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ABSTRACT

Meta-learning algorithms learn to acquire new tasks more quickly from past ex-
perience. In the context of reinforcement learning, meta-learning algorithms can
acquire reinforcement learning procedures to solve new problems more efficiently
by utilizing experience from prior tasks. The performance of meta-learning al-
gorithms depends on the tasks available for meta-training: in the same way that
supervised learning generalizes best to test points drawn from the same distribution
as the training points, meta-learning methods generalize best to tasks from the
same distribution as the meta-training tasks. In effect, meta-reinforcement learning
offloads the design burden from algorithm design to task design. If we can auto-
mate the process of task design as well, we can devise a meta-learning algorithm
that is truly automated. In this work, we take a step in this direction, proposing a
family of unsupervised meta-learning algorithms for reinforcement learning. We
motivate and describe a general recipe for unsupervised meta-reinforcement learn-
ing, and present an instantiation of this approach. Our conceptual and theoretical
contributions consist of formulating the unsupervised meta-reinforcement learning
problem and describing how task proposals based on mutual information can in
principle be used to train optimal meta-learners. Our experimental results indicate
that unsupervised meta-reinforcement learning effectively acquires accelerated
reinforcement learning procedures without the need for manual task design and
significantly exceeds the performance of learning from scratch.

1 INTRODUCTION

Reusing past experience for faster learning of new tasks is a key challenge for machine learning.
Meta-learning methods propose to achieve this by using past experience to explicitly optimize for
rapid adaptation (Mishra et al., 2017; Snell et al., 2017; Schmidhuber, 1987; Finn et al., 2017a; Duan
et al., 2016b; Gupta et al., 2018; Wang et al., 2016; Al-Shedivat et al., 2017; Rakelly et al., 2019).
In the context of reinforcement learning, meta-reinforcement learning algorithms can learn to solve
new reinforcement learning tasks more quickly through experience on past tasks (Duan et al., 2016b;
Gupta et al., 2018). Typical meta-reinforcement learning algorithms assume the ability to sample
from a pre-specified task distribution, and these algorithms learn to solve new tasks drawn from this
distribution very quickly. However, specifying a task distribution is tedious and requires a significant
amount of supervision (Finn et al., 2017b; Duan et al., 2016b) that may be difficult to provide for
large real-world problem settings. The performance of meta-learning algorithms critically depends
on the meta-training task distribution, and meta-learning algorithms generalize best to new tasks
which are drawn from the same distribution as the meta-training tasks (Finn & Levine, 2018). In
effect, meta-reinforcement learning offloads some of the design burden from algorithm design to
designing a sufficiently broad and relevant distribution of meta-training tasks. While this greatly helps
in acquiring representations for fast adaptation to the specified task distribution, a natural question is
whether we can do away with the need for manually designing a large family of tasks, and develop
meta-reinforcement learning algorithms that learn only from unsupervised environment interaction.
In this paper, we take an initial step toward the formalization and design of such methods.

Our goal is to automate the meta-training process by removing the need for hand-designed meta-
training tasks. To that end, we introduce unsupervised meta-reinforcement learning: meta-learning
from a task distribution that is acquired automatically, rather than requiring manual design of the
meta-training tasks. Unsupervised meta-reinforcement learning methods must solve two difficult
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problems together: meta-reinforcement learning with broad task distributions, and unsupervised
exploration for proposing a wide variety of tasks for meta-learning. Since the assumptions of our
method differ fundamentally from prior meta-reinforcement learning methods (we do not assume
access to hand-specified meta-training tasks), the best points of comparison for our approach are
learning meta-test tasks entirely from scratch with conventional reinforcement learning algorithms.
Our method can also be thought of as a data-driven environment-specific initialization procedure
for deep neural network policies, somewhat related to data-driven initialization procedures explored
in supervised learning (Krähenbühl et al., 2015). However, as indicated by Finn & Levine (2017),
this procedure goes beyond simply being an initialization, and essentially learns an entire learning
algorithm that is as expressive as any recurrent meta-learner.

The primary contributions of our work are to propose a framework for unsupervised meta-
reinforcement learning, sketch out a family of unsupervised meta-reinforcement learning algorithms,
provide a theoretical derivation that allows us to reason about the optimality of unsupervised meta-
reinforcement learning methods in terms of mutual information, and describe an instantiation of
an algorithm from this family that builds on a recently proposed procedure for unsupervised explo-
ration (Eysenbach et al., 2018) and model-agnostic meta-learning (MAML) (Finn et al., 2017a). In
addition to our theoretical derivations, we provide an empirical evaluation that studies the performance
of two variants of our approach on simulated control tasks. Our experimental evaluation shows that,
for a variety of tasks, unsupervised meta-reinforcement learning can effectively acquire reinforcement
learning procedures that perform significantly better than standard reinforcement learning methods
that learn from scratch, without additional task knowledge.

