VGG16 87.57% 10.83%
B: All-CNNs 99.49% 50.95% B: All-CNNs 84.18% 9.89% F: ResNet50 88.11% 10.73%
C: LeNet 99.25% 63.23% C: LeNet 64.95% 14.45% G: Wide-ResNet 91.67% 15.78%
D: LeNetV2 99.33% 56.36% D: LeNetV2 74.89% 9.77% H: GoogLeNet 90.92% 9.91%

C.2 CRAFTING ADVERSARIAL EXAMPLES

We adopt variant C&W loss in APGD/PGD as suggested in Madry et al. (2017); Carlini & Wagner
(2017) with a confidence parameter κ = 50. Cross-entropy loss is also supported in our implementa-
tion. The adversarial examples are generated by 20-step PGD/APGD unless otherwise stated (e.g., 50
steps for ensemble attacks). Due to varying model robustness on different datasets, the perturbation
magnitudes ε are set separately. For universal perturbation experiments, the ε are set as 0.2 (A, B), 0.3
(C) and 0.25 (D) on MNIST; 0.02 (B, H), 0.35 (E) and 0.05 (D) on CIFAR-10. For generalized AT,
the models on MNIST are trained following the same rules in last section, except that training epochs
are prolonged to 350 and adversarial examples are crafted for assisting the training with a ratio of 0.5.
Our experiment setup is based on CleverHans package5 and Carlini and Wagner’s framework6.

C.3 DETAILS OF CONDUCTED DATA TRANSFORMATIONS

To demonstrate the effectiveness of APGD in generating robust adversarial examples against multiple
transformations, we adopt a series of common transformations, including a&b) flipping images
horizontally (flh) and vertically (flv); c) adjusting image brightness (bri); d) performing gamma
correction (gam), e) cropping and re-sizing images (crop); f) rotating images (rot).

Moreover, both deterministic and stochastic transformations are considered in our experiments. In
particular, Table 3 and Table A6 are deterministic settings - rot: rotating images 30 degree clockwise;
crop: cropping images in the center (0.8 × 0.8) and resizing them to 32 × 32; bri: adjusting the
brightness of images with a scale of 0.1; gam: performing gamma correction with a value of 1.3.
Differently, in Table A5, we introduce randomness for drawing samples from the distribution - rot:
rotating images randomly from -10 to 10 degree; crop: cropping images in the center randomly

5https://github.com/tensorflow/cleverhans
6https://github.com/carlini/nn_robust_attacks

17

https://github.com/tensorflow/cleverhans
https://github.com/carlini/nn_robust_attacks


Under review as a conference paper at ICLR 2020

(from 0.6 to 1.0); other transformations are done with a probability of 0.8. In experiments, we adopt
tf.image API 7 for processing the images.

D SUPPLEMENTARY RESULTS

D.1 ROBUST ADVERSARIAL ATTACKS

Ensemble attack over multiple models Table A3 and A4 show the performance of average
(ensemble PGD Liu et al. (2018)) and min-max (APGD) strategies for attacking model ensembles.
Our min-max approach results in 19.27% and 15.69% averaged improvement on ASRall over model
sets {A, B, C, D} and {A, E, F, H} on CIFAR-10.

Table A3: Comparison of average and min-max (APGD) ensemble attack over four models on CIFAR-10. Acc
(%) represents the test accuracy of classifiers on adversarial examples. The learning rates α, β and regularization
factor γ are set as - `0 : α = 1, β = 1

150
, γ = 1, `1 : α = 1

4
, β = 1

100
, γ = 5, `2 : α = 1

8
, β = 1

100
, γ = 3;

`∞ : α = 1
5
, β = 1

50
, γ = 6. The attack iteration for APGD is set as 50.

