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ABSTRACT

The rich and accessible labeled data fuel the revolutionary success of deep learn-
ing. Nonetheless, massive supervision remains a luxury for many real applica-
tions, boosting great interest in label-scarce techniques such as few-shot learning
(FSL). An intuitively feasible approach to FSL is to conduct data augmentation
via synthesizing additional training samples. The key to this approach is how to
guarantee both discriminability and diversity of the synthesized samples. In this
paper, we propose a novel FSL model, called D2GAN, which synthesizes Diverse
and Discriminative features based on Generative Adversarial Networks (GAN).
D2GAN secures discriminability of the synthesized features by constraining them
to have high correlation with real features of the same classes while low correla-
tion with those of different classes. Based on the observation that noise vectors
that are closer in the latent code space are more likely to be collapsed into the same
mode when mapped to feature space, D2GAN incorporates a novel anti-collapse
regularization term, which encourages feature diversity by penalizing the ratio of
the logarithmic similarity of two synthesized features and the logarithmic similar-
ity of the latent codes generating them. Experiments on three common benchmark
datasets verify the effectiveness of D2GAN by comparing with the state-of-the-art.

1 INTRODUCTION

One of the key triggers for the recent flourish of deep learning in various tasks is the rich and accessi-
ble labeled data. However, in many specific real applications, only limited labeled data are available.
This incurs the investigation of few-shot learning (FSL), i.e., to learn from a few labeled data. To
combat with deficiency of labeled data, some FSL methods resort to enhance the discriminability
of the feature representations such that a simple linear classifier learned from few labeled samples
can reach satisfactory classification results (Vinyals et al. (2016); Snell et al. (2017); Triantafillou
et al. (2017)). Another category of methods investigate how to quickly and effectively update a deep
neural network using a few labeled data (Finn et al. (2017); Li et al. (2017); Ravi & Larochelle
(2017); Munkhdalai & Yu (2017)). Alternatively, a third group of methods aim to augment the
labeled samples based on the provided ones (Chen et al. (2019a); Gao et al. (2018)).

This paper approaches FSL in the line of data augmentation. Whatever data augmentation technique
is used, we usually need to use the augmented data to train a classifier. Therefore, whether the
augmented samples can encapsulate the discriminative information of the classes becomes pivotal
to secure the discriminability of the classifier. On the other hand, the decision boundary of a classifier
can only be determined precisely when training samples exhibit sufficient intra-class variance. Thus,
the diversity of the augmented samples is also of a crucial role. This is in fact the essential motivation
of investigating data augmentation for FSL, as the few labeled samples can capture only limited
intra-class variance.

We propose a novel conditional GAN based FSL model, called D2GAN, which synthesizes new
features conditioned on those of the few labeled samples. To secure discriminability of the synthe-
sized features, D2GAN incorporates a novel classification regularizer to encourage the generator to
synthesize features of high correlation with features of real samples from the same class while of
low correlation with those from different classes.
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It is more complicated to ensure diversity of the synthesized features, as conditional GANs are no-
toriously susceptible for mode collapse problem. This is due to the use of usually high dimensional
and structured data as the condition tends to make the generator likely ignore the latent code, which
controls diversity. To avoid this problem, we propose a novel anti-collapse regularizer, which gives
high penalty on the case where mode collapse more likely occurs. It is derived from the observation
that noise vectors that are closer in the latent code space are more likely to be collapsed into the
same mode when mapped to feature space. We therefore directly penalize the ratio of the loga-
rithmic similarity of two synthesized feature vectors and the logarithmic similarity of the two noise
vectors generating them.

With discriminative and diverse feature synthesized, we can get highly effective classifiers and ac-
cordingly appealing recognition results. In summary, the contributions of this paper are as follows:

• We propose a novel conditional GAN based FSL model which augments the labeled sam-
ples by synthesizing fake features conditioned on those of the few labeled samples.

• We propose two regularizers to train our novel GAN model. The first one secures feature
discriminability by requiring the synthesized feature classifying well other samples of the
same classes. The second ensures feature diversity by penalizing the ratio of the logarithmic
similarity two synthesized feature vectors and the logarithmic similarity of the two noise
vectors generating them.

• The proposed method reaches the state-of-the-art on three common benchmark datasets.

2 RELATED WORK

We review the related work about general data augmentation, Generative Adversarial Networks
(GAN) and Few-Shot Learning (FSL).

