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ABSTRACT

New data processing pipelines and novel network architectures increasingly
drive the success of deep learning. In consequence, the industry considers top-
performing architectures as intellectual property and devotes considerable com-
putational resources to discovering such architectures through neural architecture
search (NAS). This provides an incentive for adversaries to steal these novel ar-
chitectures; when used in the cloud, to provide Machine Learning as a Service
(MLaaS), the adversaries also have an opportunity to reconstruct the architectures
by exploiting a range of hardware side channels. However, it is challenging to
reconstruct novel architectures and pipelines without knowing the computational
graph (e.g., the layers, branches or skip connections), the architectural parameters
(e.g., the number of filters in a convolutional layer) or the specific pre-processing
steps (e.g. embeddings). In this paper, we design an algorithm that reconstructs
the key components of a novel deep learning system by exploiting a small amount
of information leakage from a cache side-channel attack, Flush+Reload. We use
Flush+Reload to infer the trace of computations and the timing for each computa-
tion. Our algorithm then generates candidate computational graphs from the trace
and eliminates incompatible candidates through a parameter estimation process.
We implement our algorithm on PyTorch and Tensorflow. We demonstrate exper-
imentally that we can reconstruct MalConv, a novel data pre-processing pipeline
for malware detection, and ProxylessNAS-CPU, a novel network architecture for
the ImageNet classification optimized to run on CPUs, without knowing the archi-
tecture family. In both cases, we achieve 0% error. These results suggest hardware
side channels are a practical attack vector against MLaaS, and more efforts should
be devoted to understanding their impact on the security of deep learning systems.

1 INTRODUCTION

To continue outperforming state-of-the-art results, research in deep learning (DL) has shifted from
manually engineering features to engineering DL systems, including novel data pre-processing
pipelines (Raff et al., 2018; Wang et al., 2019) and novel neural architectures (Cai et al., 2019;
Zoph et al., 2018). For example, a recent malware detection system MalConv, with a manually
designed pipeline that combines embeddings and convolutions, achieves 6% better detection rate
over previous state-of-the-art technique without pre-processing (Raff et al., 2018). In addition to
designing data pre-processing pipelines, other research efforts focus on neural architecture search
(NAS)—a method to automatically generate novel architectures that are faster, more accurate and
more compact. For instance, the recent work of ProxylessNAS (Cai et al., 2019) can generate a
novel architecture with 10% less error rate and 5x fewer parameters than previous state-of-the-art
generic architecture. As a result, in the industry such novel DL systems are kept as trade secrets or
intellectual property as they give their owners a competitive edge (Christian & Vanhoucke, 2017).

These novel DL systems are usually costly to obtain: generating the NASNet architectures (Zoph
et al., 2018) takes almost 40K GPU hours and the MalConv authors had to test a large number of
failed designs in the process of finding a successful architecture. As a result, an adversary who
wishes to have the benefits of such DL systems without incurring the costs has an incentive to steal
them. Compared to stealing a trained model (including all the weights), stealing the architectural
details that make the victim DL system novel provides the benefit that the new architectures and
pipelines are usually applicable to multiple tasks. Training new DL systems based on these stolen
details still provides the benefits, even when the training data is different. After obtaining these
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details, an attacker can train a functioning model, even on a different data set, and still benefit from
the stolen DL system (So et al., 2019; Wang et al., 2019). Further, against a novel system, stealing its
architectural details increases the reliability of black-box poisoning and evasion attacks (Demontis
et al., 2019). Moreover, stealing leads to threats such as Camouflage attacks (Xiao et al., 2019)
that trigger misclassifications by exploiting the image scaling algorithms that are common in DNN
pre-processing pipelines.

The emerging Machine-Learning-as-a-Service (MLaaS) model that offers DL computation tools
in the cloud makes remote hardware side-channel attacks a practical vector for stealing DL sys-
tems (Liu et al., 2015). Unlike prior stealing attacks, these attacks do not require physical proximity
to the hardare that runs the system (Batina et al., 2019; Hua et al., 2018) or direct query access to
train an approximate model (Tramèr et al., 2016). Cache side-channel attacks have especially been
shown as practical in cloud computing for stealing sensitive information, such as cryptographic
keys (Liu et al., 2015). Cache side-channel attacks are ubiquitous and difficult to defeat as they are
inherent to the micro architectural design of modern CPUs (Werner et al., 2019).

In this paper, considering the incentives to steal a novel DL system and applicability of cache side-
channel attacks in modern DL settings, we design a practical attack to steal novel DL systems by
leveraging only the cache side-channel leakage. Simulating a common cloud computing scenario,
our attacker has a co-located VM on the same host machine as the victim DL system, and shares the
last-level cache with the victim (Liu et al., 2015). As a result, even though the VMs are running on
separate processor cores, the attacker can monitor the cache accesses a DL framework—PyTorch or
TensorFlow—makes while the victim system is running (Liu et al., 2015).