2 RELATED WORK

Our work lies at the intersection of meta reinforcement learning, goal generation, and unsupervised
exploration. Meta-learning algorithms use data from multiple tasks to learn how to learn, acquiring
rapid adaptation procedures from experience (Schmidhuber, 1987; Naik & Mammone, 1992; Thrun
& Pratt, 1998; Bengio et al., 1992; Hochreiter et al., 2001; Santoro et al., 2016; Andrychowicz
et al., 2016; Li & Malik, 2017; Ravi & Larochelle, 2017; Finn et al., 2017a; Munkhdalai & Yu,
2017; Snell et al., 2017). These approaches have been extended into the setting of reinforcement
learning (Duan et al., 2016b; Wang et al., 2016; Finn et al., 2017a; Sung et al., 2017; Mishra et al.,
2017; Gupta et al., 2018; Mendonca et al., 2019; Houthooft et al., 2018; Stadie et al., 2018), though
their performance in practice depends on the user-specified meta-training task distribution. We aim to
lift this limitation, and provide a general recipe for avoiding manual task engineering for meta-RL.
To that end, we make use of unsupervised task proposals. These proposals can be obtained in a
variety of ways, including adversarial goal generation (Sukhbaatar et al., 2017; Held et al., 2017),
information-theoretic methods (Gregor et al., 2016; Eysenbach et al., 2018; Co-Reyes et al., 2018;
Achiam et al., 2018), and even random functions. We argue that, theoretically, methods based on
mutual information have the potential to provide optimal task proposals for unsupervised meta-
reinforcement learning. Exploration methods that seek out novel states are also closely related to
goal generation methods (Pathak et al., 2017; Schmidhuber, 2009; Bellemare et al., 2016; Osband
et al., 2016; Stadie et al., 2015), but do not by themselves aim to generate new tasks or learn to adapt
more quickly to new tasks, only to achieve wide coverage of the state space. These methods are
complementary to our approach, but address a distinct problem.

Related to our work are prior methods that study the training of goal-conditioned policies (Schaul
et al., 2015; Pong et al., 2018; Andrychowicz et al., 2017). Indeed, our theoretical derivation first
studies the goal reaching case, before generalizing it to the more general case of arbitrary tasks. This
generalization allows unsupervised meta-learning methods to solve arbitrary tasks at meta-test time
without being restricted to a task parameterization. Additionally, we discuss why the framework of
meta-learning gives us theoretical benefits over the goal reaching paradigm.

3 UNSUPERVISED META-REINFORCEMENT LEARNING

The goal of unsupervised meta-reinforcement learning is to take an environment and produce a
learning algorithm specifically tailored to this environment that can quickly learn to maximize reward
on any task reward in this environment. This learning algorithm should be meta-learned without
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Figure 1: Unsupervised meta-reinforcement learning: Given an environment, unsupervised meta-
reinforcement learning produces an environment-specific learning algorithm that quickly acquire new
policies that maximizes any task reward function.

requiring any human supervision. We can formally define unsupervised meta-reinforcement learning
in the context of a controlled Markov process (CMP) – a Markov decision process without a reward
function, C = (S,A, P, γ, ρ), with state space S, action space A, transition dynamics P , discount
factor γ and initial state distribution ρ. Our goal is to learn a learning algorithm f on this CMP, which
can subsequently learn new tasks efficiently in this CMP for a new reward function Ri. The CMP
along with this reward function Ri produces a Markov decision processes Mi = (S,A, P, γ, ρ,Ri).
The goal of the learning algorithm f is to learn an optimal policy π∗i (a|s) for any reward function Ri
that is provided with the CMP. Crucially, f must be learned without access to any reward functions
Ri, using only unsupervised interaction with the CMP. The reward is only provided at meta-test
time. The implicit assumption in this formulation is that different tasks at test-time will all be using
the same dynamics but with different reward functions. In this section, we will first sketch out a
general recipe for an unsupervised meta-reinforcement learning algorithm, then present a derivation
for an optimal unsupervised meta-learning method, and then instantiate a practical approximation
to this theoretically motivated approach using components from recently proposed exploration and
meta-learning algorithms.