Data augmentation. Standard data augmentation techniques include flipping, rotating, adding noise
and randomly cropping images, adding Gaussian perturbation, transforms, and rescaling of training
images (Chen et al. (2019b)). However, adding noise or jittering on the original images is par-
ticularly suspect to visual similarity with the original images. This is undesirable for FSL as we
only have a very limited number of images to be based on; synthesizing quality of any single im-
age is vital for the final recognition results. Recently, some more sophisticated data augmentation
techniques have been proposed to augment labeled samples for FSL, including hallucinating (Wang
et al. (2018)), shrinking and hallucinating features (Hariharan & Girshick (2017)), composing syn-
thesized representations (Yu & Kristen (2017); Chen et al. (2019b)), or using GANs (Gao et al.
(2018); Zhang et al. (2018)).

GAN. GAN was originally proposed as a method for image synthesis and has achieved impressive
results (Goodfellow et al. (2014)). However, GAN is also known for its instability in training and
suffers from the mode collapse problem (Arjovsky et al. (2017); Gulrajani et al. (2017)). In order
to mitigate these problems and improve the quality of synthetic samples, many methods have been
proposed. WGAN (Arjovsky et al. (2017)) and WGAN-GP (Gulrajani et al. (2017)) propose to
optimize GAN on an approximate Wasserstein distance by enforcing 1-Lipschitz smoothness. LS-
GAN (Mao et al. (2017)) offers a simple yet effective solution by replacing the cross-entropy loss
of GAN with a least square loss that pushes the scores of real and fake samples to different decision
boundaries so that the gradient never vanishes even when two distributions are totally disjoint.

FSL. Regarding to the perspective of approaching FSL, existing algorithms can generally be classi-
fied as three categories. The first category of methods aim to enhance the discriminability of feature
representations of images. With this goal, a number of methods address it via deep metric learning
and learn deep embedding models that output discriminative features for any given images (Vinyals
et al. (2016); Snell et al. (2017); Triantafillou et al. (2017); Sung et al. (2018)). The difference lies in
the loss functions used. A more common category of algorithms strive for enhancing the flexibility
of the model such that it can be readily updated using few labeled samples. These methods either
aim to optimize a meta-learned classifier to be easily fine-tuned using the small-scale support set
provided (Ravi & Larochelle (2017); Finn et al. (2017); Li et al. (2017); Munkhdalai & Yu (2017);
Nichol et al. (2018)), or resort to neural network generation which trains meta-learning networks to
adaptively generate some components of another neural network using the support set (Qiao et al.
(2018); Gidaris & Komodakis (2018); Rusu et al. (2019)). The last category of methods combat the
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data deficiency problem directly, aiming to effectively augment labeled data. Some methods try to
employ additional examples by some form of transfer learning from external data (Ren et al. (2018);
Wang & Hebert (2016)); others aim to synthesize new data based on existing labeled ones by various
data augmentation techniques tailored for FSL problem (Chen et al. (2019a); Schwartz et al. (2018);
Hariharan & Girshick (2017); Yu & Kristen (2017); Gao et al. (2018); Zhang et al. (2018)).

This paper builds on top of the WGAN model and proposes a novel GAN architecture to augment
labeled samples by synthesizing fake features conditioned on those of the real labeled ones. Our
method is significantly different from the peer GAN based FSL algorithms (Zhang et al. (2018);
Gao et al. (2018)). (Zhang et al. (2018)) serves as a plugin for existing FSL classifiers, aiming to
enhance their capability by using GAN to generate fake data between the manifolds of different
real data classes. It does not use the synthesized samples for classification at all. Our method
instead is independent from existing FSL approaches and we use GAN to augment the labeled data
set on which a standard (rather few-shot) classifier can be learned. (Gao et al. (2018)) has the
same objective as us for synthesizing samples. However, it applies cycle-consistency constraint on
the synthesized samples to guarantee discriminability, which only enforces a synthesized sample to
reconstruct well the conditioned sample on which it is generated; it neglects to exploit the inter-class
competing information, which shall be crucial for FSL. Our method instead requires synthesized
features to have high correlation with real features of the same classes and low correlation with those
of different classes. Class discrimination information is thus fully utilized, ensuring discriminative
features synthesized. Further, (Gao et al. (2018)) secures diversity of synthesized samples for a novel
class by a covariance constraint derived from its most similar base classes. We instead achieve this
goal by an anti-collapse regularizer. Our model also shares some similarity with (Xian et al. (2018)),
a recent GAN based zero-shot learning algorithm, which synthesizes features based on the semantic
description of classes. Apart from the different sources conditioned to synthesis new features, we
further propose the novel classification regularizer and anti-collapse regularier to secure us diverse
and discriminative features based on the few labeled ones.