The first step of our attack is launching a cache side-channel attack, Flush+Reload (Yarom &
Falkner, 2014), to extract a single trace of victim’s function calls (Section 3). This trace corre-
sponds to the execution of specific network operations a DL framework performs, e.g., convolutions
or batch-normalizations, while processing an input sample. However, the trace has little information
about the computational graph, e.g., the layers, branches or skip connections, or the architectural pa-
rameters, e.g., the number of filters in a convolutional layer. The limited prior work on side-channel
attacks against DL systems assumed knowledge of the architecture family of the victim DNN (Yan
et al., 2018; Duddu et al., 2018); therefore, these attacks are only able to extract variants of generic
architectures, such as VGG (Simonyan & Zisserman, 2015) or ResNet (He et al., 2016). To over-
come this challenge, we also extract the approximate time each DL operation takes, in addition to
the trace, and we leverage this information to estimate the architectural parameters. This enables us
to develop a reconstruction algorithm that generates a set of candidate graphs given the trace and
eliminates the incompatible candidates given the parameters (Section 4). We apply our technique to
two exemplar DL systems: the MalConv data pre-processing pipeline and a novel neural architecture
produced by ProxylessNAS.

Contributions. We design an algorithm that reconstructs novel DL systems only by extracting
cache side-channel information, that leaks DL computations, using Flush+Reload attack. We show
that Flush+Reload reliably extracts the trace of computations and exposes the time each computa-
tional step takes in a practical cloud scenario. Using the extracted information, our reconstruction
algorithm estimates the computational graph and the architectural parameters.

We demonstrate that our attacker can reconstruct a novel network architecture found from NAS
process (ProxylessNAS) and a novel manually designed data pre-processing pipeline (MalConv)
with no reconstruction error.

We demonstrate the threat of practical stealing attacks against DL by exposing that the vulnerability
is shared across common DL frameworks, PyTorch and TensorFlow.

2 BACKGROUND

Here, we discuss prior efforts in both crafting and stealing network architectures. There is a growing
interest in crafting novel DL systems as they significantly outperform their generic counterparts. The
immense effort and computational costs of crafting them, however, motivates the adversaries to steal
them.
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Effort to Design Deep Learning Systems. Creating deep learning systems traditionally takes the
form of human design through expert knowledge and experience. Some problems require novel
designs to manipulate the input in a domain-specific way that DNNs can process more effectively.
For example, MalConv malware detection system (Raff et al., 2018) uses a manually designed pre-
processing pipeline that can digest raw executable files as a whole. Pseudo LIDAR (Wang et al.,
2019), by pre-processing the output of a simple camera sensor into a LIDAR-like representation,
achieves four times better object detection accuracy than previous state-of-the-art technique. More-
over, recent work also focuses on automatically generating optimal architectures via neural archi-
tecture search (NAS). For example, reinforcement learning (Zoph & Le, 2016) or gradient-based
approaches (Cai et al., 2019) have been proposed for learning to generate optimal architectures.
Even though NAS procedures have been shown to produce more accurate, more compact and faster
neural networks; the computational cost of the search can be an order of magnitude higher than
training a generic architecture (Zoph et al., 2018).

Effort to Steal Deep Learning Systems. Prior work on stealing DNN systems focus on two main
threat models based on whether the attacker has physical access to the victim’s hardware. Physical
access attacks have been proposed against hardware accelerators and they rely on precise timing
measurements (Hua et al., 2018) or electromagnetic emanations (Batina et al., 2019). These attacks
are not applicable in the cloud setting we consider. The remote attacks that are applicable in the cloud
setting, on the other hand, have limitation of requiring precise measurements that are impractical in
the cloud (Duddu et al., 2018;?). Further, the attack without this limitation (Hong et al., 2018)
requires the attacker to know the family the target architecture comes from; thus, it cannot steal
novel architectures. In our work, we design an attack to reconstruct novel DL systems by utilizing a
practical cache side-channel attack in the cloud setting.

3 EXTRACTING THE SEQUENCE OF COMPUTATIONS VIA FLUSH+RELOAD

3.1 THREAT MODEL

We consider an attacker who aims to steal the key components in a novel DL system, i.e., a novel
pre-processing pipeline or a novel network architecture. We first launch a Flush+Reload (Yarom
& Falkner, 2014) attack to extract cache side-channel information leaked by DL computation. Our
target setting is a cloud environment, where the victim’s DL system is deployed inside a VM—or
a container—to serve the requests of external users. Flush+Reload, in this setting, is known to be
a weak, and practical, side-channel attack (Liu et al., 2015). Further, as in MLaaS products in the
cloud, the victim uses popular open-source DL frameworks, such as PyTorch (Benoit Steiner, 2019)
or TensorFlow (Abadi et al., 2016).

Capabilities. We consider an attacker that owns a co-located VM—or a container—in the same
physical host machine as the victim’s system. Prior work has shown that spinning-up the co-located
VM in the third-party cloud computing services does not require sophisticated techniques (Risten-
part et al., 2009; Zhang et al., 2011; Bates et al., 2012; Kohno et al., 2005; Varadarajan et al., 2015).
Due to the co-location, the last-level cache (L3 cache) in the physical host is shared between multi-
ple cores where the attacker’s and victim’s processes are; thus, our attacker can monitor the victim’s
computations leaked at the L3 cache.

