Under review as a conference paper at ICLR 2020

IMPROVING GENERALIZATION IN META REINFORCE-
MENT LEARNING USING NEURAL OBJECTIVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Biological evolution has distilled the experiences of many learners into the gen-
eral learning algorithms of humans. Our novel meta-reinforcement learning algo-
rithm MetaGenRL is inspired by this process. MetaGenRL distills the experiences
of many complex agents to meta-learn a low-complexity neural objective func-
tion that affects how future individuals will learn. Unlike recent meta-RL algo-
rithms, MetaGenRL can generalize to new environments that are entirely different
from those used for meta-training. In some cases, it even outperforms human-
engineered RL algorithms. MetaGenRL uses off-policy second-order gradients
during meta-training that greatly increase its sample efficiency.

1 INTRODUCTION

The process of evolution has equipped humans with incredibly general learning algorithms. The
inductive biases that give rise to these capabilities are the result of distilling the collective learning
experiences of many learners throughout the course of natural evolution. By essentially learning
from learning experiences in this way, this knowledge can be compactly encoded in the genetic code
of an individual to give rise to the general learning capabilities that we observe today.

In contrast, Reinforcement Learning (RL) in artificial agents rarely proceeds in this way. The learn-
ing rules that are used to train agents are the result of years of human engineering and design,
(e.g. Williams (1992); Wierstra et al. (2008); Mnih et al. (2013); Lillicrap et al. (2015); Schulman
et al. (2015a)). Correspondingly, artificial agents are inherently limited by the ability of the designer
to incorporate the right inductive biases in order to learn from previous experiences.

Several works have proposed an alternative framework based on meta reinforcement learn-
ing (Schmidhuber, 1994; Wang et al., 2016; Duan et al., 2016; Finn et al., 2017; Houthooft et al.,
2018; Clune, 2019). Meta-RL distinguishes between learning to act in the environment (the rein-
forcement learning problem) and learning to learn (the meta-learning problem). Hence, learning
itself is now a learning problem, which in principle allows one to leverage prior learning experi-
ences to meta-learn general learning rules that surpass handcrafted alternatives. However, while
prior work found that learning rules could be meta-learned that generalize to slightly different envi-
ronments or goals (Finn et al., 2017; Plappert et al., 2018; Houthooft et al., 2018), generalization to
entirely different environments remains an open problem.

In this paper we present MetaGenRL', a novel meta reinforcement learning algorithm that meta-
learns learning rules that generalize to entirely different environments. MetaGenRL is inspired
by the process of natural evolution as it distills the learning experiences of many agents into the
parameters of an objective function that affects how future individuals will learn. Similar to Evolved
Policy Gradients (EPG; Houthooft et al. (2018)), it meta-learns low complexity neural objective
functions that may be used to train highly complex agents consisting of many parameters. However,
unlike EPG it is able to meta-learn using second-order gradients, which (as we will demonstrate)
offers several advantages compared to using evolution.

We evaluate MetaGenRL on a variety of continuous control tasks and compare to RL? (Wang et al.,
2016; Duan et al., 2016) and EPG in addition to several human engineered learning algorithms.
Compared to RL? we find that MetaGenRL does not overfit and is able to train randomly initialized

'Code is available at hidden. for.review.

hidden.for.review

Under review as a conference paper at ICLR 2020

agents using meta-learned learning rules on entirely different environments. Compared to EPG we
find that MetaGenRL is more sample efficient, and outperforms significantly under a fixed budget
of environment interactions. The results of an ablation study and additional analysis provide further
insight into the benefits of our approach.