Box constraint Opt. AccA AccB AccC AccD ASRall Lift (↑)

`0 (ε = 50) avg. 27.86 3.15 5.16 6.17 65.16 -
min max 18.74 8.66 9.64 9.70 71.44 9.64%

`1 (ε = 30) avg. 32.92 2.07 5.55 6.36 59.74 -
min max 12.46 3.74 5.62 5.86 78.65 31.65%

`2 (ε = 2.0) avg. 24.3 1.51 4.59 4.20 69.55 -
min max 7.17 3.03 4.65 5.14 83.95 20.70%

`∞ (ε = 0.05) avg. 19.69 1.55 5.61 4.26 73.29 -
min max 7.21 2.68 4.74 4.59 84.36 15.10%

Table A4: Comparison of average and min-max (APGD) ensemble attack over four models on CIFAR-10. Acc
(%) represents the test accuracy of classifiers on adversarial examples. The learning rates α, β and regularization
factor γ are set as - `0 : α = 1, β = 1

150
, γ = 1, `1 : α = 1

4
, β = 1

100
, γ = 5, `2 : α = 1

8
, β = 1

100
, γ = 3;

`∞ : α = 1
5
, β = 1

50
, γ = 6. The attack iteration for APGD is set as 50.

Box constraint Opt. AccA AccE AccF AccH ASRall Lift (↑)

`0 (ε = 70) avg. 27.38 6.33 7.18 6.99 66.56 -
min max 19.38 8.72 9.48 8.94 73.83 10.92%

`1 (ε = 30) avg. 30.90 2.06 1.85 1.84 66.23 -
min max 12.56 3.21 2.70 2.72 83.13 25.52%

`2 (ε = 1.5) avg. 20.87 1.75 1.21 1.54 76.41 -
min max 10.26 3.15 2.24 2.37 84.99 11.23%

`∞ (ε = 0.03) avg. 25.75 2.59 1.66 2.27 70.54 -
min max 13.47 3.79 3.15 3.48 81.17 15.07%

Robust adversarial attack over data transformations Table A5 and A6 compare the performance
of average (EOT Athalye et al. (2018a)) and min-max (APGD) strategies. Our approach results in
4.31% and 8.22% averaged lift over four models {A, B, C, D} on CIFAR-10 under given stochastic
and deterministic transformation sets.

D.2 ADVERSARIAL TRAINING AGAINST MULTIPLE TYPES OF ADVERSARIAL ATTACKS

Robustness evaluation Figure A1 presents “overall robustness” comparison of our min-max gen-
eralized AT scheme and vanilla AT with single type of attacks (`∞ and `2) on MNIST (LeNet).
Similarly, our min-max training scheme leads to a higher “overall robustness” measured by Sε. In
practice, due to the lacking knowledge of the strengths/types of the attacks used by adversaries, it
is meaningful to enhance “overall robustness” of models under the worst perturbation (Accmax

adv ).

7https://www.tensorflow.org/api_docs/python/tf/image
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Table A5: Comparison of average and min-max optimization on robust attack over multiple data transformations
on CIFAR-10. Note that all data transformations are conducted stochastically with a probability of 0.8, except
for crop which randomly crops a central area from original image and re-size it into 32× 32. The adversarial
examples are generated by 20-step `∞-APGD (ε = 0.03) with α = 1

2
, β = 1

100
and γ = 10.

Model Opt. Accori Accflh Accflv Accbri Acccrop ASRavg ASRgp Lift (↑)

A avg. 11.55 21.60 13.64 12.30 22.37 83.71 55.97 -
min max 13.06 18.90 13.43 13.90 20.27 84.09 59.17 5.72%

B avg. 6.74 11.55 10.33 6.59 18.21 89.32 69.52 -
min max 8.19 11.13 10.31 8.31 16.29 89.15 71.18 2.39%

C avg. 8.23 17.47 13.93 8.54 18.83 86.60 58.85 -
min max 9.68 13.45 13.41 9.95 18.23 87.06 61.63 4.72%

D avg. 8.67 19.75 11.60 8.46 19.35 86.43 60.96 -
min max 10.43 16.41 12.14 10.15 17.64 86.65 63.64 4.40%

Table A6: Comparison of average and min-max optimization on robust attack over multiple data transformations
on CIFAR-10. Here a new rotation (rot) transformation is introduced, where images are rotated 30 degrees
clockwise. Note that all data transformations are conducted with a probability of 1.0. The adversarial examples
are generated by 20-step `∞-APGD (ε = 0.03) with α = 1

2
, β = 1

100
and γ = 10.