3 ALGORITHM

In this section, we will first introduce some preliminary knowledge about Wasserstein GAN. Then,
we will elaborate the details how we build our D2GAN model on top of it.

3.1 WASSERSTEIN GAN

Generative Adversarial Networks (GANs) are a powerful class of generative models that cast gener-
ative modeling as a game between two networks: a generator network produces synthetic data given
some noise source and a discriminator network discriminates between the generators output and real
data. GANs can produce very visually appealing samples, but are often hard to train. (Arjovsky et al.
(2017)) provides an analysis of the convergence properties of the value function being optimized by
GANs and proposes the Wasserstein GAN (WGAN), which leverages the Wasserstein distance to
produce a value function which has better theoretical properties than the original. We adopt the
improved WGAN model (Gulrajani et al. (2017)), which optimizes the following min-max problem,

min
G

max
D

E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2], (1)

where Pr is the data distribution and Pg is the model distribution defined by x̃ ∼ G(z), with
z ∼ p(z) randomly sampled from some noise distribution p. Px̂ is defined by sampling uniformly
along straight lines between pairs of points sampled from the data distribution Pr and the genera-
tor distribution Pg , i.e., x̂ = αx + (1 − α)x̃ with α ∼ U(0, 1). The first two terms of Eq. (1)
approximate the Wasserstein distance, while the third term penalizes on the gradient norm of x̂.

3.2 D2GAN

Following the literature, we formally define the Few-Shot Learning (FSL) problem as following:
Given a distribution of tasks P (T ), a sample task T ∼P (T ) (also called an episode) is a tuple
T = (ST , QT ), where the support set ST = {(x1, y1), (x2, y2), · · · , (xN×K , yN×K)} contains K
labeled samples from each of the N classes. This is usually known as K-shot N -way classification.

3



Under review as a conference paper at ICLR 2020

𝑧	~	𝑁(0, 1)

Support Query

𝑧*
𝑧+

𝑠̃+

𝐿/0

𝐿123 𝐿40

𝑠
𝑠̃* …

…

…

…

Feature
extractor

Generator

Discriminator

Few-shot
classifier

Feature
extractor

𝑭
𝑭𝑮

Figure 1: Framework of the proposed D2GAN.

QT = {(x1, y1), (x2, y2), · · · , (xT , yT )} is the query dataset. The objective is to minimize the
classification prediction risk of QT , according to ST .

Few-shot learning with conditional GAN. We approach FSL from the perspective of data augmen-
tation via conditional GAN. The training pipeline is illustrated in Figure 1. The feature extraction
network F takes as input each image (x, y) ∈ ST , producing a feature representation vector

s = F (x). (2)

When there are multiple samples for class y, i.e., K > 1, we simply average the feature vectors
and take the averaged vector as the prototype of class y (Snell et al. (2017)). Conditioned on s, we
synthesize fake features for the class.

Unlike previous GAN models which sample a single random noise variable from some distribution,
we sample two noise variables z1 and z2 ∼ N(0, 1). The generator G synthesizes fake feature s̃1
(̃s2) taking as input z1 (z2) and the class prototype s,

s̃i = G(s, zi), ∀i = 1, 2. (3)

Generator G aims to synthesize s̃i to be as similar as possible to s. The discriminator D, taking
zi and s as input, tries to discern s̃i as fake. Within the WGAN framework, the loss function is as
follows,

LGANi = E[D(s̃i, zi)]− E[D(s, zi)] + λE[(‖∇ŝiD(ŝi)‖2 − 1)2], ∀i = 1, 2. (4)

Simply training the model with the above GAN loss does not guarantee the generated features are
well suited for learning a discriminative classifier because it neglects the inter-class competing in-
formation among different classes. Moreover, since the conditioned feature vectors are of high
dimension and structured, it is likely that the generator will neglect the noise vector and all synthe-
sized features collapse to a single point in the feature space. To avoid these problems, we append the
objective function with a classification regularization term and an anti-collapse regularization term,
aiming to mitigate the mode collapse problem and get diverse and discriminative features.

Classification regularization. As our objective is to classify well samples in the query set QT ,
given the support set ST . To encourage the synthesized features to serve well this purpose as the
real features, inspired by (Snell et al. (2017)), we define a non-parametric FSL classifier, which
calculates the possibility of a query image q = F (xq) of being the same class as synthesized feature
s̃i as

P (y|xq) =
exp(cos(s̃i,q))∑N

j=1 exp(cos(s̃ji , F (q)))
, (5)

where cos(a,b) is the Cosine similarity of two vectors, implemented as cos(a,b) = a·b
‖a‖2‖b‖2 . The

adoption of Cosine similarity, rather than the widely-used dot product, is inspired by a recent FSL
algorithm (Gidaris & Komodakis (2018)), which proved that replacing dot product with Cosine can
bound and reduce the variance of the neurons and thus result in models of better generalization.