Knowledge. We consider our attacker and the victim use the same open-source DL framework.
This is realistic as cloud providers recommend practitioners to use the common frameworks to con-
struct their systems 1. These common practices also allow our attacker to reverse-engineer the
frameworks in offline and identify the lines of code to monitor with the Flush+Reload technique.

3.2 FLUSH+RELOAD MECHANISM

Flush+Reload allows an adversary to continually monitor victim’s instruction access patterns by
observing the time taken to load them from memory. This technique is effective to extract the
computation flow of the victim’s program when the attacker and victim share memory (i.e., a shared

1For example, AWS provides convenient deployment options for both PyTorch and TensorFlow: https://docs.
aws.amazon.com/sagemaker/latest/dg/pytorch.html, https://docs.aws.amazon.com/sagemaker/latest/dg/tf.html.
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Online (Co-located)

2© Monitor the lines of code via Flush+Reload

Offline (Separate)

1© Identify the lines of code to monitor

3© De-noise the Flush+Reload observations
4© Profile the computations with a set of parameters
5© Perform the reconstruction process with the data

Figure 1: Overview of our attack procedure. Our attacker only requires to be online (co-located)
while the attacker is monitoring the computations of a victim DL system.

library or page deduplication (Bosman et al., 2016)). The attacker flushes specific lines of code in a
shared DL framework from the co-located machine’s cache-hierarchy and then measure the amount
of time it takes to reload the lines of code. If the victim invokes the monitored line of code, the
instruction will be reloaded into the shared cache, and when the attacker reloads the instruction, the
access to it will be noticably faster. On the other hand, if the victim does not call the monitored line
of code, the access to it will be slower because the instruction needs to be loaded from main memory
(DRAM). By repeating this process, our attacker can tell when a victim has accessed a line of code.

3.3 OVERVIEW OF OUR ATTACK PROCEDURE

In Figure 1, we illustrate our attack procedure. We split the steps into two phases: the online phase
and the offline phase. In the online phase (step 2©), the attacker needs co-location to monitor the
computations from the victim’s system. In the offline phase (steps 1©, 3©, 4©, and 5©) attacker does
not require the co-location with the victim.

1© First, our attacker analyzes the open-source DL framework to identify the lines of code to mon-
itor. The attacker monitors the first line of each function that corresponds to the start of a DL
computation.

2© Next, the attacker spins up a co-located VM and launches the Flush+Reload attack to extract the
trace of victim system’s function calls. As the trace does not depend on the input sample, we
only require to extract a single trace from one full invocation of the victim system.

3© Since the raw observations with Flush+Reload are noisy, the attacker applies filtering to highlight
the regularities of DL computations reflected on the trace.

4© To estimate the architectural parameters, e.g., the input/output channels, kernel size, or strides,
our attacker creates a lookup tables of timings and performed number of matrix multiplications
by collecting traces from various parameter combinations.

5© Finally, using the victim’s computational trace the lookup tables for estimating architectural pa-
rameters, the attacker starts the reconstruction process to steal the victim’s DL system (Sec 4).

3.4 MONITORING THE TOY NETWORK COMPUTATIONS VIA FLUSH+RELOAD

Experimental Setup. We implement our attack on Ubuntu 18.04 running on a host machine
equipped with the Intel E3-1245v6 3.7GHz processors (8 cores, 32GB memory and 8MB cache
shared between cores). For the step 1©, we analyze two popular open-source DL frameworks, Py-
Torch and TensorFlow, and identify the list of functions to monitor (see Appendix B for the full
list of functions). We leverage the Mastik toolkit (Yarom, 2016) to launch the Flush+Reload attack,
and while a victim DL system is running on a VM, our attacker monitors the list of functions—step
2©. For the reconstruction process conducted in offline after the extraction, we use Python v3.62 to

implement the procedure.

ToyNet Results. In Figure 2, we demonstrate the extracted trace via Flush+Reload while ToyNet
is processing an input. ToyNet is composed of one convolution followed by a batch-norm and one
depthwise convolution followed by a batch-norm and a ReLU activation. The 1st convolution has
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ToyNet (PyTorch)

c l a s s ToyNet ( nn . Module ) :
d e f i n i t ( s e l f , i n p l a c e =True ) :

s u p e r ( ToyNet , s e l f ) . i n i t ( )
s e l f . c1 = nn . Conv2d ( 3 , 1 0 , 1 , 1 )
s e l f . b1 = nn . BatchNorm2d ( 1 0 )
s e l f . c2 = nn . Conv2d ( 1 0 , 1 0 , 1 , 1 0 )
s e l f . b2 = nn . BatchNorm2d ( 1 0 )
s e l f . r 2 = nn . ReLU6 ( i n p l a c e )

d e f f o r w a r d ( s e l f , x ) :
x = s e l f . c1 ( x )
x = s e l f . b1 ( x )
s k i p = x # s k i p c o n n e c t i o n
x = s e l f . c2 ( x )
x = s e l f . b2 ( x )
x = s e l f . r 2 ( x )
x += s k i p # s k i p c o n n e c t i o n
r e t u r n x