3.1 A GENERAL RECIPE

Our framework unsupervised meta-reinforcement learning consists of a task proposal mechanism
and a meta-learning method. Formally, we will define the task distribution as a mapping from a
latent variable z ∼ p(z) to a reward function rz(s, a) : S × A → R. That is, for each value of the
random variable z, we have a different reward function rz(s, a). Under this formulation, learning
a task distribution amounts to optimizing a parametric form for the reward function rz(s, a) that
maps each z ∼ p(z) to a different reward function. The choice of this parametric form represents the
most important decision for an unsupervised meta-learning method, and we will discuss a theoretical
framework that allows us to make this choice in the following section so as to minimize worst
case regret of the subsequently meta-learned learning algorithm f . The second is the meta-learning
method, which takes the family of reward functions induced by p(z) and rz(s, a), and meta-learns
a reinforcement learning algorithm f that can quickly adapt to any task from the task distribution
defined by p(z) and rz(s, a). The meta-learned algorithm f can learn new tasks quickly at meta-
test time, when a user-specified reward function is actually provided. This generic design for an
unsupervised meta-reinforcement learning algorithm is summarized in Figure 1.

The “no free lunch theorem” (Wolpert et al., 1995; Whitley & Watson, 2005) might lead us to expect
that a truly generic approach to learning a task distribution would not yield a learning procedure
f that is effective on any real tasks – or even on the meta-training tasks. Note, however, that an
unsupervised meta-learning algorithm can in fact collect and organize meaningful information about
the environment (that is, about the CMP) even without a reward function. Therefore, the capability of
unsupervised meta-learning to improve over a learner that learns each new task from scratch depends
on the degree to which it can acquire useful knowledge about the task. In the following sections, we
will discuss how we can formulate an optimal unsupervised meta-learner that minimizes regret on
new meta-test tasks in the absence of any prior knowledge, and then show how we can instantiate an
approximation to this theoretically motivated method.

3.2 OPTIMAL META-LEARNERS

In order to perform our derivation, we first need to define an abstract notion of an optimal meta-learner,
given a task distribution. We assume that an optimal meta-learner takes in a distribution over tasks
and outputs a learning procedure f that minimizes expected regret when learning tasks drawn from
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the same distribution as meta-training. As before, the task distribution is defined by a latent variable
z ∼ p(z) and a reward function rz(s, a) : S × A → R. The objective that a optimal meta-learner
optimizes is

min
f

Ez∼p(z) [REGRET(f, z, rz(s, a))] , (1)

where the regret is measured during adaptation to a new task corresponding to z. This is equivalent to
the expected reward objective used by most meta-reinforcement learning methods Finn et al. (2017a);
Duan et al. (2016b). As we show below, the optimal meta-learner has distinct behavior conditional
on the specific task distribution, and can be characterized for particular classes of task distributions.
Given this definition of an optimal meta-learner, we consider how we can construct unsupervised
meta-learning algorithms.

3.3 SPECIAL CASE: GOAL-REACHING TASKS

We will first derive an optimal unsupervised meta-learner for the special case of goal reaching tasks,
and then generalize this to the case of all possible tasks in Section 3.4. Specifically, we consider
episodes with finite horizon T , and discount factor of γ = 1. Tasks correspond to reaching an
unknown goal state sg. We will only consider the agent’s state at the last time step in each episode,
so the (unknown) reward function is always of the form

rg(st) , 1(t = T ) · 1(st = g).

We will first assume that goal states are drawn from some distribution p(sg), and later will show how
we can remove this assumption. We define ρTπ (s) as the probability that policy π visits state s at time
step t = T . If sg is the true goal, then the event that the policy π reaches sg at the final step of an
episode is a Bernoulli random variable with parameter p = ρTπ (sg). Thus, the expected hitting time
of this goal state is

HITTINGTIMEπ(sg) =
1

ρTπ (sg)

Recall that the goal state sg is unknown. The cumulative regret is therefore the expectation of the
hitting time, taken with respect to p(sg):

REGRETp(π) =

∫
HITTINGTIMEπ(sg)p(sg)dsg =

∫
p(sg)

ρTπ (sg)
dsg (2)

In this special case, an optimal meta-learner as defined in Section 3.2 will explore for a number of
episodes until it finds the goal state. After the meta-learner finds the goal state, it would always
choose the trajectory that reaches that goal state under deterministic dynamics. Thus, the cumulative
regret of the meta-learner is the number of episodes required to find the goal state. By our assumption
that the meta-learner could only learn if it had reached the goal state at the end of the episode, the
meta-learner cannot use learn information about multiple goals within a single episode. We can
minimize the regret in Equation 2 w.r.t. the marginal distribution ρTπ using the calculus of variations,
which tells us that the (exploration) policy for the optimal meta-learner, π∗, satisfies:

ρTπ∗(sg) =

√
p(sg)∫ √
p(s′g)ds

′
g

(3)

The analysis so far tells us how to obtain the optimal meta-learner if were were given the goal
sampling distribution, p(sg). If we do not know this distribution, then we cannot compute the optimal
policy using Equation 3. In this case, we resort to bounding the worst-case regret of our policy:

min
π

max
p

REGRETp(π) (4)

Lemma 1. Let π be a policy for which ρTπ (s) is uniform. Then π has lowest worst-case regret.

The proof is in Appendix B. Given this result, we know that the optimal meta-learner should have a
uniform state marginal distribution. The minimax optimal meta-learner corresponds to a uniform
distribution over goal states, so we can acquire this meta-learner by training on a goal-reaching
task distribution where the goals are uniformly distributed. Manually crafting this distribution is
hard, especially in high-dimensional settings. We are therefore left with the problem of devising a
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method that can propose goals to our optimal meta-learner during unsupervised meta-training that are
distributed uniformly. Recall that the task proposal mechanism is defined in terms of a latent variable
z ∼ p(z) and a parameterized reward function rz(s, a). For each z ∼ p(z), let us also introduce the
optimal policy for the corresponding reward, which we will denote π(a | s, z). This policy is not the
meta-learned model, but simply a component of the task proposal mechanism. This policy induces a
distribution over terminal states, p(sT |z). We will show that a uniform goal proposal distribution is
obtained by a goal proposal mechanism that maximizes the mutual information between z and the
final state sT :

I(sT ; z) , H[sT ]−H[sT | z] (5)
Observe that this objective contains two competing terms. The first term,H[sT ], says that π(a | s, z),
when aggregated over many latents z, has a high-entropy state distribution. This term is maximized
when the state distribution is uniform, as desired. The second term,H[sT | z], says that π(a | s, z),
when conditioned on a particular latent z, should go to only a few states. If we optimize this objective,
we obtain a marginal distribution over final states that is uniform (proof in Appendix B):
Lemma 2. Mutual information I(sT ; z) is maximized by a task distribution p(sg) that is uniform
over goal states.

We can then recover a final time step reward function for each value of z as
rz(sT , aT ) , log p(sT | z), where the probability distribution is taken with respect to the optimal
policy π(a|s, z). One peculiar fact of the goal reaching tasks is that agents cannot take epistemic (i.e.,
information gathering) actions, since the agent only acquires information about the goal state when it
reaches it. In this particular setting, meta-learners that perform posterior sampling for exploration, like
the one described above, are optimal. However, in more general settings, meta-learning algorithms
can also take epistemic actions, potentially performing better than posterior sampling.

3.4 GENERAL CASE: TRAJECTORY-MATCHING TASKS

To extend the analysis in the previous section to the general case, and thereby derive a framework for
optimal unsupervised meta-learning, we will consider “trajectory-matching” tasks. These tasks are a
trajectory-based generalization of goal reaching: while goal reaching tasks only provide a positive
reward when the policy reaches the goal state, trajectory-matching tasks only provide a positive
reward when the policy executes the optimal trajectory.1 These non-Markovian tasks essentially
amount to a problem where an RL algorithm must “guess” the optimal policy, and only receives
a reward if its behavior is perfectly consistent with that optimal policy. We will show that mutual
information between z and trajectories yields the minimum regret solution in this case, and then show
that unsupervised meta-learning for the trajectory-matching task is at least as hard as unsupervised
meta-learning for general tasks (though in practice it is considerably harder).

Formally, we define a distribution of trajectory-matching tasks by a distribution over goal trajectories,
p(τ∗). For each goal trajectory τ∗, the corresponding trajectory-level reward function is

r∗τ (τ) , 1(τ = τ∗) (6)
As before, we define the hitting time as the expected number of episodes to match the target trajectory:

HITTINGTIMEπ(τ
∗) =

1

π(τ∗)
(7)

We then define regret as the expected hitting time:

REGRETp(π) =

∫
HITTINGTIMEπ(τ)p(τ)dτ) =

∫
p(τ)

π(τ)
dτ (8)

Using the same derivation as before, the exploration policy for the optimal meta-learner is

π∗(τ) =

√
p(τ)∫ √
p(τ ′)dτ ′

. (9)

However, obtaining such a policy requires knowing the trajectory distribution p(τ). In the setting
where p(τ) is unknown, the minimax policy is simply uniform:

1In a stochastic CMP, this corresponds to all trajectories that can be executed with non-zero probability by
the deterministic optimal policy for the unknown reward function, but we will present the derivation for the
deterministic case for simplicity.
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Lemma 3. Let π be a policy for which π(τ) is uniform. Then π has lowest worst-case regret.