Model Opt. Accori Accflh Accflv Accbri Accgam Acccrop Accrot ASRavg ASRgp Lift (↑)

A avg. 11.06 22.37 14.81 12.32 10.92 20.40 15.89 84.60 49.24 -
min max 13.51 18.84 14.03 15.20 13.00 18.03 14.79 84.66 52.31 6.23%

B avg. 5.55 11.96 9.97 5.63 5.94 16.42 11.47 90.44 65.18 -
min max 6.75 9.13 10.56 6.72 7.11 12.23 10.80 90.96 70.38 7.98%

C avg. 7.65 22.30 15.82 8.17 8.07 15.44 15.09 86.78 49.67 -
min max 9.05 15.10 14.57 9.57 9.31 14.11 14.23 87.72 55.37 11.48%

D avg. 8.22 20.88 13.49 7.91 8.71 16.33 14.98 87.07 53.52 -
min max 10.17 14.65 13.62 10.03 10.35 14.36 13.82 87.57 57.36 7.17%

Specifically, our min-max generalized AT leads to 6.27% and 17.63% improvement on Sε compared
to single-type AT with `∞ and `2 attacks. Furthermore, weighting factor w of the probability simplex
helps understand the behavior of AT under mixed types of attacks. Our AMPGD algorithm will
adjust w automatically according to the min-max principle - defending the strongest attack. In
Figure A1a, as ε`2 increases, `2-attack becomes stronger so its corresponding w increases as well.
When ε`2 ≥ 2.5, `2-attack dominates the adversarial training process. That is to say, our AMPGD
algorithm will put more weights on stronger attacks even if the strengths of attacks are unknown,
which is a meritorious feature in practice.
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Figure A1: (a): Violin plot of weight w in APGD as a function of perturbation magnitude ε of `2 attack in
adversarial training; (b) & (c): Robustness of LeNet (Model C) under different adversarial training schemes.

Table A7 shows complete results on the test accuracy of models in different training schemes. In
general, the min-max generalized AT obtains better performance than averaging strategy. AMPGD
always leads to Top-2 Accmax

adv and Accavg
adv.
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Overlap of `p-norm balls As reported in Sec. 4.2, our min-max generalized AT does not always
result in the best performance on the success rate of defending the worst/strongest perturbation
(Accmax

adv ) for given (ε`∞ , ε`2) pair, especially when the strengths of two attacks diverge greatly (e.g.,
ε for `∞ and `2 attacks are 0.2 and 0.5). In what follows, we provide explanation and analysis about
this finding inspired by recent work Araujo et al. (2019).
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Figure A2: (a) & (b): Comparison of the percentage of adversarial examples inside `∞ ball (left, blue area)
and inside `2 ball (right, red area). In particular, the red (blue) area in (a) (or (b)) represents the percentage of
adversarial examples crafted by `∞(`2) attack that also belong to `2 (`∞) ball. We generate adversarial examples
on 10,000 test images for each attack. (c): Average `p norm of adversarial examples as a function of perturbation
magnitude ε`2 . The top (bottom) side represents the `2-norm (`∞) of the adversarial examples generated by `∞
(`2) attack as ε`2 for generalized AT increases. Note that the same ε as the AT procedure is used while attacking
trained robust models.

Figure A2 shows the real overlap of `∞ and `2 norm balls in adversarial attacks for MLP model on
MNIST. Ideally, if ε`2 satisfies ε`∞ < ε`2 < ε`∞ ×

√
d, `∞ and `2 balls will not cover each other

completely Araujo et al. (2019). In other words, AT with `∞ and `2 attacks cannot interchange
with each other. However, the real range of ε`2 for keeping `2 and `∞ balls intersected is not
(ε`∞ , ε`∞ ×

√
d), because crafted adversarial examples are not uniformly distributed in `p-norm

balls. In Figure A2b, 99.98% adversarial examples devising using `2 attack are also inside `∞ ball,
even if 0.2 < ε`2 = 0.5 < 5.6. In consequence, AT with `∞ attack is enough to handle `2-attack
in overwhelming majority cases, which results in better performance than min-max optimization
(Table A7a).