With the proposed FSL classifier, the classification regularization for in a typical FSL task is defined
as follows:

Lcri = E
(xq,yq)∼QT

log[−P (y|xq)] ∀i = 1, 2. (6)

We can see that this regularizer explicitly encourages the synthesized features to have high correla-
tion with features of the same classes, while low correlation with features of different classes. This
thus ensures feature discriminability.
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Anti-collapse regularization. GAN models are known for suffering from the notorious mode col-
lapse problem, especially for conditional GANs, where the conditional contexts are generally high-
dimensional and structured (e.g., images or sentences) as opposed to the noise vectors. As such,
the generators are likely to focus on the contexts and ignore the noise vectors (latent codes), which
account for diversity. Specifically to our case, our goal is to augment the few labeled samples in the
feature space; when model collapse occurs, all synthesized features may collapse to a single point
in the feature space, failing to diversify the training samples. Observing that noise vectors that are
closer in the latent code space are more likely to be collapsed into the same mode when mapped
to feature space, we directly penalize the ratio of the logarithmic similarity two synthesized feature
vectors and the logarithmic similarity of the two noise vectors generating them.

Specifically, remember that we sample two random variables z1 and z2 and generate two fake feature
vectors, i.e., s̃1 = G(s, z1) and s̃2 = G(s, z2). When z1 and z2 are closer, s1 and s2 are more likely
to be collapsed into the same mode. To mitigate this, we define the anti-collapse regularization term

Lar =
log(cos(s̃1, s̃2))

log(cos(z1, z2))
. (7)

We can observe this term is to penalize the similarity between the two fake feature vectors when
the latent codes generating them are of high similarity. In this way, it encourages the generator to
explore the feature space and enhances the chances for generating samples of minor modes. On
the other hand, the discriminator is forced to pay attention to generate samples from minor modes.
Therefore, the regularization term offers a virtuous circle for training our proposed D2GAN model.

With the above two regularization terms, we reach our final training objective as

min
G

max
D

2∑
i=1

LGANi
+ α

2∑
i=1

Lcri + βLar, (8)

where α and β are two hyper-parameters.

3.3 CLASSIFICATION WITH SYNTHESIZED SAMPLES

In the test stage, given a FSL task T = (ST , QT ), we first augment the labeled support set ST with
the learned generator G. Then, we train a classifier with the augmented supported set. The classifier
is used to classify samples from the query setQT . Specifically, suppose after data augmentation, we
get an enlarged support set ŜR = {(s1, y1), (s2, y2), · · · , (sN×K′ , yN×K′)}whereK ′ is the number
of samples synthesized for each class. With ŜR, we train a standard Softmax classifier fc as

min
θ

E
(s,y)∼ŜR

log[−P (y|s; θ)], (9)

where θ ∈ Rds×N is the parameter of fc. With fc, we classify samples from QT .

4 EXPERIMENTS

We evaluate D2GAN on three common benchmark datasets, namely, Mini-ImageNet (Vinyals et al.
(2016)), CUB (Wah et al. (2011)) and CIFAR100 (Krizhevsky & Hinton (2009)). The Mini-
ImageNet dataset is a subset of ImageNet. It has 60,000 images from 100 classes, 600 images for
each class. We follow previous methods and use the splits in (Ravi & Larochelle (2017)) for evalu-
ation, i.e., 64, 16, 20 classes as training, validation, and testing sets, respectively. The CUB dataset
is a fine-grained dataset of totally 11,788 images from 200 categories of birds. We use the split in
(Ravi & Larochelle (2017)) and 100, 50, 50 classes for training, validation, and testing, respectively.
The CIFAR-100 dataset contains 60,000 images from 100 categories. We use the same data split
as in (Zhou et al. (2018)). In particular, 64, 16 and 20 classes are used for training, validation and
testing, respectively. For all the three datasets, we resize images to 224×224.

Following previous methods, we evaluate 5-way 1-shot and 5-way 5-shot classification tasks where
each task instance involves classifying test images from 5 sampled classes with 1 or 5 randomly sam-
pled images for each class as the support set. In order to reduce variance, we repeat the evaluation
task 600 times and report the mean of the accuracy with a 95% confidence interval.
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cGAN 7 ! ! !

CR 7 7 ! !

