Under review as a conference paper at ICLR 2020

GRAPHAF: A FLOW-BASED AUTOREGRESSIVE
MODEL FOR MOLECULAR GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular graph generation is a fundamental problem for drug discovery and
has been attracting growing attention. The problem is challenging since it re-
quires not only generating chemically valid molecular structures but also optimiz-
ing their chemical properties in the meantime. Inspired by the recent progress
in deep generative models, in this paper we propose a flow-based autoregressive
model for graph generation called GraphAF. GraphAF combines the advantages
of both autoregressive and flow-based approaches and enjoys: (1) high model
flexibility for data density estimation; (2) efficient parallel computation for train-
ing; (3) an iterative sampling process, which allows leveraging chemical domain
knowledge for valency checking. Experimental results show that GraphAF is able
to generate 68% chemically valid molecules even without chemical knowledge
rules and 100% valid molecules with chemical rules. The training process of
GraphAF is two times faster than the existing state-of-the-art approach GCPN.
After fine-tuning the model for goal-directed property optimization with reinforce-
ment learning, GraphAF achieves state-of-the-art performance on both chemical
property optimization and constrained property optimization.

1 INTRODUCTION

Designing novel molecular structures with desired properties is a fundamental problem in a variety
of applications such as drug discovery and material science. The problem is very challenging, since
the chemical space is discrete by nature, and the entire search space is huge, which is believed to be
as large as 10%? (Polishchuk et al.,[2013). Machine learning techniques have seen a big opportunity
in molecular design thanks to the large amount of data in these domains. Recently, there are increas-
ing efforts in developing machine learning algorithms that can automatically generate chemically
valid molecular structures and meanwhile optimize their properties.

Specifically, significant progress has been achieved by representing molecular structures as graphs
and generating graph structures with deep generative models, e.g., Variational Autoencoders
(VAEs) (Kingma & Welling}, 2013)), Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014)) and Autoregressive Models (Van Oord et al., 2016). For example, Jin et al.[(2018) proposed a
Junction Tree VAE (JT-VAE) for molecular structure encoding and decoding. |De Cao & Kipf| (2018)
studied how to use GANSs for molecular graph generation. [You et al.|(2018a) proposed an approach
called Graph Convolutional Policy Network (GCPN), which formulated molecular graph genera-
tion as a sequential decision process and dynamically generates the nodes and edges based on the
existing graph substructures. They used reinforcement learning to optimize the properties of gener-
ated graph structures. Recently, another very related work called MolecularRNN (MRNN) (Popova
et al.,|2019) proposed to use an autoregressive model for molecular graph generation. The autore-
gressive based approaches including both GCPN and MRNN have demonstrated very competitive
performance in a variety of tasks on molecular graph generation.

Recently, besides the aforementioned three types of generative models, normalizing flows have made
significant progress and have been successfully applied to a variety of tasks including density esti-
mation (Dinh et al.l [2016; |[Papamakarios et al.| |2017), variational inference (Kingma et al., 2016;
Louizos & Welling,2017;[Rezende & Mohamed, 2015)), and image generation (Kingma & Dhariwal,
2018). Flow-based approaches define invertible transformations between a latent base distribution
(e.g. Gaussian distribution) and real-world high-dimensional data (e.g. images and speech). Such an

Under review as a conference paper at ICLR 2020

Table 1: Previous state-of-the-art algorithms for molecular graph generation. The comparison of training is
only conducted between autoregressive models.

Name Generative Model Sampling Process Training Process
VAE | GAN | RNN | Flow | One-shot | Iterative | Sequential | Parallel
JT-VAE v - - - - v - -
RVAE v - - - v - - -
GCPN - v - - - v v -
MRNN - - v - - v v -
GNVP - - - v v - - -
GraphAF - - - v - v - v

invertible mapping allows the calculation of the exact data likelihood. Meanwhile, by using multiple
layers of non-linear transformation between the hidden space and observation space, flows have a
high capacity to model the data density. Moreover, different architectures can be designed to pro-
mote fast training (Papamakarios et al.l 2017) or fast sampling (Kingma et al., 2016) depending on
the requirement of different applications.

Inspired by existing work on autoregressive models and recent progress of deep generative mod-
els with normalizing flows, we propose a flow-based autoregressive model called GraphAF for
molecular graph generation. GraphAF effectively combines the advantages of autoregressive and
flow-based approaches. It has a high model capacity and hence is capable of modeling the density
of real-world molecule data. The sampling process of GraphAF is designed as an autoregressive
model, which dynamically generates the nodes and edges based on existing sub-graph structures.
Similar to existing models such as GCPN and MRNN, such a sequential generation process allows
leveraging chemical domain knowledge and valency checking in each generation step, which guar-
antees the validity of generated molecular structures. Meanwhile, different from GCPN and MRNN
as an autoregressive model during training, GraphAF defines a feedforward neural network from
molecular graph structures to the base distribution and is therefore able to compute the exact data
likelihood in parallel. As a result, the training process of GraphAF is very efficient.