Figure A2c presents the average `p distance of adversarial examples with ε`2 increasing. The average
`2-norm (green line) of adversarial examples generated by `∞ attack remains around 2.0 with a slight
rising trend. This is consistent to our setting - fixing ε`2 as 0.2. It also indicates model robustness
may effect the behavior of attacks - as ε`2 increases, robustly trained MLP model becomes more
robust against `2 examples, so the `∞ attacker implicitly increases `2 norm to attack the model more
effectively. On the other hand, the average `∞-norm increases substantially as ε`2 increases from 0.5
to 2.5. When ε`2 arriving at 0.85, the average `∞ norm gets close to 0.2, so around half adversarial
examples generated by `2-attack are also inside `∞ balls, which is consistent with Table A2b.

Learning curve under different training schemes Figure A3 shows the learning curves of model
A under different AT schemes, where two setting are plotted: (a) (ε`∞ , ε`2) = (0.2, 0.5); (b)
(ε`∞ , ε`2) = (0.2, 2.0). Apart from better worst-case robustness shown in Table A7, our min-max
generalized AT leads to a faster convergence compared to average-based AT, especially when the
strengths of two attacks diverge greatly. For instance, when ε`2 = 0.5 (Figure A3a), the robust model
trained with AMPGD reaches 70% test accuracy on the worst perturbation (1-Rmax

adv ) within 210
epochs versus 280 epochs in average setting. When ε`2 = 2.0 (Figure A3b), the learning curves for
min-max and average strategy are very close because the strengths of two attacks are similar, which
is verified by approximately equal weights in Figure 3a.

D.3 INTERPRETABILITY OF DOMAIN WEIGHT w ON UNIVERSAL PERTURBATION TO MULTIPLE
IMAGES

Tracking domain weight w of the probability simplex from our algorithms is an exclusive feature of
solving problem 1. In Sec 4, we show the strength ofw in understanding the procedure of optimization
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Table A7: Adversarial training of MNIST models with single attacks (`∞ and `2) and multiple attacks (avg.
and minmax). During the training process, the perturbation magnitude ε`∞ is fixed as 0.2, and ε`2 are changed
from 0.5 to 3.0 with a step size of 0.5. For min-max scheme, the adversarial examples are crafted using 20-step
`∞-APGD with α = 1

6
, β = 1

50
and γ = 4. The ratio of adversarial and benign examples in adversarial training

is set as 1.0. For diversity-promoting attack regularizer (DPAR) in generalized AT, the hyperparameter λ = 0.1.

(a) (ε`∞ , ε`2) = (0.2, 0.5)

Model Opt. Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

MLP

natural 98.28 2.78 93.75 1.80 48.27

`∞ 98.22 77.82 97.11 77.23 87.46
`2 98.71 12.04 97.10 11.73 54.57

avg. 98.83 74.07 97.70 73.67 85.88
+ DPAR 98.56 77.32 97.74 76.98 87.53

min max 98.73 75.88 97.43 75.56 86.66
+ DPAR 98.75 77.04 97.81 76.72 87.43

LeNet

natural 99.17 18.16 97.56 15.23 57.86

`∞ 99.27 93.60 98.74 93.26 96.17
`2 99.43 34.30 98.49 26.89 66.39

avg. 99.29 90.69 98.89 90.34 94.79
+ DPAR 99.28 91.81 98.87 91.52 95.34

min max 99.35 90.81 98.74 90.21 94.78
+ DPAR 99.34 91.82 98.77 91.60 95.30

(b) (ε`∞ , ε`2) = (0.2, 1.0)

Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

98.30 3.65 72.39 1.17 39.01

98.29 78.15 93.28 77.95 85.71
98.98 36.02 94.39 34.68 65.20

98.72 73.97 94.63 73.70 84.30
98.60 76.57 94.41 76.39 85.49

98.72 75.18 94.29 74.92 84.74
98.68 76.59 95.11 76.49 85.85
9.16 18.24 89.97 15.36 54.10