AR 7 7 7 !
52.73? 57.58 60.57 62.26

Table 1: Ablation study on the Mini-ImageNet dataset for 5-way 1-shot setting. “cGAN” refers
to conditional GAN, “CR” indicates the classification regularizer, and “AR” represents the anti-
collapse regularizer. ? indicates the result is obtained by the baseline method, ResNet18+SVM,
which applies the SVM classifier directly on ResNet18 features without data augmentation.

We compare with various FSL algorithms, including (1) metric learning based methods: Matching
Net (Vinyals et al. (2016)), PROTO NET (Snell et al. (2017)), MM-Net (Cai et al. (2018)), MACO
(Hilliard et al. (2018)), GNN (Garcia & Bruna (2017)), RELATION NET (Sung et al. (2018)), and
TPN (Liu et al. (2019)); (2) meta-learning based methods: MAML (Finn et al. (2017)), META-
LSTM (Ravi & Larochelle (2017)), META-SGD (Li et al. (2017)), SNAIL (Mishra et al. (2017)),
DFSVL (Gidaris & Komodakis (2018)), PPA (Qiao et al. (2018)), and LEO (Rusu et al. (2019));
(3) data augmentation based methods: MetaGAN (Zhang et al. (2018)), Dual TriNet (Chen et al.
(2019b)), ∆-encoder (Schwartz et al. (2018)), and IDeMe-Net (Chen et al. (2019a)).

4.1 IMPLEMENTATION DETAILS

Following the peer data augmentation based methods (Schwartz et al. (2018); Chen et al. (2019b;a)),
we use ResNet18 (He et al. (2016)) as our feature extraction network F . We implement the generator
G as a two-layer MLP, with LeakyReLU activation for the first layer and ReLU activation for the
second one. The dimension of the hidden layer is 1024. The discriminator is also a two-layer MLP,
with LeakyReLU as the activation function for the first layer and Sigmoid for the second layer. The
dimension of the hidden layer is also 1024. The noise vectors z1 and z2 are drawn from a unit
Gaussian with the same dimensionality as the feature embeddings.

Following the peer methods, we perform two step training procedures. In the first step, we only
train the feature extraction network F as a multi-class classification task using only the training
split. We use Adam optimizer with an initial learning rate 10−3 which decays to the half every
10 epochs. We train F with 100 epochs with batch size of 128. In the second training stage, we
train the generator and discriminator alternatively, using features extracted by F and update G once
every 5 updates of D. The Adam optimizer has an initial learning rate of 10−5 for both models and
decays to half every 20 epochs. We train the whole network with 100 epochs where there are 600
randomly sampled FSL tasks in each epoch. For the hyper-parameters, we set λ = 10 as suggested
by (Gulrajani et al. (2017)), and α = β = 1 for all the three datasets. During the test stage, we
synthesize 300 fake features for each class.

The code is developed based on PyTorch.

4.2 ABLATION STUDY

Based on conditional GAN (cGAN), the proposed D2GAN model synthesizes fake features condi-
tioned on those of labeled samples. Besides, D2GAN incorporates the novel Classification Regular-
ier (CR) and Anti-collapse Regularizer (AR) to ensure discriminability and diversity of the synthe-
sized features. To evaluate the effectiveness and impact of these components, we conduct ablation
study on the Mini-ImageNet dataset in the 5-way 1-shot setting. The results are shown in Table 1.

cGAN. Compared with the baseline result (without data augmentation), we can observe that it raises
the accuracy from 52.73 to 57.58 by augmenting the labeled samples using our cGAN model. We
analyze the reason is that the synthesized features enhance intra-class variance, which facilitates to
make the decision boundaries much sharper.

CR. This regularizer is to regularize the synthesized features to have desirable classification property
such that we can train from them a discriminative classifier. We can observe that the accuracy is
boosted by 3% with this regularization term added, thereby substantiating its effectiveness.