We conduct extensive experiments on the standard ZINC (Irwin et al.,[2012) dataset. Results show
that the training of GraphAF is significantly efficient, which is two times faster than the state-of-the-
art model GCPN. The generated molecules are 100% valid by incorporating the chemical rules dur-
ing generation. We are also surprised to find that even without using the chemical rules for valency
checking during generation, the percentage of valid molecules generated by GraphAF can be still
as high as 68%, which is significantly higher than existing state-of-the-art GCPN. This shows that
GraphAF indeed has the high model capability to learn the data distribution of molecule structures.
We further fine-tune the generation process with reinforcement learning to optimize the chemical
properties of generated molecules. Results show that GraphAF significantly outperforms previous
state-of-the-art GCPN on both property optimization and constrained property optimization tasks.

2 RELATED WORK

A variety of deep generative models have been proposed for molecular graph generation re-
cently (Segler et al.l 2017; Olivecrona et al., |2017; |Samanta et al., 2018; Neil et al.l 2018). The
RVAE model (Ma et al.| 2018) used a variational autoencoder for molecule generation, and pro-
posed a novel regularization framework to ensure semantic validity. Jin et al.| (2018)) proposed to
represent a molecule as a junction tree of chemical scaffolds and proposed the JT-VAE model for
molecule generation. For the VAE-based approaches, the optimization of chemical properties is
usually done by searching in the latent space with Bayesian Optimization (Jin et al.,|2018]). De Cao
& Kipf| (2018) used Generative Adversarial Networks for molecule generation. The state-of-the-art
models are built on autoregressive based approaches (You et al., [2018bj [Popova et al.,|2019). (You
et al., [2018b)) formulated the problem as a sequential decision process by dynamically adding new
nodes and edges based on current sub-graph structures, and the generation policy network is trained
by a reinforcement learning framework. Recently, Popova et al.|(2019) proposed an autoregressive
model called MolecularRNN to generate new nodes and edges based on the generated nodes and
edge sequences. The iterative nature of autoregressive model allows effectively leveraging chemical
rules for valency checking during generation and hence the proportion of valid molecules generated
by these models is very high. However, due to the sequential generation nature, the training process

Under review as a conference paper at ICLR 2020

is usually slow. Our GraphAF approach enjoys the advantage of iterative generation process like au-
toregressive models (the mapping from latent space to observation space) and meanwhile calculates
the exact likelihood corresponding to a feedforward neural network (the mapping from observation
space to latent space), which can be implemented efficiently through parallel computation. There is
also a recent flow-based approach called GraphNVP (GNVP) (Madhawa et al., [2019) for molecular
graph generation. However, their sampling process is one-shot sampling. As a result, the validity of
generated molecules is very low. We summarize existing approaches in Table|T]

3 PRELIMINARIES

3.1 AUTOREGRESSIVE FLOW

A normalizing flow defines a parameterized invertible deterministic transformation from a base dis-
tribution (the latent space, e.g., Gaussian distribution) to real-world observational space (e.g. im-
ages and speech). Let f : & — Z be an invertible transformation where € ~ pg(e€) is the base
distribution, then we can compute the density function of real-world data z, i.e., pz(z), via the
change-of-variables formula:

1y '(2)

p2() =pe (" (2) |aer 215 . <1>

To efficiently calculate the data density pz(z), fy is required to be invertible with an easily com-
putable Jacobian determinant. Autoregressive flows (AF), originally proposed in/Papamakarios et al.
(2017), is a variant that satisfies these criteria, which holds a triangular Jacobian matrix, and the de-
terminant can be computed linearly. Formally, given z € R? (D is the dimension of observation
data), the autoregressive conditional probabilities can be parameterized as Gaussian distributions:

p(2al21:0-1) = N (2alpta, (a)?), where pig = gu(21.4-1;0), g = ga(21:4-1;0), 2
where g,, and g, are unconstrained and positive scalar functions of z;.q_; respectively to compute
the mean and deviation. In practice, these functions can be implemented as neural networks. The
affine transformation of AF can be written as:

Zd — Md

fol€a) = 24 = pta+ g - €a; fy ' (2a) = €a = o 3)
The Jacobian matrix in AF is triangular, since g?] is non-zero only for j < 4. Therefore, the
J

determinant can be efficiently computed through H(?Zl Qq.

3.2 GRAPH REPRESENTATION LEARNING

Following existing work, we also represent a molecule as a graph G = (A, X), where A is the
adjacency tensor and X is the node feature matrix. Assuming there are n nodes in the graph, d
and b are the number of different types of nodes and edges respectively, then A € {0,1}"*"*? and
X € {0,1}"*4, A;;) = 1if there exists a bond with type k between i*" and j** nodes.