2 PRELIMINARIES

Notation We consider the standard MDP Reinforcement Learning setting defined by a tuple e =
(S, A, P, p1,r,7,T) consisting of states S, actions A, the transition probability distribution P :
S x A xS — Ry, an initial state distribution p; : S — R, the reward function r : S x A —
[~ Rinazs Rimaz], @ discount factor +, and the episode length T'. The objective for the probabilistic
policy 74 : S x A — R, parameterized by ¢ is to maximize the expected discounted return:

T

Br— (101,500 D V7 (st,a)], where sy ~ p1(s1), ar ~ mg(aslst), ser1 ~ P(spgalse, ar). (1)
t=1

Human Engineered Gradient Estimators A popular gradient-based approach to maximiz-
ing Equation 1 is REINFORCE (Williams, 1992). It directly differentiates Equation 1 with respect
to ¢ using the likelihood ratio trick to derive gradient estimates of the form:

T T
VoBALreine(T,74)] =B, [V Y logmg(arlse) - Y 'r(se,ar)].)
t=1 t=1

Although this basic estimator is now rarely used, it has become a building block for an entire class
of policy-gradient algorithms of this form. For example, a popular extension from Schulman et al.
(2015b) combines REINFORCE with a Generalized Advantage Estimate (GAE) to yield the follow-
ing policy gradient estimator:

T
VeEr[Lgag(T,7m4, V)] :=E; [V Z log my(arlse) - A(T, V). (3)

t=1

where A(7,V) is the GAE and V' : S — R is a value function estimate. Several recent other
extensions include TRPO (Schulman et al., 2015a), which discourages bad policy updates using
trust regions and iterative off-policy updates, or PPO (Schulman et al., 2017), which offers similar
benefits using only first order approximations.

Parametrized Objective Functions In this work we note that many of these human engineered
policy gradient estimators can be viewed as specific implementations of a general objective function
L that is differentiated with respect to the policy parameters:

VoEr [L(7, 75, V).)

Hence, it becomes natural to consider a generic parametrization of L that for various choices of
parameters « recovers some of these estimators. Here, we will consider neural objective functions
where L, is implemented by a neural network. Our goal is then to optimize the parameters « of this
neural network in order to give rise to a new learning algorithm that best maximizes Equation 1 on
an entire class of (different) environments.

3 META-LEARNING NEURAL OBJECTIVES

In this work we propose MetaGenRL, a novel meta reinforcement learning algorithm that meta-
learns neural objective functions of the form L, (7,74, V). MetaGenRL makes use of value
functions and second-order gradients, which makes it more sample efficient compared to prior
work (Duan et al., 2016; Wang et al., 2016; Houthooft et al., 2018). More so, as we will demonstrate,
MetaGenRL meta-learns objective functions that generalize to vastly different environments.

Our key insight is that a differentiable critic ()9 : S x A — R can be used to measure the effect
of locally changing the objective function parameters o based on the quality of the corresponding

Under review as a conference paper at ICLR 2020

policy gradients. This enables a population of agents to use and improve a single parameterized
objective function L, through interacting with a set of (potentially different) environments. During
evaluation (meta-test time), the meta-learned objective function can then be used to train a randomly
initialized RL agent in a new environment.

3.1 FroM DDPG TO GRADIENT-BASED META-REINFORCEMENT LEARNING

We will formally introduce MetaGenRL as an extension of the DDPG actor-critic framework (Silver
et al., 2014, Lillicrap et al., 2015). In DDPG, a parameterized critic of the form Qy : S x A — R
transforms the non-differentiable RL reward maximization problem into a myopic value maximiza-
tion problem for any s; € S. This is done by alternating between optimization of the critic)y and
the (here deterministic) policy 7. The critic is trained to minimize the TD-error by following:

Vo Z (Qo(st,ar) — yr)?, where y; =y + 7 - Qo(st+1, T (8t41)), &)

(s¢,at,m¢,8¢41)

and the dependence of y; on the parameter vector 6 is ignored. The policy my4 is improved to
increase the expected return from arbitrary states by following the gradient V, >~ Qo (1, Tg(st))-
Both gradients can be computed entirely off-policy by sampling trajectories from a replay buffer.