Raw Trace

52230076,Conv2d
...
53440820,GEMM(conv)
53440820,GEMM(oncopy)
...
54242076,BatchNorm2d
...
55600076,Conv2d
56040820,GEMM(conv)
56040820,GEMM(oncopy)
...
59268076,BatchNorm2d
59880076,ReLU6
...
60270076,add

Processed Trace

[0] Conv2D,52230076,1,2
[1] BatchNorm2D,54230076,0,0
[2] Conv2D,55600076,10,10
[3] BatchNorm2D,59268076,0,0
[4] ReLU6,59880076,0,0
[5] TensorAdd,60270076,0,0

Figure 2: Extracted traces while ToyNet is in use. In the left, we place our network definition in
PyTorch. We show the raw trace from Flush+Reload (middle) and the de-noised trace (right).

the parameters (in, out, kernel, stride) as (3, 10, 3, 1), and the depthwise convolution’s parameters
are (10, 10, 1, 1). The network has a skip connection that adds the intermediate output (from the 1st
convolution) to the final output. During inference, we feed an input that with dimensions 3x32x32.

In the middle panel of Figure 2, we also show the raw—noisy—trace from the Flush+Reload output.
The trace only includes cache-hits where the attacker’s accesses to the lines of code are faster,
i.e., when the victim invokes the function. Each element of the trace includes a timestamp and a
function name. The name corresponds to the ToyNet layers, such as Conv2d and BatchNorm2d,
and it also contains additional information such as the tensor (add) and the BLAS operations, e.g.,
GEMM(oncopy).

Our attacker filters the raw trace to according to the regular patterns in the DL computation. For
example, a long function call, e.g., Conv2d in ToyNet trace, can appear multiple times in the trace,
as the cache can hit multiple times during Flush+Reload. In this case, we condense the multiple
occurrences into a single invocation using a heuristic based on how close the timestamps are. We
also observe the matrix multiplications such as GEMM(conv) and GEMM(oncopy) while DL com-
putation is being processed. We count the individual occurrences and sum them up them based
on the timestamp. After obtaining the processed trace (in the right panel), the attacker starts the
reconstruction procedure.

4 RECONSTRUCTING NOVEL DEEP LEARNING SYSTEMS

After processing the Flush+Reload trace, our attacker reconstructs the key components of the vic-
tim’s DL system. In this process, the attacker aims to generate the candidate computational graphs
of the victim system and to eliminate the incompatible candidates by estimating the correct param-
eter set for each computation. For instance, in our ToyNet example, the attacker wants to identify
the computational orders and the location of the start and end of a branch connection (computa-
tional graph). Also, the same attacker wants to estimate the parameters for each computation; for
example, the input/output channels and the kernel size in the 1st Conv2d. In this small network that
has one branch, there are only 10 candidate computational graphs; however, considering all possible
combinations of parameters, this will result in untractable number of candidates. Prior work only
considered generic architectures such as VGGs or ResNets with the unrealistic assumption that an
attacker knows the architecture family (backbone); however, as our aim is to steal novel DL systems,
we do not make this assumption. To overcome this problem, we design a reconstruction procedure,
which we describe next.

4.1 OVERVIEW OF OUR RECONSTRUCTION PROCEDURE.

We first focus on the invariant rules in the computations used for DL computations. For instance,
there are unary operations and binary operations. The tensor addition used to implement a skip
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Reconstruction Errors
Victim Type # Candidates # Compatibles Topology (GED) Parameters (`1)

MalConv Pre-processing Pipeline 20 1 0 0
ProxylessNAS-CPU Deep Neural Network 180,224 1 0 0

Table 1: Reconstruction results. We report the number of candidates and compatible architectures.
Also, we report the reconstruction errors in the resulting topology and parameters, and they are 0%.

connection is binary operation; thus, our attacker can supplement the reconstruction process by
pruning the incompatible candidates. We also exploit the fact that computation time is proportional
to the number of element-wise multiplications in a computation. In the ToyNet example, the time
1st convolution (2 million cycles) takes is shorter than the 2nd depthwise convolution (3.668 million
cycles); thus, our attacker further eliminates the candidates by comparing the possible parameters
for a computation with her offline profiling data—the lookup table.

Our reconstruction procedures consist of two steps:

1© Generation: The attacker can generate the candidate computational graphs from the
Flush+Reload trace based on the invariant rules in DL computations. Using the rules, our at-
tacker reduces the number of candidates significantly.

2© Elimination: Our attacker compares the time for each computation takes with profiling data and
prunes the incompatible candidates. We estimate the parameters sequentially starting from the
input. When the output dimension from a candidate does not match with the observation, we
eliminate.

Error Metrics. To quantify the error of our reconstruction result, we use two similarity metrics.
First, we use the graph edit distance (GED) (Abu-Aisheh et al., 2015) to compare the reconstructed
computational graph with that of the victim. Second, we use the `1-distance to compute the error
between the estimated architectural parameters and those in the victim system.

Victims. We first reconstruct the MalConv (Raff et al., 2018), a novel data pre-processing pipeline
that converts the binary file into a specific format so that a neural network can digest easily. Also,
we show that our attacker can reconstruct the novel ProxylessNAS (Cai et al., 2019) architecture
that shows the improved accuracy on the ImageNet classification with the less computational cost
on a CPU.