Graph Convolutional Networks (GCN) (Duvenaud et al., 2015; |Gilmer et al., 2017; |[Kearnes et al.}
20165 Kipf & Wellingl 2016; |Schiitt et al., |2017) are a family of neural network architectures
for learning representations of graphs. In this paper, we use a variant of Relational GCN (R-
GCN) (Schlichtkrull et al.l |2018)) to learn the node representations (i.e., atoms) of graphs with cat-
egorical edge types. Let k denote the embedding dimension. We compute the node embeddings
H' € R"** at the I*" layer of R-GCN by aggregating messages from different edge types:

H' = Agg (ReLU ({D; ? B:D; H='W!Yie (1,... ,b))) , @)

where E; = A[. . ; denotes the ith slice of edge-conditioned adjacency tensor, E; = E; + I, and

D; = >, Eilj, k] Wi(l) is a trainable weight matrix for the i™ edge type. Agg(-) denotes an
aggregation function such as mean pooling or summation. The initial hidden node representation
HY is set as the original node feature matrix X . After L message passing layers, we use the the final
hidden representation H” as the node representations. Meanwhile, the whole graph representations
can be defined by aggregating the whole node representations using a readout function (Hamilton
et al.,[2017), e.g., summation.

Under review as a conference paper at ICLR 2020

3 € 3
|1 I2 '4 ©
v (©] v v) X1 &
AN
L o © X, &
Eq1-> k 1] T
/—\ Az A\ €21
. I]]
----*> Noise from N(0,I) ©
© ©
@ Node: Atom e Parallel Training
—— Edge: Single bond 4; Mo]]
{ Q@ X1 &
= Edge: Double bond I O — — —
............. . © X2 &
Edge: No bond \) \)
—— Affine Transformation for Node Generation g“EL Ax &1
== Affine Transformation for Edge Generation
Sampling / Training Order Sequential Sampling
(a) Sampling Phases (b) Framework

Figure 1: Overview of the proposed GraphAF model. (a) Illustration of the generative procedure. New nodes
or edges are marked in red. Starting from an empty graph and iteratively sample random variables to map them
to atom/bond features. The numbered first three steps correspond to the maps in the bottom figure of Fig. [T(b)]
(b) Computation graph of GraphAF. The left side are the nodes and edges and the right are latent variables.

4 PROPOSED METHOD

4.1 GRAPHAF FRAMEWORK

Similar to existing works like GCPN (You et al.,|2018a)) and MolecularRNN (Popova et al., |2019)),
we formalize the problem of molecular graph generation as a sequential decision process. Let G =
(A, X) denote a molecular graph structure. Starting from an empty graph G, in each step a new
node X; is generated based on the current sub-graph structure G, i.e., p(X;|G;). Afterwards, the
edges between this new node and existing nodes are sequentially generated according to the current
graph structure, i.e., p(A;;|Gi, Xy, A; 1.5—1). This process is repeated until all the nodes and edges
are generated. An illustrative example is given in Fig.

GraphAF is aimed at defining an invertible transformation from a base distribution (e.g. multivariate
Gaussian) to a molecular graph structure G = (A, X). Note that we add one additional type of edge
between two nodes, which corresponds to no edge between two nodes, i.e., A € {0, 1}"X"X(b+1).
Since both the node type X; and the edge type A;; are discrete, which do not fit into a flow-based
model, a standard approach is to use Dequantization technique (Dinh et al., 2016} Kingma & Dhari-
wall, |2018)) to convert discrete data into continuous data by adding real-valued noise. We follow this

approach to preprocess a discrete graph G' = (A, X) into continuous data z = (24, 2%):
25 = X; +u, u~U0,1)% sz‘ = A +u, u~ U0, 1)0+L, (5)
Formally, we define the conditional distributions for the generation as:
(¥ 1Gi) =N (¥, (07)?), (©6)
where 1" = g,x(Gi), ;" = gax (Gi),
p(z51Gi, Xi, Aivj—1) = N(pih, (af5)?), 5 € {1,2,...,i— 1}, (7)

where uf} = 9ua(Gi, Xi, Ai1:j-1), CV% = gaa (Gi, Xiy A1),
where g,,x, g4 and g, x, go4 are parameterized neural networks for defining the mean and standard
deviation of a Gaussian distribution. More specifically, given the current sub-graph structure G;, we
use a L-layer of Relational GCN (defined in Section 3.2) to learn the node embeddings HX € R™**,
and the embedding of entire sub-graph h; € R¥, based on which we define the mean and standard
deviations of Gaussian distributions to generate the nodes and edges respectively:

R-GCN: H" = R-GCN(G;), h; = sum(HF);
Node-MLPs: gux = m#X(Hi), GaX = MeX (Hz)a ®)

Edge-MLPs: g4 = mya(hi, HE), goa = maa(hi, HE),

7

4

Under review as a conference paper at ICLR 2020

where sum denotes the sum-pooling operation. m,,x, m,x are Multi-Layer Perceptrons (MLP) that
predict the node types according to the current sub-graph embedding. and m, 4, m,4 are MLPs that
predict the types of edges according to the current sub-graph embedding and node embeddings.