How can we acquire a policy with a uniform trajectory distribution? Repeating the steps above, we
learn a collection of skills using a trajectory-level mutual information objective:

I(τ ; z) = H[τ ]−H[τ | z] (10)

Using the same reasoning as Section 3.3, the optimal policy for this objective has a uniform marginal
distribution over trajectories that, conditioned on a particular latent z, deterministically produces a
single trajectory in a deterministic CMP, or one out of a set of trajectories in a stochastic CMP. As in
Section 3.3, we define a distribution over reward functions as rz(τ) , log p(τ | z). At optimality,
each z corresponds to exactly one trajectory τz , so the reward function rz(τ) simply indicates
whether τ is equal to τz . Recalling that the marginal distribution over trajectories

∫
p(τ | z)p(z)dz is

uniform at optimum, the distribution of reward functions rz corresponds to a uniform distribution
over trajectories. Thus, meta-learning on the rewards from trajectory-level mutual information results
in the minimax-optimal meta-learner.

It is important to note here that the specific case of trajectory-matching is a super-set of the problem of
optimizing any possible Markovian reward function at test-time. For a given initial state distribution,
each reward function is optimized by a particular trajectory. However, trajectories produced by
a non-Markovian policy (i.e., a policy with memory) are not necessarily the unique optimum for
any Markovian reward function. Let Rτ denote the set of trajectory-level reward functions, and
Rs,a denote the set of all state-action level reward functions. Bounding the worst-case regret on Rτ
minimizes and upper bound on the worst-case regret on Rs,a:

min
rτ∈Rτ

Eπ [rτ (τ)] ≤ min
r∈Rs,a

Eπ

[∑
t

r(st, at)

]
for all policies π.

In general, this bound is loose because the set of all Markovian reward functions is smaller than the
set of all trajectories. However, this bound becomes tight when considering meta-learning on the set
of all possible (non-Markovian) reward functions.

In the discussion of meta-learning thus far, we have considered tasks where the reward is provided
at the last time step T of each episode. In this particular case, the best that an optimal meta-learner
can do is go directly to a goal or execute a particular trajectory at every episode according to the

optimal exploration policy: ρTπ∗(sg) =
√
p(sg)∫ √
p(s′g)ds

′
g

for goal reaching or π∗(τ) =
√
p(τ)∫ √
p(τ ′)dτ ′

for

trajectory matching. All intermediate states in the trajectory are uninformative, thus making instances
of meta-learning algorithms which explore via schemes like posterior sampling optimal for this class
of problems. In the more general case with arbitrary reward functions, intermediate rewards along
a trajectory may be informative, and the optimal exploration strategy may be somewhat different
(Rothfuss et al., 2019; Duan et al., 2016b; Wang et al., 2016). However, the analysis presented in
Section 3.4 provides us insight into the behavior of optimal meta-learning algorithms and allows us
to understand the qualities desirable for unsupervised task proposals.

Through our analysis, we introduce the notion of optimal meta-learners and analyze their exploration
behavior and regret on a class of goal reaching problems. We show that on these problems, when
the test-time task distribution is unknown, the optimal meta-training task distribution for minimizing
worst-case test-time regret is uniform over the space of goals. We show that this optimal task
distribution can be acquired by a simple mutual information maximization scheme. We subsequently
extend the analysis to the more general case of matching arbitrary trajectories, as a proxy for the more
general class of arbitrary reward functions. In the following section we discuss how we can derive a
practical algorithm for unsupervised meta-learning from this analysis, and empirically validate it’s
effectiveness.