4.2 RECONSTRUCTING NOVEL PRE-PROCESSING PIPELINES

Here, we elaborate the reconstruction process of the MalConv (Raff et al., 2018) data pre-processing
pipeline. MalConv receives the raw bytes of .exe files and determines whether the file is malicious
or not. The uniqueness of MalConv comes from the way that it treats the sequence of bytes: 1)
Code instructions in binary file are correlated spatially, but the correlation has discontinuities from

MalConv Novel Pre-processing Pipeline Processed Trace

[0] Embedding,4,0
[1] transpose,210610,0
[2] narrow,210754,0
[3] Conv1d,941689,8371993
[4] narrow,9473620,0
[5] Conv1d,10144145,8355807
[6] Sigmoid,18655690.5,0
[7] * (multiply),18775738,0
[8] MaxPool1d,18835039,0
[9] transpose,18949264,0
[10] Linear,18949546,96
[11] Linear,18949831,0
[12] Sigmoid,18949905,0

Figure 3: MalConv and the extracted trace. While the MalConv (left) is processing a sample, we
extract a trace via Flush+Reload and process the trace (right) for the pipeline reconstruction.
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function calls and jump commands hard to be captured by the sequence models, e.g., RNNs. 2) Also,
each sequence has the order of two million steps which is far exceeding the length of an input to any
previous neural network classifier. MalConv tackles this problem by pre-processing the sequence
of bytes (Figure 3). It first split the upper four bits and the lower four bits (narrow operations) of
a byte information; this helps the network behind capture the locality of closer bytes and far bytes.
Next, the pipeline uses one dimensional convolution to extract such localities, and performs the
element-wise multiplications of two outputs. Before feeding this information to the neural network,
the pipeline uses max-pooling to reduce the training time caused by processing inputs with large
dimensions. All these heuristics are examined by manually (see Section 4 of the original paper);
thus, our attacker can spare time and efforts by stealing the pipeline.

Generate Computational Graphs. The first step of our attacker is to reconstruct the computa-
tional graph candidates for the victim pipeline from the Flush+Reload trace. As we can see in the
trace in Figure 3, the attacker cannot simply connect the components in the traces sequentially be-
cause the branch connection, e.g., [7] * (multiply). Also, from this component, our attacker
is aware of which is the end of a branch; but cannot know when the branch has started. We solve this
problem by populating all possible candidates and pruning them later with the parameter estimation.

Our algorithm populates the candidate computational graphs and the sample candidates found (see
Appendix D). Our solution uses the recursive algorithm. Given a trace from Flush+Reload (T ), we
pop each computation t from the back and constructs the list of candidates l. In high-level, the
algorithm first traverses all the possible connections starting from the last computation to the first
by using recursions. Then, when the base condition is met (i.e., the algorithm arrives the first com-
putation, Embeddings), we backtrack the recursions to construct the list of candidate computational
graphs. In details, we focus on the computation type in this backtracking process; there are unary
and binary computations. For the unary operations, we simply connect the current and preceding
computations. However, for the binary operations, we split all the preceding computations into a set
of two lists. Each set of two lists corresponds to a branch, and we continue backtracking for each
branch and include all of the construction into our results. At the end, we found 20 candidates.

Eliminate Candidates with Computational Parameters. Next, our attacker further prunes the
candidates based on the computational parameter estimation process. Our attacker, most impor-
tantly, focus on the fact that computation time is dependent on the size of the matrix multipli-
cation. This enables our attacker to profile the computational time taken for a set of parame-
ter combinations in advance; the attacker is able to perform this in offline by taking advantage
of cloud infrastructure that the hardware and software stacks composing the cloud are consis-
tent3. In the MalConv reconstruction, we profile the timing of the convolution and linear op-
erations. For the convolutions, we consider input/output channels {1, 2, 4, 8, 16, 32, 128, 256},
kernels {1, 3, 5, 7, 11, 100, 200, 500, 1k, 10k}, and strides {1, 2, 5, 10, 100, 200, 500, 1k, 10k}. For
the linears, we use input {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} and output dimensions
{1, 10, 16, 20, 32, 40, 100, 128, 256, 512, 1k, 1024, 2048}.
Once our attacker has the timing profiles with these parameter combinations, the attacker defines the
potential parameter sets for the convolutions and linears. Then, the attacker checks, in each candi-
date, if the computational graph returns the correct output dimension (1,) for the input (8, 2000000).
In this pruning process, there are the other operations such as Sigmoid, * (multipy), transponse,
narrow, or pooling. We applied the universal rules for each case: 1) the Sigmoid and multiply do
not change the input/output dimensions, 2) the transpose only swaps two dimensions in an input, 3)
the narrow slice one chosen dimension, e.g., (8,2000000) to (4,1000000); thus we consider all the
possible slice in checking, and 4) the pooling only requires us to estimate its window size, so we
match this value to the stride of a preceding convolution. At the end of this parameter estimation,
we can nail to only one architecture with the correct set of computational parameters, 0% errors.