To generate a new node X; and its edges connected to existing nodes, we just sample random
variables ¢; and ¢;; from the base Gaussian distribution and convert it to discrete features. More
specifically,

b'e b'e X d.
zi =6 Oa; + i, € €RY

A A A ~ b
Zij = €ij @aij +,lt,;j, VRS {1,2,...,27 1}, €ij € R +1,
where © is the element-wise multiplication. In practice, a real molecular graph is generated by

taking the argmax of generated continuous vectors, i.e., X; = v <, and A;; = bl Ay
argmax(z;*) J argmax(z;)

where vl denotes a p dimensional one-hot vector with q"™ dimension equal to 1.

(€))

Let € = {e1,¢€2,€21,€3,€31,€32,...,€n,€n1,---,€nn_1} Where n is the number of atoms in the
given molecule, GraphAF defines an invertible mapping between the base Gaussian distribution e
and the molecule structures z = (z#,2%). According to Eq. E], the inverse process from z =

(24, 2%) to € can be easily calculated as:

1 1 .
6= —m) O~ = (25— p5) © 5 €{l2. i1}, (10)
[vy

where —- and —Lr denote element-wise reciprocals of o; and o} respectively.

@ ij

4.2 EFFICIENT PARALLEL TRAINING

In GraphAF, since f : £ — Z is autoregressive, the Jacobian matrix of the inverse process f~! :
Z — & is a triangular matrix, and its determinant can be calculated very efficiently. Given a mini-
batch of training data G, the exact density of each molecule can be efficiently computed by the
change-of-variables formula in Eq.[I] Our objective is to maximize the likelihood of training data.

During training, we are able to perform parallel computation by defining a feedforward neural
network between the input molecule graph G and the output latent variable € by using masking.
The mask drops out some connections from inputs to ensure that R-GCN is only connected to the
sub-graph G; when inferring the hidden variable of node 4, i.e., ¢;, and connected to sub-graph
G, X, A; 1.j—1 when inferring the hidden variable of edge A;j, i.e., €;;. This is similar to the ap-
proaches used in MADE (Germain et al., 2015) and MAF (Papamakarios et al., [2017). With the
masking technique, GraphAF satisfies the autoregressive property, and at the same time p(G) can
be efficiently calculated in just one forward pass by computing all the conditionals in parallel.

To further accelerate the training process, the nodes and edges of a training graph are re-ordered
according to the breadth-first search (BFS) order, which is widely adopted by existing approaches
for graph generation (You et al.,[2018bj [Popova et al.,2019). Due to the nature of BFS, bonds can
only be present between nodes within the same or consecutive BFS depths. Therefore, the maximum
dependency distance between nodes is bounded by the largest number of nodes in a single BFS
depth. In our data sets, any single BFS depth contains no more than 12 nodes, which means we only
need to model the edges between current atom and the latest generated 12 atoms.

Due to space limitation, we summarize the detailed training algorithm into Appendix [Al

4.3 VALIDITY CONSTRAINED SAMPLING

In chemistry, there exist many chemical rules, which can help to generate valid molecules. Thanks
to the sequential generation process, GraphAF can leverage these rules in each generation step.
Specifically, we can explicitly apply a valency constraint during sampling to check whether current
bonds have exceeded the allowed valency, which has been widely adopted in previous models (You
et al.} 2018a; |[Popova et al., [2019). Let |Aij| denote the order of the chemical bond A;;. In each
edge generation step of A;;, we check the following valency constraint for the ith and j*" atoms:

Z |A;;| < Valency(X;) and Z |A;;| < Valency(X;). (11
J i

Under review as a conference paper at ICLR 2020

If the newly added bond breaks the valency constraint, we just reject the bond A;;, sample a new
€;; in the latent space and generate another new bond type. The generation process will terminate if
one of the following conditions is satisfied: 1) the graph size reaches the max-size n, 2) no bond is
generated between the newly generated atom and previous sub-graph. Finally, hydrogens are added
to the atoms that have not filled up their valencies.

4.4 GOAL-DIRECTED MOLECULE GENERATION WITH REINFORCEMENT LEARNING

So far, we have introduced how to use GraphAF to model the data density of molecular graph
structures and generate valid molecules. Nonetheless, for drug discovery, we also need to optimize
the chemical properties of generated molecules. In this part, we introduce how to fine-tune our
generation process with reinforcement learning to optimize the properties of generated molecules.