MetaGenRL builds on this idea of differentiating the critic Q9 with respect to the policy parameters.
It introduces a parameterized objective function L, that is used to improve the policy (i.e. by
following the gradient V 4 L,,), which adds one extra level of indirection: The critic Qg will improve
L, while L, will improve the policy 7. By first differentiating with respect to the objective
function parameters « and then with respect to the policy parameters ¢ the critic can be used to
measure the effect of updating 7, using L,, on the estimated return*:

VaQo(st, 7y (s1)), where ¢ = ¢ — VLo (1, 2(9), V). (6)

This constitutes a second order gradient V, V4 that can be used to meta-train L, to provide better
updates to the policy parameters in the future. In practice we will use batching to optimize Equa-
tion 6 over multiple trajectories 7.

Similarly to the policy-gradient estimators from Section 2, the objective function L (7, z(¢), V)
receives as inputs an episode trajectory 7 = (s1.1, a1.7,71.7), the value function estimates V' and
auxiliary inputs z(¢) (previously) that can be differentiated with respect to the policy parameters.
The latter is critical to be able to differentiate with respect to ¢ and in the simplest case it consists
of the action as predicted by the policy. After meta-training, the objective function L, can be used
for policy learning by following V4L, (T, z(¢), V).

We note that the inputs to L, are sampled from a replay buffer rather than solely using on-policy
data. If L, were to represent a REINFORCE-type objective it would in turn mean that differenti-
ating L, yields biased policy gradient estimates. In our experiments we will find that the gradients
from L, work much better in comparison to a biased off-policy REINFORCE algorithm, and to an
importance-sampled unbiased REINFORCE algorithm. We also note that popular algorithms such
as PPO (Schulman et al., 2017) use a small and recent replay buffer to increase sample efficiency.

3.2 PARAMETRIZING THE OBJECTIVE FUNCTION

The MetaGenRL framework that we have outlined leaves ample flexibility to learn expressive ob-
jective functions. In our experiments we will focus on a simple, yet general parameterization of the
form L, (r¢, ar, mp(se), t, Ve[t € {1..T°}).

We will implement L, using an LSTM (Gers et al., 2000; Hochreiter & Schmidhuber,
1997) that iterates over 7 in reverse order and depends on the current policy action g (s¢)
(see Figure 1). At every time-step L, receives the reward r;, taken action a;, pre-
dicted action by the current policy 7r¢(st), the time ¢, and value function estimates Vi, Viy;.

?In case of a probabilistic policy 7o (at]st) the following becomes an expectation under 74 and a reparam-
eterizable form is required (Williams, 1988; Kingma & Welling, 2013; Rezende et al., 2014). Here we focus
on learning deterministic target policies.

Under review as a conference paper at ICLR 2020

In order to accommodate varying action dimensionalities

across different environments, both 74(s;) and a, are first con- lz
volved and then averaged to obtain an action embedding that T
does not depend on the action dimensionality. The outputs of

the LSTM at each step consist of the objective value [;, which
are summed to yield a single scalar output value that can be
differentiated with respect to ¢. Additional details, including

more expressive alternatives are available in Appendix B. / \

— LSTM —

By presenting the trajectory in reverse order to the LSTM (and
L, correspondingly), it is able to assign credit to an action
a based on its future impact on the reward, similar to policy
gradient estimators. More so, as a general function approx- T
imator using these inputs, the LSTM is in principle able to

conv| r,V,V., .t

learn different variance and bias reduction techniques, akin to ap JZ(/)(SI)
advantage estimates, generalized advantage estimates, or im-
portance weights. Due to these properties, we expect the class Figure 1: An overview of

of objective functions that is supported to somewhatrelate toa the parametric loss function
REINFORCE (Williams, 1992) estimator that uses generalized [, (1,2(0),V).
advantage estimation (Schulman et al., 2015b).

3.3 GENERALITY AND EFFICIENCY OF METAGENRL

MetaGenRL (see Algorithm 1 in Appendix B for an overview) makes only few assumptions com-
pared to related approaches (Wang et al., 2016; Duan et al., 2016; Santoro et al., 2016; Mishra et al.,
2017; Houthooft et al., 2018). In particular, it is only required that both 74 and L, can be differenti-
ated w.r.t. to the policy parameters ¢. This leaves ample freedom to make use of agent populations,
increase sample efficiency, and to balance capacity.