4.3 RECONSTRUCTING NOVEL NETWORK ARCHITECTURES

Here, we show our attacker is able to steal a novel network architecture by describing the recon-
struction process of the ProxylessNAS-CPU (Cai et al., 2019) that improves accuracy of existing
architecture, MobileNetV2 (Sandler et al., 2018), and reduces the computation times at the same
3
https://aws.amazon.com/ec2/instance-types/
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Block Size Counts Identified Block

1 1 AvgPool2d, Linear
2 38 Conv2d - BatchNorm2d
3 19 Conv2d - BatchNorm2d - ReLU
4 5 Conv2d - BatchNorm2d - Conv2d - BatchNorm2d
5 17 DepthConv2d - BatchNorm2d - ReLU6 - Conv2d - BatchNorm2d
6 10 DepthConv2d - BatchNorm2d - ReLU6 - Conv2d - BatchNorm2d - add
7 0 -
8 15 Conv2d - BatchNorm2d - ReLU6 - DepthConv2d - BatchNorm2d - ReLU6 - Conv2d - BatchNorm2d
9 8 Conv2d - BatchNorm2d - ReLU6 - DepthConv2d - BatchNorm2d - ReLU6 - Conv2d - BatchNorm2d - add

Table 2: The 9 candidate blocks identified from the Flush+Reload trace.

time. Indeed, the NAS search procedure warm-starts from an over-parameterized MobileNetV2 as a
backbone; however, in our attack, we hypothesize our attacker is not aware of the backbone. Instead,
we assume our attacker only knows the search space of MNasNet (Tan et al., 2019) (see Appendix C)
where the authors come up with the MobileNetV2, opposed to the recent attacks in Sec 2.

Knowing the search space can reduce the number of functions monitored via Flush+Reload; how-
ever, this cannot reduce the amount of efforts by our attacker in reconstruction. The network archi-
tectures found from the NAS procedure commonly are wide and deep, and they include multiple
branch connections; thus, our attacker requires to consider exponential number of candidate com-
putational graphs and the computation parameters, which makes the attack infeasible. To tackle this
issue, we focus on the NAS procedure—this process factorizes the entire architecture into the blocks
by their functions. For instance, NASNet (Zoph et al., 2018) is composed of normal cells (blocks)
and reduction cells. Within each block, the process considers the architecture combinations that
provides the optimal performance. Thus, we first identify the potential blocks before we initiate the
process for reconstructing candidate computational graphs.

Identifying Candidate Blocks. We utilize the frequent subsequence mining (FSM) method to
identify the blocks composing the ProxylessNAS-CPU architecture. Our FSM method is simple:
we iterate over the Flush+Reload trace with the fixed windows and count the occurrences of each
subsequence. Since the attacker knows the search space that the victim uses maximum nine com-
putations to compose a block, we consider the window size from one to nine. Once we count the
number of occurrences for each subsequence (candidate blocks), we prune them based on the rules
in the search space: 1) a Conv2d operation is followed by a BatchNorm, 2) a block with a Depth-
Conv2d must end with a Conv2d and BatchNorm (for a depthwise separable convolution), 3) a
branch connection cannot merge (add) in the middle of the block, and 4) we take the most frequent
block in each window. In Table 2, we described the 9 identified blocks. We then run the genera-
tion process of reconstructing candidate computational graphs with the blocks instead of using each
computation in the trace. At the end, we have 180,224 candidate computational graphs.

Processed Trace

...
[8] Conv2d,305693984,1,20
[9] BatchNorm2d,323455984,0,0
[10] ReLU6,376113984,1,1
[11] DepthConv2d,426259984,143,205
[12] BatchNorm2d,585059984,0,0
[13] ReLU6,592321984,0,0
[14] Conv2d,609547984,1,7
[15] BatchNorm2d,614331984,0,0
...

Identified Block

...
[B-8] Conv2d,1,20
[B-8] BatchNorm2d,0,0
[B-8] ReLU6,0,0
[B-8] DepthConv2d,143,205
[B-8] BatchNorm2d,0,0
[B-8] ReLU6,0,0
[B-8] Conv2d,1,7
[B-8] BatchNorm2d,0,0
...

Estimated Parameters

...
C1:24 in, 144 out channels
144 in/out channels

144 in/out channels
144 in/out channels

144 in, C2:32 out channels
C2:32 in/out channels
...

Figure 4: The reconstruction of the ProxylessNAS-CPU architecture. From the Flush+Reload
trace (left), we find the candidate block (middle) and estimate the computation parameters (right).