State and Policy Network. The state is the current sub-graph, and the initial state is an empty
graph. The policy network is the same as the autoregressive model defined in Section 4.1, which
includes the process of generating a new atom based on the current sub-graph and generating the
edges between the new atom and existing atoms, i.e., p (X;|G;) and p (4;;|G;, X, Aiqj—1). If
there are no edges between the newly generated atom and current sub-graph, the generation process
terminates. For the state transition dynamics, we also incorporate the valency check constraint.

Reward design. Similar to GCPN You et al.|(2018a), we also incorporate both intermediate and final
rewards for training the policy network. A small penalization will be introduced as the intermediate
reward if the edge predictions violate the valency check. The final rewards include both the score
of targeted-properties of generated molecules such as octanol-water partition coefficient (logP) or
drug-likeness (QED) (Bickerton et al.,[2012) and the chemical validity reward such as penalties for
molecules with excessive steric strain and or functional groups that violate ZINC functional group
filters (Irwin et al., 2012). The final reward is distributed to all intermediate steps with a discounting
factor to stabilize the training.

In practice, we adopt Proximal Policy Optimization (PPO) (Schulman et al., 2017), an advanced
policy gradient algorithm to train GraphAF in the above defined environment. Details about the RL
process can be found in Appendix [B]

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Evaluation Tasks. Following existing works on molecule generation (Jin et al., 2018} [You et al.,
2018a; [Popova et al., 2019), we conduct experiments by comparing with the state-of-the-art ap-
proaches on three standard tasks. Density Modeling and Generation evaluates the model’s capacity
to learn the data distribution and generate realistic and diverse molecules. Property Optimization
concentrates on generating novel molecules with optimized chemical properties. For this task, we
fine-tune our network pretrained from the density modeling task to maximize the desired proper-
ties. Constrained Property Optimization is first proposed in|Jin et al.| (2018), which is aimed at
modifying the given molecule to improve desired properties while satisfying a similarity constraint.

Data. We use the ZINC250k molecular dataset (Irwin et al.,|2012)) for training. The dataset contains
250, 000 drug-like molecules with a maximum atom number of 38. It has 9 atom types and 3 edge
types. We use the open-source chemical software RDkit (Landrum| |2016) to preprocess molecules.
All molecules are presented in kekulized form with hydrogen removed.

Baselines. We compare GraphAF with the following state-of-the-art approaches for molecule gener-
ation. JT-VAE (Jin et al.;|2018]) is a VAE-based model which generates molecules by first decoding
a tree structure of scaffolds and then assembling them into molecules. JT-VAE has been shown
to outperform other previous VAE-based models (Kusner et al.l [2017; (Gémez-Bombarelli et al.,
2018 |Simonovsky & Komodakis) 2018). GCPN is a state-of-the-art approach which combines re-
inforcement learning and graph representation learning methods to explore the vast chemical space.
MolecularRNN (MRNN), another autoregressive model, uses RNN to generate molecules in a se-
quential manner. We also compare our model with GraphNVP (Madhawa et al., 2019)), a recently
proposed flow-based model. Results of baselines are taken from original papers unless stated.

Under review as a conference paper at ICLR 2020

Table 2: Comparison of different models on density modeling and generation. Reconstruction is only evaluated
on latent variable models. Validity w/o check is only evaluated on models with valency constraints. Result with
1 is obtained by running GCPN’s open-source code. Results with I are taken from [Popova et al.|(2019).

Method Validity ~ Validity w/o check Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%* 100%* 76.7%
GCPN 100% 20%" 99.97%* 100%* —
MRNN 100% 65% 99.89% 100% —

GraphNVP 42.60% — 94.80% 100% 100%

GraphAF 100% 68% 99.10% 100% 100%

Table 3: Comparison of the top 3 property scores of generated molecules.

Penalized logP QED
Method Ist 2nd 3rd Validity Ist 2nd 3rd Validity
ZINC (Dataset) 452 430 423 100.0% 0943 0948 0.948 100.0%
JT-VAE (Jin et al.| 2018) 530 493 449 100.0% 0925 0911 0910 100.0%

GCPN (You et al.|[2018a) 798 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%
MRNN! (Popova et al.[|2019) 8.63 6.08 473 100.0% 0.844 0.796 0.736 100.0%

GraphAF 1223 1129 11.05 100.0% 0948 0.948 0.947 100.0%

Implementation Details. GraphAF is implemented in PyTorch (Paszke et al.,[2017). The R-GCN is
implemented with 3 layers, and the embedding dimension is set as 128. The max graph size is set as
48 empirically. For density modeling, we train our model for 10 epochs with a batch size of 32 and a
learning rate of 0.001. For property optimization, we perform a grid search on the hyperparameters
and select the best setting according to the chemical scoring performance. We use Adam (Kingma
& Bal [2014) to optimize our model. Full training details can be found in Appendix [C]

5.2 NUMERICAL RESULTS

Density Modeling and Generation. We evaluate the ability of the proposed method to model
real molecules by utilizing the widely-used metrics: Validity is the percentage of valid molecules
among all the generated graphs. Uniqueness is the percentage of unique molecules among all the
generated molecules. Novelty is the percentage of generated molecules not appearing in training set.
Reconstruction is the percentage of the molecules that can be reconstructed from latent vectors. We
calculate the above metrics from 10,000 randomly generated molecules.