99.28 93.51 96.49 93.13 95.00
99.50 63.48 96.62 57.94 80.05

99.40 89.39 96.94 89.02 93.16
99.38 99.09 97.13 89.99 93.61

99.31 90.82 97.20 90.56 94.01
99.35 90.88 97.07 90.80 93.98

(c) (ε`∞ , ε`2) = (0.2, 1.5)

Model Opt. Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

MLP

natural 98.39 2.77 35.70 2.32 19.23

`∞ 98.34 78.96 85.94 77.42 82.45
`2 99.00 60.37 89.96 59.82 75.16

avg. 98.61 75.01 88.85 74.76 81.93
+ DPAR 98.68 76.55 88.52 76.18 82.53

min max 98.76 75.66 88.78 75.33 82.22
+ DPAR 98.77 77.54 89.57 77.24 83.55

LeNet

natural 99.22 14.31 67.69 12.34 41.00

`∞ 99.22 93.76 91.11 90.26 92.43
`2 99.35 79.92 93.27 77.39 86.60

avg. 99.31 89.26 93.29 88.77 91.28
+ DPAR 99.27 90.75 93.48 89.96 92.11

min max 99.40 89.83 92.96 89.00 91.39
+ DPAR 99.35 90.64 93.27 89.80 91.96

(d) (ε`∞ , ε`2) = (0.2, 2.0)

Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

98.30 2.70 13.86 0.85 8.28

98.08 77.70 69.17 66.34 73.43
98.72 70.03 81.74 69.14 75.88

98.62 75.09 79.00 72.23 77.05
98.50 76.75 79.67 74.14 78.21
98.59 75.96 79.15 73.43 77.55
98.58 76.92 79.74 74.29 78.35
99.25 17.93 39.32 17.57 28.63

99.18 93.80 78.97 78.80 86.39
99.22 85.84 87.31 84.06 86.58

99.22 88.96 85.59 84.29 87.28
99.25 89.96 86.49 85.44 88.23
99.32 89.21 85.98 84.82 87.60
99.22 90.19 86.47 85.47 88.33

(e) (ε`∞ , ε`2) = (0.2, 2.5)

Model Opt. Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

MLP

natural 98.31 3.37 6.02 2.27 4.70

`∞ 98.25 77.91 51.28 49.40 64.59
`2 98.10 73.94 70.01 67.66 71.97
avg. 98.47 75.35 64.39 63.37 69.86

+ DPAR 98.18 76.33 66.49 65.54 71.41

min max 98.44 75.48 66.12 64.99 70.80
+ DPAR 98.20 76.98 66.42 65.55 71.70

LeNet

natural 99.23 15.25 16.08 11.16 15.67

`∞ 99.18 94.09 60.18 58.47 77.13
`2 98.94 87.57 78.45 78.42 83.01
avg. 99.10 89.88 74.68 74.39 82.28

+ DPAR 99.14 90.17 75.16 75.09 82.67
min max 99.21 88.88 74.97 74.42 81.93
+ DPAR 99.09 89.34 75.55 75.45 82.45

(f) (ε`∞ , ε`2) = (0.2, 3.0)

Acc. Acc-`∞ Acc-`2 Accmax
adv Accavg

adv

98.24 2.92 2.42 1.54 2.67

98.35 79.15 32.58 31.23 55.86
97.55 73.86 58.24 57.83 66.05
98.17 75.07 49.75 49.49 62.41
97.85 74.61 51.16 51.04 62.89

98.10 74.71 50.45 50.54 62.58
97.97 76.13 51.12 51.00 63.63
99.24 13.76 4.74 2.57 9.25

99.30 93.14 39.48 32.93 65.81
98.55 87.87 68.69 68.34 78.28
99.10 89.19 59.87 60.01 74.53
98.95 89.80 62.21 61.19 75.50

99.01 88.93 61.15 60.76 75.04
98.98 89.53 63.22 63.18 76.37
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(b) (ε`∞ , ε`2) = (0.2, 2.0)

Figure A3: Learning curves of MLP model under different adversarial training schemes on MNIST. Note that
each experiment is repeated ten times with different random seeds.

and interpreting the adversarial robustness. Here we would like to show the usage of w in measuring
“image robustness” on devising universal perturbation to multiple input samples. Table A8 and A9
show the image groups on MNIST with weight w in APGD and two metrics (distortion of `2-C&W,
minimum ε for `∞-PGD) of measuring the difficulty of attacking single images. The binary search is
utilized to searching for the minimum perturbation.