3.5 A PRACTICAL ALGORITHM

Following the derivation in the previous section, we can instantiate a practical unsupervised meta-
reinforcement learning algorithm by constructing a task proposal mechanism based on a mutual
information objective. To this end, we adopt the DIAYN algorithm (Eysenbach et al., 2018). DIAYN
constructs tasks by approximately maximizing a mutual information objective. A variety of different
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mutual information objectives can be formulated, including mutual information between single
states and z (Eysenbach et al., 2018), pairs of start and end states and z Gregor et al. (2016),
and entire trajectories and z Achiam et al. (2018). While the latter objective is motivated by
our theory, we found the simple state-based objective to work well in practice, and leave a full
examination of possible mutual information objectives for future work. DIAYN optimizes mutual
information by training a discriminator network Dφ(z|·) that predicts which z was used to generate
the states in a given rollout according to a latent-conditioned policy π(a|s, z). Depending on what
the discriminator is conditioned on, we obtain different mutual information objectives. We use
Dφ(z|s), resulting in the objective I(s; z) (Eysenbach et al., 2018). The reward in DIAYN is given
by rz(s, a) = log(Dφ(z|s)).

Algorithm 1: Unsupervised Meta-Reinforcement
Learning Pseudocode
Data:M\R, an MDP without a reward function
Result: a learning algorithm f : D → π
Initialize D = ∅
Dφ ← DIAYN() or Dφ ← random
while not converged do

Sample latent task variables z ∼ p(z)
Extract corresponding task reward functions rz(s)

using Dφ(z|s)
Update f using MAML with reward rz(s)

The complete unsupervised meta-learning al-
gorithm follows the recipe in Figure 1: first,
we acquire rz(s, a) by running DIAYN, which
learns Dφ(z|s) and a latent-conditioned policy
π(a|s, z) (which is discarded). Then, we use
z ∼ p(z) to propose tasks rz(s, a) to a standard
meta-reinforcement learning algorithm. We use
MAML Finn et al. (2017a), though any other
meta-reinforcement learning method could be
used in principle. This method is summarized
in Algorithm 1.

In addition to mutual information maximizing task proposals, we will also consider random task
proposals, where we also use a discriminator as the reward, according to r(s, z) = logDφrand(z|s),
but where the parameters φrand are chosen randomly (i.e., a random weight initialization for a neural
network). While such random reward functions are not optimal, we find that they can be used to
acquire useful task distributions for simple tasks, though they are not as effective as the tasks become
more complicated. This empirically reinforces the claim that unsupervised meta-reinforcement
learning does not in fact violate any “no free lunch” principle – even simple task proposals that cause
the meta-learner to explore the CMP can already accelerate learning of new tasks.

4 EXPERIMENTAL EVALUATION

Half-Cheetah Ant

In our experiments, we aim to understand whether unsu-
pervised meta-learning as described in Section 3.1 can
provide us with an accelerated reinforcement learning pro-
cedure on new tasks. Whereas standard meta-learning
requires a hand-specified task distribution at meta-training
time, unsupervised meta-learning learns the task distri-
bution through unsupervised interaction with the environment. A fair baseline that likewise uses
requires no reward supervision at training time, and only uses reward for learning new tasks is
learning via RL from scratch without any meta-learning. As an upper bound, we include the unfair
comparison to a standard meta-learning approach, where the meta-training distribution is manually
designed. This method has access to a hand-specified task distribution that is not available to our
method. We evaluate two variants of our approach: (a) task acquisition based on DIAYN followed
by meta-learning using MAML, and (b) task acquisition using a randomly initialized discriminator
followed by meta-learning using MAML.

4.1 TASKS AND IMPLEMENTATION DETAILS

Our experiments study three simulated environments of varying difficulty: 2D point navigation,
2D locomotion using the “HalfCheetah,” and 3D locomotion using the “Ant,” with the latter two
environments are modifications of popular reinforcement learning benchmarks (Duan et al., 2016a).
While the 2D navigation environment allows for direct control of position, HalfCheetah and Ant
can only control their center of mass via feedback control with high dimensional actions (6D for
HalfCheetah, 8D for Ant) and observations (17D for HalfCheetah, 111D for Ant).
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The evaluation tasks, shown in Figure 6, are similar to prior work (Finn et al., 2017a; Pong et al.,
2018): 2D navigation and ant require navigating to goal positions, while the half cheetah must run at
different goal velocities. These tasks are not accessible to our algorithm during meta-training. We
used the default hyperparameters for MAML across all tasks, varying the meta-batch size according
to the number of skills that the discriminator is parameterized by - 50 for pointmass, and 20 for
cheetah and ant. We found that the default architecture - 2 layer MLP with 300 units each and ReLU
non-linearities worked quite well for meta-training. We also used the default hyperparameters for
DIAYN to acquire skills. We swept over learning rates for learning from scratch via vanilla policy
gradient, and found that using ADAM with adaptive step size is the most stable and quick at learning.