Table[2]shows that GraphAF achieves competitive results on all four metrics. As a flow-based model,
GraphAF holds perfect reconstruction ability compared with VAE approaches. Our model also
achieves a 100% validity rate since we can leverage the valency check during sequential generation.
By contrast, the validity rate of another flow-based approach GraphNVP is only 42.60% due to
its one-shot sampling process. An interesting result is that even without the valency check during
generation, GraphAF can still achieve a validity rate as high as 68%, while previous state-of-the-art
approach GCPN only achieves 20%. This indicates the strong flexibility of GraphAF to model the
data density and capture the domain knowledge from unsupervised training on the large chemical
dataset. We also compare the efficiency of different methods on the same computation environment,
a machine with 1 Tesla V100 GPU and 32 CPU cores. To achieve the results in Table[2] JT-VAE and
GCPN take around 24 and 8 hours, respectively, while GraphAF only takes 4 hours.

Property Optimization. In this task, we aim at generating molecules with desired properties.
Specifically, we choose penalized logP and QED as our target property. The former score is logP
score penalized by ring size and synthetic accessibility, while the latter one measures the drug-
likeness of the molecules. Note that both scores are calculated using empirical prediction models
and we adopt the script used in (You et al.l|2018a) to make results comparable. To perform this task,

I'The scores reported here are recalculated based on top 3 molecules presented in the original paper (Popova
et al.} 2019) using GCPN’s script.

Under review as a conference paper at ICLR 2020

Table 4: Comparison of results on constrained property optimization.

JT-VAE GCPN GraphAF
Improvement Similarity =~ Success Improvement Similarity =~ Success Improvement Similarity ~ Success

00 1914+204 0.28+0.15 97.5% 420+£1.28 0.32+0.12 100% 13.13+6.89 0.29+0.15 100%
02 1.68+185 033+0.13 97.1% 412+1.19 0.34+0.11 100% 11.90+6.86 0.33+0.12 100%

04 0844145 0.51+0.10 83.6% 249+1.30 047+0.08 100% 8.21+6.51 0.49+0.09 99.88%
06 021+£071 0.69+0.06 46.4% 0.79+£0.63 0.68£0.08 100% 4.98+6.49 0.66+0.05 96.88%

/ / Naavgy ﬁ%@ B O i O

12.23 11.29 0.948 0.948 -8.25 -0.11
11.05 1083 0.947 0.946 -8.66 -1.10
(a) Penalized logP optimization (b) QED optimization (c) Constrained property optimization

Figure 2: Molecules generated in property optimization and constrained property optimization tasks. (a)
Molecules with high penalized logP scores. (b) Molecules with high QED scores. (c) Two pairs of molecules
in constrained property optimization for penalized logP with similarity 0.71(top) and 0.64(bottom).

we pretrain the GraphAF network for 300 epochs for likelihood modeling, and then apply the RL
process described in section 4.4 to fine-tune the network towards desired chemical properties. De-
tailed reward design and hyper-parameters setting can be found in Appendix [C] Following existing
works, we report the top-3 scores found by each model.

As shown in Table [3] GraphAF outperforms all baselines by a large margin for penalized logP
score and achieves comparable results for QED. This phenomenon indicates that combined with
RL process, GraphAF successfully captures the distribution of desired molecules. Note that we
re-evaluate the properties of the top-3 molecules found by MolecularRNN, which turn out to be
lower than the results reported in the original paper. Figure and 2(b)] show the molecules with
the highest score discovered by our model. More realistic molecules generated by GraphAF with
penalized logP score ranging from 5 to 10 are presented in Figure[d]in Appendix

Constrained Property Optimization. The goal of the last task is to modify the given molecule to
improve specified property with the constraint that the similarity between the original and modified
molecule is above a threshold §. Following Jin et al.| (2018)) and |You et al|(2018a), we choose to
optimize penalized logP for 800 molecules in ZINC250k with the lowest scores and adopt Tanimoto
similarity with Morgan fingerprint (Rogers & Hahn, |2010) as the similarity metric.