Eliminate Candidate with Computational Parameters. For each candidate composed of known
blocks, our attacker estimates the computation parameters. However, the number of parameter com-
binations are also exponential; for example, within the search space, a Conv2d can have any number
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of input/output channels, kernel size {1, 3, 5}, and strides {1, 2}. Thus, we focus on the computation
rules in a block. 1) We first found that DepthConv2d is only possible to have the same input/output
channels. Also, the channel size can be identified by the number of GEMM(conv) operations. For
instance, in Figure 4, the DepthConv2d has 143 GEMM(conv) invocations close to the channel size.
Commonly the operation has even number of channels, the attacker can easily reduce the candidates
to 142 or 144. 2) We also know that the number of GEMM(oncopy) invocations is proportional
to the matrix multiplication size in a Conv2d; thus, the attacker can compare the offline profiling
results with the processed traces and estimate the parameters. For instance, the 1st Conv2d has
20 GEMM(oncopy), and we approximately have a set of input dimensions, e.g., (20-30,112,112)
from the previous block estimation. Thus, our attacker only profiles the variations of input channels
{20´ 30}, kernels {1, 3, 5}, and strides {1, 2}—total 60 cases and check if there is a match. More-
over, 3) the Conv2d after DepthConv2d is the pointwise linear operation whose kernel and stride is
one, which will further reduce the attacker’s efforts. Our attacker runs this elimination process and
finally nail to only one architecture with the correct set of computational parameters, 0% error.

5 CONCLUSIONS AND FUTURE WORK

This work presents an attack that reconstructs a victim’s novel DL system through the information
leakage from a cache side-channel, Flush+Reload. We steal key components of the victim’s system,
a novel pre-processing pipeline or a novel network architecture. Observing the DL computations
and the time to take each computation enables the attacker to populate all candidate computational
graphs and prune them with our parameter estimation process. In experiments, we demonstrate the
feasibility of this reconstruction attack by reconstructing MalConv, a novel pre-processing pipeline
for malicious file detection, and ProxylessNAS-CPU, a novel architecture for the ImageNet classi-
fication optimized to run on CPUs. We do this with 0% error. As novel DL systems become trade
secrets, our results highlight the demands for future work on countermeasures against stealing.
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A DL COMPUTATIONS MONITORED IN PYTORCH AND TENSORFLOW

Processed Trace (PyTorch)

[0] Conv2d, 52230076, (1 and 2)
[1] BatchNorm2d, 54230076, 0
[3] Conv2d, 55600076, (10 and 10)
[4] BatchNorm2d, 59268076, 0
[5] ReLU6, 59880076, 0
[6] add, 60270076, 0

Processed Trace (TensorFlow)

[0] Conv2d, 4717917, (20 and 15)
[1] BatchNorm2d, 4725816, 0
[2] DepthwiseConv, 4725912, 0
[3] BatchNorm2d, 4726228, 0
[4] ReLU6, 4727308, 0
[5] TensorAdd, 4727644, 0

Figure 5: The traces extracted from PyTorch and TensorFlow via Flush+Reload. We illustrate
the architecture of a small network (ToyNet) on the left. The sequence of computations observed
from the our attack are listed in the middle (PyTorch) and the right (TensorFlow).

Figure 5 describes the reconstruction process of a small network in both the PyTorch and TensorFlow
frameworks. On the left, we have the ground truth of the ToyNet architecture, which represents
an example of a possible residual block in a victim network. In the middle and right, we show
the observations of an adversary monitoring both PyTorch and TensorFlow code. The first entry
indicates the monitored function corresponding to the desired architectural attribute. The second
entry indicates the timestamp at which the adversary observes these functions, and the last entry is
the number of general matrix multiplication (GEMM) function calls for the given layer observation.

Naming conventions vary slightly between the two frameworks, but the information inferred is the
same. The adversary attacking both networks sees functions calls that correspond to architectural at-
tributes in the same order: Conv2d, BatchNorm2d, Conv2d/DepthwiseConv, BatchNorm2d, ReLU6,
and TensorAdd. PyTorch does not distinguish between Conv2d and DepthwiseConv, but as stated in
4.1, we can differentiate the layers by timing data. Additionally, PyTorch and TensorFlow use dif-
ferent linear algebra libraries to perform matrix computation, so the implementations differ slightly.
However, they both use variations on matrix multiplication algorithms that take into account system
level optimizations, such as cache size (e.g. Goto’s algorithm). In both cases, we observe operations
in nested iterations of these implementations and are able to monitor instructions that correspond to
the size of the matrices being multiplied, giving an adversary the ability to estimate the parameters
of the convolution layers.

To perform the estimations of these layer parameters, the adversary can profile candidates offline
on similar hardware. They can then create a data set of candidate parameters for given observation
ranges. For instance, the number of observed GEMM calls in the PyTorch example for the depthwise
convolution layer gives the attacker the information that there are 10 output channels, and therefore
also ten output channels in the 1st convolution. Additionally, the observed GEMM calls for the 1st
convolution layer give the candidate kernel sizes of 3 and 5. Likewise in TensorFlow, the observed
instructions fits the candidate kernel sizes of 3 or 5, and 0-24 output channels. Therefore, these
exploitable vulnerabilities exist independent of the specific deep learning framework a victim is
using.