Population-Based A general objective function should be applicable to a wide range of environ-
ments. To this extent MetaGenRL is able to leverage the collective experience of multiple agents to
perform meta-learning by using a single objective function L, shared among a population of agents
that each act in their own (potentially different) environment. Each agent locally computes Equa-
tion 6 over a batch of trajectories, and the resulting gradients are combined to update L. Thus, the
valuable experience of each individual agent is compressed into the objective function that is avail-
able to the entire population at any given time. For example, agents that have explored successfully,
will be able to share their strategy for exploration with others in this way.

Sample Efficiency An alternative to learning neural objective functions using a population of
agents is through evolution as in EPG (Houthooft et al., 2018). However, we expect meta-learning
using second-order gradients as in MetaGenRL to be much more sample efficient. This is due to
off-policy training of the objective function L, and its subsequent off-policy use to improve the
policy. Indeed, unlike in evolution there is no need to train multiple randomly initialized agents in
their entirety in order to evaluate the objective function, thus speeding up credit assignment. Rather,
at any point in time, any information that is deemed useful for future environment interactions can
be directly incorporated into the objective function. Finally, using the formulation in Equation 6
one can measure the effects of improving the policy using L, for multiple steps by increasing the
corresponding number of gradient steps before applying @09, which we will explore in Section 5.2.3.

Generalization The focus of this work is to learn general learning rules that during test-time
can be applied to vastly different environments. A strict separation between the policy and the
learning rule, the functional form of the latter, and training across many environments all contribute
to this. Regarding the former, a clear separation between the policy and the learning rule as in
MetaGenRL is expected to be advantageous for two reasons. Firstly, it allows us to specify the
number of parameters of the learning rule independent of the policy and critic parameters. For
example, our implementation of L, uses only 15K parameters for the objective function compared
to 384 K parameters for the policy and critic. Hence, we are able to only use a short description
length for the learning rule. A second advantage that is gained is that the meta-learner is unable

Under review as a conference paper at ICLR 2020

Table 1: Mean return across 6 seeds of training randomly initialized agents during meta-test time on
previously seen environments (cyan) and on unseen environments (brown).

Training \ Testing Cheetah Hopper Lunar

Cheetah & Hopper MetaGenRL | 2963 2896 25
EPG -657 24 -322
RL? 2495 360 -503

Lunar & Cheetah MetaGenRL = 3132 3308 175
EPG -846 14 -845
RL? 1869 4 268

to directly change the policy and must, therefore, learn to make use of the objective function. This
makes it difficult for the meta-learner to overfit to the training environments.

4 RELATED WORK

Among the earliest pursuits in meta learning are meta-hierarchies of genetic algorithms (Schmidhu-
ber, 1987) and learning update rules in supervised learning (Bengio et al., 1990). While the former
introduced a general framework of entire meta-hierarchies, it relied ond discrete non-differentiable
programs. The latter introduced restricted local update rules that had free parameters that could
be learned differentiably in a supervised setting. Schmidhuber (1993) introduced a differentiable
self-referential RNN that could address and modify its own weights, albeit difficult to learn.

Hochreiter et al. (2001) introduced differentiable meta-learning using RNNs to scale to larger prob-
lem instances. By giving an RNN access to the reward stream, it could implement its own meta-
learning algorithm, where the weights are the meta-learned parameters, and the hidden states the
subject of learning. This was later extended to the RL setting (Wang et al., 2016; Duan et al., 2016;
Santoro et al., 2016; Mishra et al., 2017) (here refered to as RL?). As we show empirically in our pa-
per, meta-learning with RL? does not generalize well. It lacks a clear separation between policy and
objective function, which likely causes it to overfit on training environments. This is exacerbated by
the imbalance of O(n?) meta-learned parameters to learn O(n) activations, unlike in MetaGenRL.