Similar to the property optimization task, we pretrain GraphAF via density modeling and then fine-
tune the model with RL. During generation, we set the initial states as sub-graphs randomly sampled
from 800 molecules to be optimized. For evaluation, we report the mean and standard deviation
of the highest improvement and the corresponding similarity between the original and modified
molecules in Table] Experiment results show that GraphAF significantly outperforms all previous
approaches and almost always succeeds in improving the target property. Figure[2(c) visualizes two
optimization examples, showing that our model is able to improve the penalized logP score by a
large margin while maintaining a high similarity between the original and modified molecule.

6 CONCLUSION

We proposed GraphAPF, the first flow-based autoregressive model for generating realistic and diverse
molecular graphs. GraphAF is capable to model the complex molecular distribution thanks to the
flexibility of normalizing flow, as well as generate novel and 100% valid molecules in empirical
experiments. Moreover, the training of GraphAF is very efficient. To optimize the properties of gen-
erated molecules, we fine-tuned the generative process with reinforcement learning. Experimental
results show that GraphAF outperforms all previous state-of-the-art baselines on the standard tasks.
In the future, we plan to train our GraphAF model on larger datasets and also extend it to generate
other types of graph structures (e.g., social networks).

Under review as a conference paper at ICLR 2020

REFERENCES

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldn
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224-2232, 2015.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881-889, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263—1272. JIMLR. org, 2017.

Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Herndndez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268-276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024-1034, 2017.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757-1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. arXiv preprint arXiv:1802.04364, 2018.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595-608, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3nd Interna-
tional Conference on Learning Representations, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215-10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743-4751, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational autoen-
coder. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
1945-1954. IMLR. org, 2017.

Under review as a conference paper at ICLR 2020

Greg Landrum. Rdkit: Open-source cheminformatics software. 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp- 2218-2227. JMLR. org, 2017.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In Advances in Neural Information Processing Systems,

pp. 7113-7124, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invert-
ible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Daniel Neil, Marwin H. S. Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew
Sellwood, and Nathan Brown. Exploring deep recurrent models with reinforcement learning for
molecule design. In 6th International Conference on Learning Representations, Workshop Track
Proceedings, 2018.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338-2347, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. Estimation of the size of drug-like chemical space
based on gdb-17 data. Journal of Computer-Aided Molecular Design, 27(8):675-679, Aug 2013.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50:742-754, 2010.

Bidisha Samanta, Abir De, Niloy Ganguly, and Manuel Gomez-Rodriguez. Designing random
graph models using variational autoencoders with applications to chemical design. arXiv preprint
arXiv:1802.05283, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593—-607. Springer, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kristof T Schiitt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Miiller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nature communications, 8:13890,
2017.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120-131, 2017.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, pp. 412—
422. Springer, 2018.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, pp. 1747-1756, 2016.

10

Under review as a conference paper at ICLR 2020

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional pol-
icy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, pp. 6410-6421, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. arXiv preprint arXiv:1802.08773, 2018b.

11

Under review as a conference paper at ICLR 2020

Appendix

A PARALLEL TRAINING ALGORITHM

Algorithm 1 Parallel Training Algorithm of GraphAF

Input: 7 learning rate, M batch size, P maximum dependency distance in BFS, Adam hyperparam-
eters (1, B2, use Prod(+) as the product of elements across dimensions of a tensor
Initial: Parameters 6 of GraphAF (R-GCN, Node-MLP and Edge-MLP)

1: while 6 is not converged do
2. form=1,....M do

3 Sample a molecule mol from dataset and get the graph size N
4: Convert mol to G = (A, X) with BFS re-ordering

5: fori=1,...,N do
6:
7
8

2X =X +u, u~U[0,1)¢
.uiX = fp,X (Gi)v azX = fax (GZ)
e = (5 — 1) 0%

: aX
9: LX = —log(Prod(pe(€i))) — log(Prod(alx)
10: for j = max{1,i — P},....i—1do
11: zt = Ay +u, u~ U0, 1)
12: /‘?j = fua (Gi, Xiy Ai1ij—1), Oéf‘j = fur(Gi, X, Ai1:j1)
13: €ij = (z;‘]‘ — ,u,f}) ® O}g
14: E{} = —log(Prod(pe(€ij))) — log(Prod(a%)
15: end for
16: end for i
17: LG = Dict ('ch + Zj:l ‘C%)
18: end for

19: 0 HADAM(% Z:Z:l ‘Cgﬁaan7ﬂlaﬂ2)
20: end while

B RL PROCESS DETAILS

Let G;; be the shorthand notation of sub-graph G; U X; U A; 1.;_1. Formally, in the RL process of
training GraphAF, the loss function of PPO is written as:

L(0) = = Banpy { B | min (ri(0) A(G1, X), clip (ri(0), 1 — .1+ €) A(Gi, X,)

(12)
=+ Ej [mln (7"7;]' (Q)A(Gw, Aij)» Chp (Tij (0), 1-— €, 1 + 6) A(Gij, A”))” }7
_ (XilGi) _ (Aij|Gij) : it

where r;(0) = W and r;;(0) = W are ratios of probabilities output by old

and new policies, and A(state, action) is the estimated advantage function with a moving average

baseline to reduce the variance of estimation. The clipped surrogate objective prevents the policy

network from being updated to collapse for some extreme rewards.