Although adversaries need to consider a trade-off between multiple images while devising universal
perturbation, we find that weighting factor w in APGD is highly correlated under different `p norms.
Furthermore, w is also highly related to minimum distortion required for attacking a single image
successfully. It means the inherent “image robustness” exists and effects the behavior of generating
universal perturbation. Larger weight w usually indicates an image with higher robustness (e.g.,
fifth ’zero’ in the first row of Table A8), which usually corresponds to the MNIST letter with clear
appearance (e.g., bold letter).
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Table A8: Interpretability of domain weight w for universal perturbation to multiple inputs on MNIST (Digit
0 to 4). Domain weight w for different images under `p-norm (p = 0, 1, 2,∞) and two metrics measuring
the difficulty of attacking single image are recorded, where dist. (`2) denotes the the minimum distortion of
successfully attacking images using C&W (`2) attack; εmin (`∞) denotes the minimum perturbation magnitude
for `∞-PGD attack.

Image

Weight

`0 0. 0. 0. 0. 1.000 0.248 0.655 0.097 0. 0.
`1 0. 0. 0. 0. 1.000 0.07 0.922 0. 0. 0.
`2 0. 0. 0. 0. 1.000 0.441 0.248 0.156 0.155 0.
`∞ 0. 0. 0. 0. 1.000 0.479 0.208 0.145 0.168 0.

Metric dist.(C&W `2) 1.839 1.954 1.347 1.698 3.041 1.545 1.982 2.178 2.349 1.050
εmin (`∞) 0.113 0.167 0.073 0.121 0.199 0.167 0.157 0.113 0.114 0.093

Image

Weight

`0 0. 0. 0.613 0.180 0.206 0. 0. 0.223 0.440 0.337
`1 0. 0. 0.298 0.376 0.327 0. 0. 0.397 0.433 0.169
`2 0. 0. 0.387 0.367 0.246 0. 0.242 0.310 0.195 0.253
`∞ 0.087 0.142 0.277 0.247 0.246 0. 0.342 0.001 0.144 0.514

Metric dist.(C&W `2) 1.090 1.182 1.327 1.458 0.943 0.113 1.113 1.357 1.474 1.197
εmin (`∞) 0.075 0.068 0.091 0.105 0.096 0.015 0.090 0.076 0.095 0.106

Image

Weight

`0 0. 1.000 0. 0. 0. 0. 0. 0.909 0. 0.091
`1 0. 1.000 0. 0. 0. 0. 0. 0.843 0. 0.157
`2 0. 0.892 0. 0. 0.108 0. 0. 0.788 0. 0.112
`∞ 0. 0.938 0. 0. 0.062 0. 0. 0.850 0. 0.150

Metric dist.(C&W `2) 1.335 2.552 2.282 1.229 1.884 1.928 1.439 2.312 1.521 2.356
εmin (`∞) 0.050 0.165 0.110 0.083 0.162 0.082 0.106 0.176 0.072 0.171

Image

Weight

`0 0.481 0. 0.378 0. 0. 0. 0.352 0. 0. 0.648
`1 0.690 0. 0.310 0. 0. 0. 0.093 0.205 0. 0.701
`2 0.589 0.069 0.208 0. 0.134 0.064 0.260 0.077 0. 0.600
`∞ 0.864 0. 0.084 0. 0.052 0.079 0.251 0.156 0. 0.514

Metric dist.(C&W `2) 2.267 1.656 2.053 1.359 0.861 1.733 1.967 1.741 1.031 2.413
εmin (`∞) 0.171 0.088 0.143 0.117 0.086 0.100 0.097 0.096 0.038 0.132

Image

Weight

`0 0. 0. 0.753 0. 0.247 0. 0. 0. 1.000 0.
`1 0.018 0. 0.567 0. 0.416 0.347 0. 0. 0.589 0.063
`2 0. 0. 0.595 0. 0.405 0.346 0. 0. 0.654 0.
`∞ 0. 0. 0.651 0. 0.349 0.239 0. 0. 0.761 0.