B LIST OF FUNCTIONS MONITORED VIA FLUSH+RELOAD

Table 3 shows the exact lines of code we monitor in the PyTorch and TensorFlow frameworks. We
use PyTorch v1.2.04 and Tensorflow v1.14.05. In both the frameworks, we are able to monitor a sim-
ilar set of DL computations in the C++ native implementations. However, the back-end libraries sup-
porting the matrix multiplications are different, i.e., PyTorch is compiled with OpenBLAS whereas
TensorFlow uses Eigen and MKL-DNN. Even if the libraries are different, the multiplications are
implemented using GOTO’s algorithm (Goto & Geijn, 2008). Therefore, we monitor the number of
iterations of for-loops to estimate the overall size of a matrix multiplication.
4
https://github.com/pytorch/pytorch/commit/8554416a199c4cec01c60c7015d8301d2bb39b64

5
https://github.com/tensorflow/tensorflow/commit/87989f69597d6b2d60de8f112e1e3cea23be7298
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Framework Computations Line of Code

Py
To

rc
h Core (C++)

Conv2d aten/src/ATen/native/LegacyNNDefinitions.cpp:49
Conv1d aten/src/ATen/native/Convolution.cpp:448
BatchNorm aten/src/ATen/native/Normalization.cpp:428
FC (Begin) aten/src/TH/generic/THBlas.cpp:329
FC (End) aten/src/TH/generic/THBlas.cpp:499
ReLU6 aten/src/ATen/LegacyTHFunctionsCPU.cpp:21320
Sigmoid aten/src/ATen/native/UnaryOps.cpp:191
AvgPool aten/src/ATen/native/AdaptiveAveragePooling.cpp:324
MaxPool aten/src/ATen/native/Pooling.cpp:50
Embeddings aten/src/ATen/native/Embedding.cpp:15

add aten/src/ATen/native/BinaryOps.cpp:46
* (multiply) aten/src/ATen/native/BinaryOps.cpp:88
transpose aten/src/ATen/natinsve/TensorShape.cpp:643
narrow aten/src/ATen/native/TeorShape.cpp:364

OpenBLAS GEMM(conv) driver/level3/level3.c
GEMM(oncopy) kernel/x86 64/sgemm ncopy 4 skylakex.c:54

Te
ns

or
Fl

ow

Core (C++)

Conv2d core/kernels/conv 2d.h:81
BatchNorm core/kernels/fused batch norm op.cc:254
DepthConv2d core/kernels/depthwise conv op.cc:161
FC core/kernels/matmul op.cc:542
ReLU6 core/kernels/relu op functor.h:68
AvgPool core/kernels/avgpooling op.cc:80
TensorAdd core/kernels/cwise ops common.h:93

Eigen #FCNodes src/Core/products/GeneralMatrixVector.h:155

MKL-DNN

GEMM src/cpu/gemm/gemm driver.cpp:242
(loop)M-outer src/cpu/gemm/gemm driver.cpp:349
(loop)K src/cpu/gemm/gemm driver.cpp:355
(loop)N src/cpu/gemm/gemm driver.cpp:372
(loop)M-inner src/cpu/gemm/gemm driver.cpp:387

Table 3: Monitored lines of code in PyTorch and TensorFlow.

C MNASNET SEARCH SPACE

Tan et al. (2019) utilize a hierarchical search space over six parameters: ConvOp, KernelSize, SER-
atio, SkipOp, FilterSize, and #Layers. They choose to partition a CNN into a known, finite set of
blocks and then further divide these blocks into possibly repeated layers. The number of repeats per
layer in a given block i is a searchable parameter Ni, which is bounded at ˘1 the number of layers
in MobileNetV2 on which block i is based. These layers are further divided into three possible
network layers (ConvOp): regular convolution, depthwise convolution, or mobile inverted bottle-
neck convolution. Additionally, the network layer parameters can vary. These parameters include
the convolution kernel size (KernelSize), the squeeze-and-excitation ratio (SERatio), a possible skip
op (SkipOp), and the output filter size (FilterSize). The squeeze-and-excitation ration (SERatio) of
a given layer varies between 0 and 0.025; the convolution kernel size varies between 3 and 5; the
skip op is either pooling, identity residual, or no skip; and the filter size varies between 0.75, 1.0,
and 1.25 the filter size of the corresponding block in MobileNetV2. Overall, this gives an claimed
typical search space size of 1013 possibilities with 5 blocks, 3 average layers per block, and 432
options for the sub search space of a each block. This size compares to the per-layer approach with
the same parameters that has a search space size 1039.

D SEARCHING CANDIDATE COMPUTATIONAL GRAPHS
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Algorithm 1 Populate computational graphs

1: procedure POPULATEGRAPHS(T )
2: t = T.poppq
3: if t is empty then
4: g “ CreateAGraphptq
5: l “ CandidateListpq
6: l “ l Y g
7: return l
8: else
9: if t is unary operator then

10: l “ PopulateGraphspT q
11: for g in l do
12: CreateAnEdgept, gq
13: end for
14: return l
15: else if t is binary operator then
16: for each preceding element e in T do
17: T l, T r “ SplitpT, tq
18: ll “ PopulateGraphspT lq
19: lr “ PopulateGraphspTrq
20: for each gl, gr of ll

Ś

lr do
21: g “ Composepel, erq
22: l “ l Y g
23: end for
24: end for
25: return l
26: end if
27: end if
28: end procedure

Generated Candidates

Figure 6: The algorithm for searching candidate computational graphs. We describe our algo-
rithm to populate the candidate graphs of MalConv (left) and the sample candidates (right).
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