Many other recent meta learning algorithms learn a policy parameter initialization that is later fine-
tuned using a fixed policy gradient algorithm (Finn et al., 2017; Schulman et al., 2017; Grant et al.,
2018; Yoon et al., 2018). Different from MetaGenRL, these approaches use second order gradi-
ents on the same policy parameter vector instead of using a separate objective function. Albeit in
principle general (Finn & Levine, 2017), the mixing of policy and learning algorithm leads to a
complicated way of expressing general update rules. Similar to RL2, adaptation to related tasks is
possible, while generalization is difficult (Houthooft et al., 2018).

Objective functions have been learned prior to MetaGenRL. Houthooft et al. (2018) evolve an objec-
tive function that is optimized by the agent. Unlike MetaGenRL, this approach is extremely costly in
terms of the number of environment interactions required to evaluate and update the objective func-
tion. Parallel to this work, Chebotar et al. (2019) introduced learned loss functions for reinforcement
learning that use a policy gradient estimator to compute gradients. It is unclear whether this approach
is able to meta-learn loss functions that generalize to significantly different environments. Learned
objective functions have also been used for learning unsupervised representations (Metz et al., 2019)
and DDPG-like meta-gradients for hyperparameter search (Xu et al., 2018).

Finally, a group of related approaches (Li & Malik, 2017; 2016; Andrychowicz et al., 2016) imple-
ment meta-learning as learning optimizers that update parameters ¢ by modulating the gradient of
some fixed objective function L: A¢ = f,(V,L) where « is learned. They differ from MetaGenRL
in that they only modulate the gradient of a fixed objective function L instead of learning L itself.

5 EXPERIMENTS

We investigate the learning and generalization capabilities of MetaGenRL on several continuous
control benchmarks including HalfCheetah (Cheetah) and Hopper from MuJoCo (Todorov et al.,

Under review as a conference paper at ICLR 2020

Testing on Lunar Testing on Hopper

400
3500

300
3000

200 2500

100

N
=3
53
3

1500

Mean return
Mean return

—— MetaGenRL (t Cheetah & Lunar)
MetaGenRL (t Lunar)

—— DDPG/TD3 1000 4
f —— off-policy REINFORCE (with GAE)

—— on-policy REINFORCE (with GAE)

— PO 500
—200

EPG (t Cheetah & Lunar)

—— RL? (t Cheetah & Lunar) 0

-100

-300 T T T T T T T T
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions

(a) Previously seen Lunar environment. (b) Unseen Hopper environment.

Figure 2: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms. We train randomly initialized agents
on (a) environments that were encountered during training, and (b) on significantly different envi-
ronments that were unseen. Training environments are denoted by 1 in the legend. All runs are
shown with mean and standard deviation computed over six random seeds.

2012), and LunarLanderContinuous (Lunar) from OpenAl gym (Brockman et al., 2016). These
environments differ significantly in terms of the properties of the underlying system that is to be
controlled, and in terms of the dynamics that have to be learned to complete the environment. Hence,
by training meta-RL algorithms on one environment and testing on other environments they provide
a reasonable measure of out-of-distribution generalization.

In our experiments, we will mainly compare to EPG and to RL? to evaluate the efficacy of our ap-
proach. We will also compare to several fixed model-free RL algorithms to measure how well the
algorithms meta-learned by MetaGenRL compare to these handcrafted alternatives. Unless other-
wise mentioned, we will meta-train MetaGenRL using 20 agents that are distributed equally over
the indicated training environments. Each agent uses clipped double-Q learning, delayed policy up-
dates, and target policy smoothing from TD3 (Fujimoto et al., 2018). We will allow for 1 million
environment interactions per agent. Further details are available in Appendix B.

5.1 COMPARISON TO PRIOR WORK

Evaluating on previously seen environments We meta-train MetaGenRL on Lunar, and compare
its ability to train a randomly initialized agent at test-time (i.e. using the learned objective function
and keeping it fixed) to DDPG, PPO, and on- and off-policy REINFORCE (both using GAE) across
six seeds. Figure 2a shows that MetaGenRL markedly outperforms both the REINFORCE baselines
and PPO. Compared to DDPG, which finds the optimal policy, MetaGenRL performs only slightly
worse on average although the presence of outliers increases its variance.