4.2 FAST ADAPTATION AFTER UNSUPERVISED META LEARNING

2D navigation Half-Cheetah Ant
Figure 3: Unsupervised meta-learning accelerates learning: After unsupervised meta-learning, our approach
(UML-DIAYN and UML-RANDOM) quickly learns a new task significantly faster than learning from scratch,
especially on complex tasks. Learning the task distribution with DIAYN helps more for complex tasks. Results
are averaged across 20 evaluation tasks, and 3 random seeds for testing. UML-DIAYN and random also
significantly outperform learning with DIAYN initialization or an initialization with a policy pretrained with
VIME.

The comparison between the two variants of unsupervised meta-learning and learning from scratch is
shown in Fig 3, and we compare to hand-crafted task distributions in Fig 4. In Figure 3, we also add
a comparison to VIME Houthooft et al. (2016), a standard novelty-based exploration method, where
we pretrain a policy with the VIME reward and then finetune it on the meta-test tasks. In all cases,
the UML-DIAYN variant of unsupervised meta-learning produces an RL procedure that outperforms
reinforcement learning from scratch and VIME-init, suggesting that unsupervised interaction with
the environment and meta-learning is effective in producing environment-specific but task-agnostic
priors that accelerate learning on new, previously unseen tasks. The comparison with VIME shows
that the speed of learning is not just about exploration but is indeed about fast adaptation. In our
experiments thus far, UML-DIAYN always performs better than learning from scratch, although the
benefit varies across tasks depending on the actual performance of DIAYN.

Interestingly, in many cases (in Fig 4) the performance of unsupervised meta-learning with DIAYN
matches that of the hand-designed task distribution. We see that on the 2D navigation task, while
handcrafted meta-learning is able to learn very quickly initially, it performs similarly after 100 steps.
For the cheetah environment as well, handcrafted meta-learning is able to learn very quickly to start
off, but is quickly matched by unsupervised meta-RL with DIAYN. On the ant task, we see that
hand-crafted meta-learning does do better than UML-DIAYN, likely because the task distribution is
more challenging, and a better unsupervised task proposal algorithm would improve the performance
of a meta-learner.

The comparison between the two unsupervised meta-learning variants is also illuminating: while
the DIAYN-based variant of our method generally achieves the best performance, even the random
discriminator is often able to provide a sufficient diversity of tasks to produce meaningful acceleration
over learning from scratch in the case of 2D navigation and ant. This result has two interesting
implications. First, it suggests that unsupervised meta-learning is an effective tool for learning an
environment prior. Although the performance of unsupervised meta-learning can be improved with
better coverage using DIAYN (as seen in Fig 3), even the random discriminator version provides
competitive advantages over learning from scratch. Second, the comparison provides a clue for
identifying the source of the structure learned through unsupervised meta-learning: though the
particular task distribution has an effect on performance, simply interacting with the environment
(without structured objectives, using a random discriminator) already allows meta-RL to learn
effective adaptation strategies in a given environment. That is, the performance cannot be explained
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2D Navigation Half-Cheetah Ant Navigation
Figure 4: Comparison with handcrafted tasks: Unsupervised meta-learning (UML-DIAYN) is competitive
with meta-training on handcrafted reward functions (i.e., an oracle). A misspecified, handcrafted meta-training
task distribution often performs worse, illustrating the benefits of learning the task distribution.

only by the unsupervised procedure (DIAYN) capturing the right task distribution. We also provide
an analysis of the task distributions acquired by the DIAYN procedure in Appendix C.1.

5 DISCUSSION AND FUTURE WORK

We presented an unsupervised approach to meta-reinforcement learning, where meta-learning is
used to acquire an efficient reinforcement learning procedure without requiring hand-specified
task distributions for meta-training. This approach accelerates RL without relying on the manual
supervision required for conventional meta-learning algorithms. We provide a theoretical derivation
that argues that task proposals based on mutual information maximization can provide for a minimum
worst case regret meta-learner under certain assumptions. We then instantiate an approximation to
the theoretically motivated method by building on recently developed unsupervised task proposal
and meta-learning algorithms. Our experiments indicate that unsupervised meta-RL can accelerate
learning on a range of tasks, outperforming learning from scratch and often matching the performance
of meta-learning from hand-specified task distributions.