C EXPERIMENT DETAILS
In this section, we elaborate the network architecture and the implementation details of three tasks.

Network architecture. The network architecture is fixed among all three tasks. More specifically,
the R-GCN is implemented with 3 layers and the embedding dimension is set as 128. We use
batch normalization before graph pooling to accelerate the convergence and choose sum-pooling as
the readout function for graph representations. Both node MLPs and edge MLPs have two fully-
connected layers equipped with tanh non-linearity.

12

Under review as a conference paper at ICLR 2020

Density Modeling and Generation. To achieve the results in Table 2} we train GraphAF on
ZINC250K with a batch size of 32 on 1 Tesla V100 GPU and 32 CPU cores for 10 epochs. We
optimize our model with Adam with a fixed learning rate of 0.001.

Property Optimization. For both property optimization and constrained property optimization,
we first pretrain a GraphAF network via the density modeling task for 300 epochs, and then fine-
tune the network toward desired molecular distribution through RL process. Following are details
about the reward design for property optimization. The reward of each step consists of step-wise
validity rewards and the final rewards discounted by a fixed factor . The step-wise validity penalty
is fixed as -1. The final reward of a molecule m includes both property-targeted reward and chemical
validation reward. We adopt the same chemical validation rewards as GCPN. We define property-
targeted reward as follows:

r(m) =t - QED(m)

r(m) = exp <W) (13)
2

~ is set to 0.97 for QED optimization and 0.9 for penalized logP optimization respectively. We
fine-tune the pretrained model for 200 iterations with a fixed batch size of 64 using Adam optimizer.
We also adopt a linear learning rate warm-up to stabilize the training. We perform the grid search to
determine the optimal hyperparameters according to the chemical scoring performance. The search
space is summarised in Table 3]

Table 5: Tuned-parameters for policy gradient and their search space.

PARAM | Description \ Search space
Ir Learning rate {0.001, 0.0005, 0.0001}
t Coefficient for QED score {2,3,4,5}
to Temperature for exponential function {3,4,5}
wm Number of warm up iterations {12, 24, 36}

Constrained Property Optimization. We first introduce the way we sample sub-graphs from 800
ZINC molecules. Given a molecule, we first randomly sample a BFS order and then drop the last
m nodes in BFS order as well as edges induced by these nodes, where m is randomly chosen from
{0,1,2,3,4,5} each time. Finally, we reconstruct the sub-graph from the remaining nodes in the
BFS sequence. Note that the final sub-graph is connected due to the nature of BFS order. For reward
design, we set it as the improvement of the target score. We fine-tune the pretrained model for 200
iterations with a batch size of 64. We also use Adam with a learning rate of 0.0001 to optimize the
model. Finally, each molecule is optimized for 200 times by the tuned model.

D MORE MOLECULE SAMPLES

We present more molecule samples generated by GraphAF in the following pages. Figure 3| presents
50 molecules randomly sampled from multivariate Gaussian, which justify the ability of our model
to generate novel, realistic and unique molecules. From Figure] we can see that our model is
able to generate molecules with high and diverse penalized logP scores ranging from 5 to 10. For
constrained property optimization of penalized logP score, as shown by Figure [5] our model can
either reduce the ring size, remove the big ring or grow carbon chains from the original molecule,
improving the penalized logP score by a large margin.

13

Under review as a conference paper at ICLR 2020

Oy
By

Figure 3: 50 molecules sampled from prior.

14

Under review as a conference paper at ICLR 2020

10.75 10.21

(SR NN ¢
8.29 8.08
§o s
6.27 6.09

9.79

7.75

@
o

5.48

9.18

7.64

3%

5.28

Figure 4: Molecule samples with high penalized logp score generated by GraphAF.

HT 0 o

0.61119.06 O.64l11.86

Sy)
Mﬂ?%ﬁé oA

OO
0.6319.01

~LO O

0.7112.10

OO

N oYY

0.5019.47 0.5319.38

oY ouo

15

$0

0.4617.84

o

Figure 5: More results on constrained property optimization for penalized logP score.
arrow denote similarity and improvement of the given molecule pair respectively.

Numbers beside the

	Introduction
	Related Work
	Preliminaries
	Autoregressive Flow
	Graph Representation Learning

	Proposed Method
	GraphAF Framework
	Efficient Parallel Training
	Validity Constrained Sampling
	Goal-directed Molecule Generation with Reinforcement Learning

	Experiments
	Experiment Setup
	Numerical Results

	Conclusion
	Parallel Training Algorithm
	RL process details
	Experiment details
	More molecule samples