We also report results (Figure 2a) when meta-training MetaGenRL on both Lunar and Cheetah, and
compare to EPG and RL? that were meta-trained on these same environments®. For MetaGenRL
we observe some interference from also meta-training on Cheetah resulting in a larger variance.
In particular, we find that while some agents reach the optimal policy, others converge to a local
optimum early on and are unable to improve with additional training. In contrast, for EPG it can
be observed that 50 million interactions are insufficient to find any good objective functions at all*.
Finally, we find that RL? reaches the optimal policy after 50 million meta-training iterations, and
its performance is unaffected by using additional learning steps during testing on Lunar. We note
that RL? does not separate meta-learning and learning and indeed in a similar ‘within distribution’
evaluation, RL? was found highly successful (Wang et al., 2016; Duan et al., 2016).

*In order to ensure a good baseline we allowed for a maximum of 50 million environment interactions for
both EPG and RL2, which is more than twice the amount used by MetaGenRL.
*The experiments in Houthooft et al. (2018) required on the order of 10 billion environment interactions.

Under review as a conference paper at ICLR 2020

Testing, after 28K steps Testing, after 86K steps Testing, after 100K steps Testing, after 155K steps Testing, after 199K steps
3500
(/\/LN

00M 02M 04M 06M 08M 10M 00M 02M 04M O06M 08M 1OM 00M 02M 04M 06M 0.8M 10M 00M 02M 04M O06M 08M 1OM 00M 02M 04M 06M 0BM 10M

o/

—— Meta-Training with 20 Agents on Cheetah & Lunar

3000

ool
2500 i\
3 2000

§ 1500

B
1000

Mean return of agents

25K 50K 75K 100K 125K 150K 175K 200K
Environment interactions per agent in the training population
Figure 3: Meta-training with 20 agents on Cheetah and Lunar. We test the objective function at
different stages of meta-training by using it to train a randomly initialized agent on Hopper.

Generalization to vastly different environments We evaluate the same objective functions
learned by MetaGenRL, EPG and the recurrent dynamics by RL? on Hopper, which is significantly
different compared to the meta-training environments. Figure 2b shows that the learned objective
function by MetaGenRL continues to outperform both PPO and our implementations of REIN-
FORCE, while it performs similar to DDPG. When training on both Lunar and Cheetah we now
observe a positive regularizing effect that improves performance, which is intuitive.

When comparing to related meta-RL approaches we find that MetaGenRL is significantly better. The
performance of EPG remains poor, which was expected given its similar performance on previously
seen environments. On the other hand, we now find that the RL? baseline fails completely (resulting
in a flat low-reward evaluation), suggesting that the learned learning rule that was previously found
successfull is entirely overfitted to the environments that were seen during training. Similar results
can be observed for different train and test environment splits in Table 1, and in Appendix A.

5.2 ANALYSIS
5.2.1 META-TRAINING PROGRESSION OF OBJECTIVE FUNCTIONS

Previously we focused on test-time training randomly initialized agents using an objective func-
tion that was meta-trained for a total of 1 million steps (corresponding to 20 million environment
interactions). We will now investigate the quality of the objective functions during meta-training.

Figure 3 displays the result of meta-training an objective function on Cheetah and Lunar that is
evaluated at regular intervals (multiple seeds are shown). Initially (28K steps) it can be seen that
due to lack of meta-training there is only a marginal improvement in the return obtained during
test time. However, after only meta-training for 86K steps we find (perhaps surprisingly) that the
meta-trained objective function is already able to make consistent progress in optimizing a randomly
initialized agent during test-time. On the other hand, we observe large variances at test-time during
this phase of meta-training. Throughout the remaining stages of meta-training we then observe an
increase in convergence speed, more stable updates, and a lower variance across seeds.

5.2.2 ABLATION STUDY

We conduct an ablation study of the neural objective function that was described in Section 3.2.
In particular, we assess the dependence of L, on the time component ¢t and the value estimates
V4, V41 that could to some extent be learned. Other ablations that for example limit access to the
action chosen, or to the received reward are expected to be disastrous for generalization to any other
environment (or reward function) and are therefore not explored.