Metric dist.(C&W `2) 1.558 1.229 1.939 0.297 1.303 0.940 1.836 1.384 1.079 2.027
εmin (`∞) 0.084 0.088 0.122 0.060 0.094 0.115 0.103 0.047 0.125 0.100
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Table A9: Interpretability of domain weight w for universal perturbation to multiple inputs on MNIST (Digit
5 to 9). Domain weight w for different images under `p-norm (p = 0, 1, 2,∞) and two metrics measuring
the difficulty of attacking single image are recorded, where dist. (`2) denotes the the minimum distortion of
successfully attacking images using C&W (`2) attack; εmin (`∞) denotes the minimum perturbation magnitude
for `∞-PGD attack.

Image

Weight

`0 0. 0.062 0.254 0. 0.684 0.457 0. 0. 0.542 0.
`1 0.131 0.250 0. 0. 0.619 0.033 0.157 0.005 0.647 0.158
`2 0.012 0.164 0.121 0. 0.703 0.161 0.194 0. 0.508 0.136
`∞ 0.158 0.008 0.258 0. 0.576 0.229 0.179 0. 0.401 0.191

Metric dist. (`2) 1.024 1.532 1.511 1.351 1.584 1.319 1.908 1.020 1.402 1.372
εmin (`∞) 0.090 0.106 0.085 0.069 0.144 0.106 0.099 0.0748 0.131 0.071

Image

Weight

`0 0.215 0. 0. 0.194 0.590 0.805 0. 0. 0.195 0.
`1 0.013 0. 0. 0.441 0.546 0.775 0. 0. 0.225 0.
`2 0.031 0. 0. 0.410 0.560 0.767 0. 0. 0.233 0.
`∞ 0. 0. 0. 0.459 0.541 0.854 0. 0. 0.146 0.

Metric dist. (`2) 1.199 0.653 1.654 1.156 1.612 2.158 0. 1.063 1.545 0.147
εmin (`∞) 0.090 0.017 0.053 0.112 0.158 0.159 0.020 0.069 0.145 0.134

Image

Weight

`0 0.489 0. 0. 0.212 0.298 0.007 0.258 0.117 0.482 0.136
`1 0.525 0.190 0. 0.215 0.070 0.470 0.050 0.100 0.343 0.038
`2 0.488 0.165 0. 0.175 0.172 0.200 0.175 0.233 0.378 0.014
`∞ 0.178 0.263 0. 0.354 0.205 0.258 0.207 0.109 0.426 0.

Metric dist. (`2) 1.508 1.731 1.291 1.874 1.536 1.719 2.038 1.417 2.169 0.848
εmin (`∞) 0.110 0.125 0.089 0.126 0.095 0.087 0.097 0.084 0.135 0.077

Image

Weight

`0 0. 0. 1.000 0. 0. 0.246 0. 0. 0. 0.754
`1 0. 0.180 0.442 0.378 0. 0.171 0. 0. 0. 0.829
`2 0. 0.298 0.593 0.109 0. 0.330 0. 0. 0. 0.670
`∞ 0. 0.377 0.595 0.028 0. 0.407 0. 0. 0. 0.593

Metric dist. (`2) 1.626 1.497 1.501 1.824 0.728 1.928 1.014 1.500 1.991 1.400
εmin (`∞) 0.070 0.153 0.156 0.156 0.055 0.171 0.035 0.090 0.170 0.161

Image

Weight

`0 1. 0. 0. 0. 0. 0. 0.665 0.331 0. 0.004
`1 0.918 0. 0.012 0. 0.070 0. 0.510 0.490 0. 0.
`2 0.911 0. 0.089 0. 0. 0. 0.510 0.490 0. 0.
`∞ 0.935 0. 0.065 0. 0. 0. 0.665 0.331 0. 0.004

Metric dist. (`2) 1.961 1.113 1.132 1.802 0.939 1.132 1.508 1.335 1.033 1.110
εmin (`∞) 0.144 0.108 0.083 0.103 0.079 0.041 0.090 0.103 0.083 0.044
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