As our work is the first foray into unsupervised meta reinforcement-learning, our approach opens
a number of questions about unsupervised meta-learning algorithms. While we focus on purely
unsupervised task proposal mechanisms, it is straightforward to incorporate minimally-informative
priors into this procedure. For example, we might restrict the learned reward functions to operate on
only part of the state. We consider the reinforcement learning setting in our work because environment
interaction mediates the unsupervised learning process, ensuring that there is something to learn even
without access to task reward.
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A APPENDIX

B PROOFS

Lemma 1 Let π be a policy for which ρTπ (s) is uniform. Then π has lowest worst-case regret.

Proof of Lemma 1. To begin, we note that all goal distributions p(sg) have equal regret for policies
where ρTπ (s) is uniform:

REGRETp(π) =

∫
p(sg)

ρTπ (sg)
dsg =

∫
p(sg)

|S|
dsg =

1

|S|

Now, consider a policy π′ for which ρTπ (s) is not uniform. For simplicity, we will assume that
the argmin is unique, though the proof holds for non-unique argmins as well. The worst-case goal
distribution will choose the state s− where that the policy is least likely to visit:

p−(sg) , 1(sg = argmin
s

ρTπ (s))
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Thus, the worst-case regret for policy π′ is strictly greater than the regret for a uniform π:

max
p

REGRETp(π) = REGRETp−(π) =

∫
1(sg = argmins ρ

T
π (s))

ρTπ (sg)
dsg =

1

mins ρTπ′(s)
>

1

|A|
(11)

Thus, a policy π′ for which ρTπ is non-uniform cannot be minimax, so the optimal policy has a
uniform marginal ρTπ .

Lemma 2: Mutual information I(sT ; z) is maximized by a task distribution p(sg) which is uniform
over goal states.

Proof of Lemma 2. We define a uniform distribution over goal states p(sg) as a latent variable model,
where we sample a latent variable z from a uniform prior p(z). In this latent variable model, the
marginal entropy H[sT | z] attains the smallest possible value (zero) when each latent variable
z corresponds to exactly one final state, sz . In contrast, the marginal entropy H[sT ] attains the
largest possible value (log |S|) when the marginal distribution p(sT ) =

∫
p(sT | z)p(z)dz is uniform.

Recalling that the mutual information is defined as the difference between these two entropies, we
see that maximizing the mutual information results in a uniform distribution over goals.

C ABLATIONS

Figure 5: Analysis of effect of additional meta-training on meta-test time learning of new tasks. For larger
iterations of meta-trained policies, we have improved test time performance, showing that additional meta-
training is beneficial.

To understand the method performance more clearly, we also add an ablation study where we compare
the meta-test performance of policies at different iterations along meta-training. This shows the effect
that additional meta-training has on the fast learning performance for new tasks. This comparison
is shown in Fig 5. As can be seen here, at iteration 0 of meta-training the policy is not a very good
initialization for learning new tasks. As we move further along the meta-training process, we see that
the meta-learned initialization becomes more and more effective at learning new tasks. This shows a
clear correlation between additional meta-training and improved meta test-time performance.

C.1 ANALYSIS OF LEARNED TASK DISTRIBUTIONS

We can analyze the tasks discovered through unsupervised exploration and compare them to tasks
we evaluate on at meta-test time. Figure 6 illustrates these distributions using scatter plots for 2D
navigation and the Ant, and a histogram for the HalfCheetah. Note that we visualize dimensions of
the state that are relevant for the evaluation tasks – positions and velocities – but these dimensions
are not specified in any way during unsupervised task acquisition, which operates on the entire state
space. Although the tasks proposed via unsupervised exploration provide fairly broad coverage, they
are clearly quite distinct from the meta-test tasks, suggesting the approach can tolerate considerable
distributional shift. Qualitatively, many of the tasks proposed via unsupervised exploration such as
jumping and falling that are not relevant for the evaluation tasks. Our choice of the evaluation tasks
was largely based on prior work, and therefore not tailored to this exploration procedure. The results
for unsupervised meta-reinforcement learning therefore suggest quite strongly that unsupervised task
acquisition can provide an effective meta-training set, at least for MAML, even when evaluating on
tasks that do not closely match the discovered task distribution.
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2D navigation Ant Half-Cheetah

Figure 6: Learned meta-training task distribution and evaluation tasks: We plot the center of mass for
various skills discovered by point mass and ant using DIAYN, and a blue histogram of goal velocities for cheetah.
Evaluation tasks, which are not provided to the algorithm during meta-training, are plotted as red ‘x’ for ant and
pointmass, and as a green histogram for cheetah. While the meta-training distribution is broad, it does not fully
cover the evaluation tasks. Nonetheless, meta-learning on this learned task distribution enables efficient learning
on a test task distribution.
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