Dependence ont We use a parameterized objective function of the form L (a¢, ¢, Vi, ms(s¢)|t €
1,...,T) as in Figure 1 except that it does not receive information about the time-step ¢ at each
step. Although information about the current time-step is required in order to learn (for example)
a generalized advantage estimate (Schulman et al., 2015b), the LSTM could in principle learn such
time tracking on it own, and we expect only minor effects on meta-training and during testing.

Under review as a conference paper at ICLR 2020

Agents meta-training in Lunar Agents meta-training in Cheetah Testing on Cheetah

8000

4000

3000

2000

Mean return

Rtk Al
AT
A 1000

gty

ining population mean return

0.8M oM o.0m 02m 0.8M Lom o.0m ozm 0.8M 1.0M

0am 0.6M 0.am 0.6 0.am 0.6M
Environment interactions per agent Environment interactions per agent Environment interactions

(a) Meta-training on Lunar & Cheetah (b) Testing on Cheetah

Figure 4: We meta-train MetaGenRL using several alternative parametrizations of L, on a) Lunar
and Cheetah, and b) present results of testing on Cheetah.

Indeed in Figure 4b it can be seen that the neural objective function performs well without access to
t, except for slightly slower convergence during meta-training (Figure 4a).

Dependence on V' We use a parameterized objective function of the form Lo, (a¢, 7, ¢, ms(s¢)|t €
1,...,T) as in Figure 1 except that it does not receive any information about the value estimates at
time-step ¢. There exist reinforcement learning algorithms that work without value function esti-
mates (eg. Williams (1992); Schmidhuber & Zhao (1998)), although in the absence of an alternative
baseline these often have a large variance. Similar results are observed for this ablation in Figure 4a
during meta-training where a possibly large variance appears to affect meta-training. Correspond-
ingly during test-time (Figure 4b) we do not find any meaningful training progress to take place.
In contrast, we find that we can remove the dependence on one of the value function estimates, i.e.
remove V;; but keep V;, without affecting performance.

5.2.3 MULTIPLE GRADIENT STEPS

We analyze the effect of making multiple gradient updates to the policy using L, before applying
the critic to compute second-order gradients with respect to the objective function parameters as
in Equation 6. While in previous experiments we have only considered applying a single update,
multiple gradient updates might better capture long term effects of the objective function. At the
same time, distancing ourselves further away from the the current policy parameters, may reduce
the overall quality of the second-order gradients that we receive. In Figure 5 it can be observed
that using 3 gradient steps improves test-time training on Hopper and Cheetah after meta-training
on LunarLander and Cheetah. On the other hand, we find that further increasing the number of
gradient steps further to 5 harms performance.

Testing on Hopper Testing on Cheetah

3500 — MetaGenRL using 1 gradient step on ¢ —— MetaGenRL using 1 gradient step on ¢
MetaGenRL using 3 gradient steps on ¢ 8000 MetaGenRL using 3 gradient steps on ¢
—— MetaGenRL using 5 gradient steps on ¢ —— MetaGenRL using 5 gradient steps on ¢

2500 6000
4000

2000
500
0 0

0.0M 0.2mM 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions

Mean return

Figure 5: Two MetaGenRL objective functions meta-trained on the LunarLander and HalfCheetah
environments with one, three, or five inner gradient steps on ¢. Test-time training is shown with
mean and standard deviation computed over six random seeds.

Under review as a conference paper at ICLR 2020

6 CONCLUSION

We have presented MetaGenRL, a novel off-policy gradient-based meta reinforcement learning al-
gorithm that leverages a population of DDPG-like agents to meta-learn general objective functions.
Unlike related methods the meta-learned objective functions do not only generalize in narrow task
distributions but show similar performance on entirely different tasks while markedly outperform-
ing REINFORCE and PPO. We have argued that this generality is due to MetaGenRL’s explicit
separation of the policy and learning rule, the functional form of the latter, and training across mul-
tiple environments. Furthermore, the use of second order gradients increases MetaGenRL’s sample
efficiency by several orders of magnitude compared to EPG (Houthooft et al., 2018).