AR. The regularizer aims to enhance the diversity of the synthesized features and Table 1 shows that
it further brings about 2% performance gains.
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Backbone 1-shot 5-shot
ResNet18 + SVM (baseline) ResNet18 52.73 73.31
Matching Net (Vinyals et al. (2016)) 4Conv 43.56 55.31
PROTO Net (Snell et al. (2017)) 4Conv 49.42 68.20
MM-Net (Cai et al. (2018)) 4Conv 53.37 66.97
GNN (Garcia & Bruna (2017)) 4Conv 50.33 66.41
RELATION NET (Sung et al. (2018)) 4Conv 57.02 71.07
TPN (Liu et al. (2019)) 4Conv 55.51 69.86
MAML (Finn et al. (2017)) 4Conv 48.70 63.11
META-LSTM (Ravi & Larochelle (2017)) 4Conv 43.44 60.60
SNAIL (Mishra et al. (2017)) 4Conv 55.71 68.88
MACO (Hilliard et al. (2018)) 4Conv 41.09 58.32
DFSVL (Gidaris & Komodakis (2018)) 4Conv 55.95 73.00
META-SGD (Li et al. (2017)) 4Conv 50.47� 64.03�

PPA (Qiao et al. (2018)) WRN-28-10 59.60 73.74
LEO (Rusu et al. (2019)) WRN-28-10 61.76 77.59
MetaGAN (Zhang et al. (2018)) 4Conv 52.71 68.63
Dual TriNet (Chen et al. (2019b)) ResNet18 58.80† 76.71†

∆-encoder (Schwartz et al. (2018)) ResNet18 59.90 69.70
IDeMe-Net (Chen et al. (2019a)) ResNet18 59.14 74.63
D2GAN ResNet18 62.26 78.07

Table 2: Few-shot classification accuracy on Mini-Imagenet. �: using a large external dataset. †:
using label embedding trained on large corpus or human annotated class attributes. We omit the
standard deviations, which are less than 2% for all methods. The best results are in bold.

4.3 COMPARATIVE RESULTS

Mini-Imagenet. This dataset is the most extensively evaluated dataset. From Table 2 we can observe
that D2GAN attains the new state-of-the-art, for both the 1-shot and 5-shot setting. Compared with
the other four data augmentation based methods, D2GAN reaches significant improvements: it beats
∆-encoder (Schwartz et al. (2018)) by more than 8% for the 5-shot setting and Dual TriNet (Chen
et al. (2019b)) by more than 3% for the 1-shot setting. Compared with MetaGAN (Zhang et al.
(2018)) which is also based on GAN, D2GAN achieves about 10% improvements for both the 1-
shot and 5-shot cases. Besides the remarkable advantages over the peer data augmentation based
methods, D2GAN also exhibits remarkable advantages over the other two categories of methods. It
beats the best metric learning based method RELATION NET (Sung et al. (2018)) by about 5% and
7% for the 1-shot and 5-shot setting, respectively. It also performs better than the best meta-learning
based algorithm. Compared with the baseline method, “ResNet18+SVM”, D2GAN reaches about
10% and 5% improvements for the 1-shot and 5-shot setting, respectively. This substantiates the
effectiveness of our proposed data augmentation techniques.

CUB & CIFAR100. From Table 3 we can see that D2GAN reaches comparable results with the
state-of-the-art on CUB, while attains the new state-of-the-art on CIFAR100. Specially on CI-
FAR100, D2GAN beats Dual TriNet by 5% and 3% for 1-shot and 5-shot respectively. Compared
with the best meta-learning based method, we get 7% and 4% improvements for the 1-shot and
5-shot respectively. One thing worthy to be noted is that compared with our baseline method, we
have a moderate improvement in the 1-shot setting while reach only a marginal boost for the 5-shot
setting for the CUB dataset. We speculate the reason is that this dataset is relatively small, less
than 60 images per class on average; a large number of classes only have about only 30 images.
Due to the small scale of this dataset, the intra-class variance is less significant than that of the other
datasets, such that 5 labeled samples are already sufficient to capture most of the intra-class variance;
performing data augmentation becomes less crucial than that for the other datasets.

4.4 FURTHER ANALYSIS

Impact of the number of synthesized features. Figure 3 shows the analysis on Mini-ImageNet
about the recognition accuracy with respect to the number of synthesized features during test stage.
We can observe that the classification accuracy keeps boosted with more features synthesized at the
beginning, and remains stable with even more synthesized samples. This is reasonable because the
class variance encapsulated by the few labeled samples has a limit; data augmentation based on these

7



Under review as a conference paper at ICLR 2020

Backbone CUB CIFAR100
1-shot 5-shot 1-shot 5-shot

ResNet18 + SVM (baseline) ResNet18 66.54 82.38 59.65 76.75
Matching Net (Vinyals et al. (2016)) 4Conv 49.34 59.31 50.53 60.30
PROTO Net (Snell et al. (2017)) 4Conv 45.27 56.35 - -
MAML (Finn et al. (2017)) 4Conv 38.43 59.15 49.28 58.30
META-LSTM (Ravi & Larochelle (2017)) 4Conv 40.43 49.65 - -
MACO (Hilliard et al. (2018)) 4Conv 60.76 74.96 - -
META-SGD (Li et al. (2017)) 4Conv 66.90� 77.10� 61.60� 77.90�

Dual TriNet (Chen et al. (2019b)) ResNet18 69.61† 84.10† 63.41† 78.43†

∆-encoder (Schwartz et al. (2018)) ResNet18 69.80 82.60 66.70 79.80
D2GAN ResNet18 70.49 83.92 68.23 81.38

Table 3: Few-shot classification accuracy on CUB and CIFAR100. Please refer Table 2 for details.
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Figure 2: t-SNE (Maaten & Hinton (2008)) visualization of synthesized feature embeddings. From
the left to right are the results of cGAN, cGAN with CR regularizer, and cGAN with both CR and
AR regularizers. The real features are indicated by ?. Different colors represent different classes.

labeled samples can enlarge the variance to some extent, but it is still bounded by the few labeled
samples themselves. When it reaches the peak, the performance reasonably turns stable.
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Figure 3: Impact of the number
of synthesized samples on the
Mini-ImageNet dataset.

Visualization of synthesized features. We showed quantitatively
in the ablation study that owing to the CR and AR regularizers,
we can generate diverse and discriminative features, which brings
significant performance gains. Here we further study the effect of
the two regularizers by showing the t-SNE visualization of the
synthesized features. As shown in Figure 2, the synthesized fea-
tures of different classes mix up together when using only cGAN
for augmentation. As analyzed before, cGAN does not guarantee
synthesizing semantically meaningful features. The problem is
substantially resolved when we train cGAN with CR. The synthe-
sized features exhibit clear clustering structure, which helps train
a discriminative classifier. Further, with AR added, the synthe-
sized features still exhibit favorable clustering structure. Taking
a closer look of the visualization, we can find the features syn-
thesized with AR added are more diverse than that without it: the
clusterings are less compact, stretched to larger regions, and even contains some noise. This shows
AR indeed helps diversify the synthesized features.

5 CONCLUSIONS

We introduced in this paper D2GAN, a new GAN model for few-shot learning. D2GAN synthesizes
feature embeddings for new classes conditioned on those of a few labeled samples of the classes.
Two novel regularizers are proposed to train D2GAN. The first one secures feature discriminability
by requiring the synthesized features to be similar with other samples of the same classes. The sec-
ond regularizer aims for enhancing the diversity of the synthesized features, by penalizing the ratio
of the logarithmic similarity between two synthesized features and the logarithmic similarity of the
two latent codes generating them. Experiments on three common benchmark datasets substantiate
the superiority of D2GAN to the state-of-the-art, and the two proposed regularizers indeed enhance
feature discriminability and diversity.
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APPENDIX A: NETWORK ARCHITECTURE

Feature extraction model: Standard ResNet18 (excluding the last FC layer).

Generator: FC (1024×1024)→ LeakyReLU→ FC (1024×1024)→ ReLU.

Discriminator: FC (1024×1024)→ LeakyReLU→ FC (1024×1024)→ Sigmoid.

APPENDIX B: PSEUDO CODE

Algorithm 1 outlines the main steps of training the proposed model.
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Algorithm 1. Proposed FSL algorithm
Input: Training set Dt = {Xt,Yt}, hyper-paramters λ, α, and β.
Output: Feature extraction network F , parameterized by θf ; generator G, parameterized by θg;
discriminator D, paremterized by θd.
1. Train F as a standard multi-class classification task using Dt

while not done do
2. Randomly sample from Dt a batch of FSL tasks T d

i ∼ p(Dt)
For each T d

i do
3. Sample a support set S = {{xi,j}Ni=1, yj}Mj=1 consisting of N samples for each of M classes.
4. Sample query setQ = {{xk,j}Qk=1, yj}

M
j=1 consisting of Q samples for each of the M classes.

5. Calculate prototype set of the M classes P = {sj}Mj=1, where sj = 1
N

∑N
i=1 F (xi,j).

6. Sample M random variables Z1 = {zj1}Mj=1 and variables Z2 = {zj2}Mj=1

where each zj1 ∼ N(0, 1) and each zj2 ∼ N(0, 1).
7. Generate fake feature sets Z̃1 = {z̃j1}Mj=1 and Z̃2 = {z̃j2}Mj=1,

where z̃j1 = G(sj , zj1) and z̃j2 = G(sj , zj2)
8. Calculate discriminator loss lD according to Eq. (8) in the main text
9. Update θd using lD

end For
10. Randomly sample from Dt a batch of FSL tasks T g

i ∼ p(Dt)
For each T g

i do
11. Sample a support set S = {{xi,j}Ni=1, yj}Mj=1 consisting of N samples for each of M classes.
12. Sample query setQ = {{xk,j}Qk=1, yj}

M
j=1 consisting of Q samples for each of the M classes.

13. Calculate prototype set of the M classes P = {sj}Mj=1, where sj = 1
N

∑N
i=1 F (xi,j).

14. Sample M random variables Z1 = {zj1}Mj=1 and variables Z2 = {zj2}Mj=1

where each zj1 ∼ N(0, 1) and each zj2 ∼ N(0, 1).
15. Generate fake feature sets Z̃1 = {z̃j1}Mj=1 and Z̃2 = {z̃j2}Mj=1,

where z̃j1 = G(sj , zj1) and z̃j2 = G(sj , zj2)
16. Calculate discriminator loss lG according to Eq. (8) in the main text
17. Update θg using lG

end For
end while

APPENDIX C: DETAILED EXPERIMENTAL RESULTS

In the main text, we omit the 95% confidence intervals over tasks to save space. We add the interval
values and show them in Tables 4 - 6.
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1-shot 5-shot
ResNet18 + SVM (baseline) 52.73±1.44 73.31±0.81
Matching Net (Vinyals et al. (2016)) 43.56±0.84 55.31±0.73
PROTO Net (Snell et al. (2017)) 49.42±0.78 68.20±0.66
MM-Net (Cai et al. (2018)) 53.37±0.48 66.97±0.35
GNN (Garcia & Bruna (2017)) 50.33±0.36 66.41±0.63
RELATION NET (Sung et al. (2018)) 57.02±0.92 71.07±0.69
TPN (Liu et al. (2019)) 55.51±0.86 69.86±0.65
MAML (Finn et al. (2017)) 48.70±1.84 63.11±0.92
META-LSTM (Ravi & Larochelle (2017)) 43.44±0.77 60.60±0.71
SNAIL (Mishra et al. (2017)) 55.71±0.99 68.88±0.92
MACO (Hilliard et al. (2018)) 41.09±0.32 58.32±0.21
DFSVL (Gidaris & Komodakis (2018)) 55.95±0.89 73.00±0.68
META-SGD (Li et al. (2017)) 50.47±1.87 64.03±0.94
Qiao et al. (2018) 59.60±0.41 73.74±0.19
LEO (Rusu et al. (2019)) 61.76±0.08 77.59±0.12
MetaGAN (Zhang et al. (2018)) 52.71±0.64 68.63±0.67
Dual TriNet (Chen et al. (2019a)) 58.80±1.37 76.71±0.69
∆-encoder (Schwartz et al. (2018)) 59.90 69.70
IDeMe-Net (Chen et al. (2019a)) 59.14±0.86 74.63±0.74
D2GAN 62.26±0.83 78.07±0.65

Table 4: Few-shot classification accuracy on Mini-Imagenet dataset. The ± indicates 95% confi-
dence intervals over tasks. The best results are in bold.

1-shot 5-shot
ResNet18 + SVM (baseline) 66.54±0.53 82.38±0.43
Matching Net (Vinyals et al. (2016)) 49.34 59.31
PROTO Net (Snell et al. (2017)) 45.27 56.35
MAML (Finn et al. (2017)) 38.43 59.15
META-LSTM (Ravi & Larochelle (2017)) 40.43 49.65
MACO (Hilliard et al. (2018)) 60.76 74.96
META-SGD (Li et al. (2017)) 66.90 77.10
Dual TriNet (Chen et al. (2019a)) 69.61 84.10
∆-encoder (Schwartz et al. (2018)) 69.80±0.46 82.60±0.35
D2GAN 70.49±1.02 83.92±0.71

Table 5: Few-shot classification accuracy on CUB. The ± indicates 95% confidence intervals over
tasks. The best results are in bold.

1-shot 5-shot
ResNet18 + SVM (baseline) 59.65±0.78 76.75±0.73
Matching Net (Vinyals et al. (2016)) 50.53±0.87 60.30±0.82
MAML (Finn et al. (2017)) 49.28±0.90 58.30±0.80
META-SGD (Li et al. (2017)) 61.60±0.89 77.90±0.74
Dual TriNet (Chen et al. (2019a)) 63.41±0.64 78.43±0.62
∆-encoder (Schwartz et al. (2018)) 66.70 79.80
D2GAN 68.23±1.04 81.38±0.78

Table 6: Few-shot classification accuracy on CIFAR100 datasets. The ± indicates 95% confidence
intervals over tasks. The best results are in bold.
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