In future work, we aim to further improve the learning capabilities of the meta-learned objective
functions, including better leveraging knowledge from prior experiences. Indeed, in our current
implementation, the objective function is unable to observe the environment or the hidden state of
the (recurrent) policy. These extensions are especially interesting as they may allow more com-
plicated curiosity-based (Schmidhuber, 1991; 1990; Houthooft et al., 2016; Pathak et al., 2017) or
model-based (Schmidhuber, 1990; Ha & Schmidhuber, 2018; Weber et al., 2017) algorithms to be
learned. To this extent, it will be important to develop introspection methods that analyze the learned
objective function and to scale MetaGenRL to make use of many more environments and agents.

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gémez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. In Advances in Neural Information Processing Systems, pp. 3988—
3996, 6 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université
de Montréal, 1990.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym. arXiv preprint arXiv:1606.01540, 2016.

Yevgen Chebotar, Artem Molchanov, Sarah Bechtle, Ludovic Righetti, Franziska Meier, and Gaurav
Sukhatme. Meta-Learning via Learned Loss. arXiv preprint arXiv:1906.05374, 6 2019.

Jeff Clune. AI-GAs: Al-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL"2: Fast
Reinforcement Learning via Slow Reinforcement Learning. arXiv preprint arXiv:1611.02779,
2016.

Chelsea Finn and Sergey Levine. Meta-Learning and Universality: Deep Representations and Gra-
dient Descent can Approximate any Learning Algorithm. arXiv preprint arXiv:1710.11622,2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135, 2017.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual Prediction
with LSTM. Neural Computation, 12(10):2451-2471, 2000.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting Gradient-
Based Meta-Learning as Hierarchical Bayes. arXiv preprint arXiv:1801.08930, 2018.

Under review as a conference paper at ICLR 2020

David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pp. 2450-2462, 2018.

S Hochreiter and J Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780,
1997.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, 2001.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
Variational Information Maximizing Exploration. In Advances in Neural Information Processing
Systems, pp. 1109-1117, 2016.

Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and
Pieter Abbeel. Evolved Policy Gradients. In Advances in Neural Information Processing Systems,
pp- 5400-5409, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 12 2013.

Ke Li and Jitendra Malik. Learning to Optimize. arXiv preprint arXiv:1606.01885, 2016.

Ke Li and Jitendra Malik. Learning to Optimize Neural Nets. arXiv preprint arXiv:1703.00441,
2017.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Learning Unsuper-
vised Learning Rules. In International Conference on Learning Representations, 3 2019.

Nikhil Mishra, Mostafa Rohaninejad, and Xi UC Chen Pieter Abbeel Berkeley. A Simple Neural
Attentive Meta-Learner. arXiv preprint arXiv:1707.03141, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602, 2013.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In 34th International Conference on Machine Learning, ICML
2017, volume 6, pp. 4261-4270, 2017. ISBN 9781510855144. doi: 10.1109/CVPRW.2017.70.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, and others. Multi-goal rein-
forcement learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. arXiv preprint arXiv:1401.4082, 2014. ISSN
10495258. doi: 10.1051/0004-6361/201527329.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
Learning with Memory-Augmented Neural Networks. In International conference on machine
learning, pp. 1842-1850, 2016.

J Schmidhuber. On learning how to learn learning strategies. Technical Report FKI-198-94, Fakultit
fiir Informatik, Technische Universitdt Miinchen, 1994.

10

Under review as a conference paper at ICLR 2020

J Schmidhuber and J Zhao. Direct policy search and uncertain policy evaluation. Technical Report
IDSIA-50-98, IDSIA, Lugano, Switzerland, 1998.

Jiirgen Schmidhuber. Evolutionary principles in self-referential learning. Diploma thesis, Institut
fiir Informatik, Technische Universitidt Miinchen, 1987.

Jirgen Schmidhuber. Making the world differentiable: On Using Fully Recurrent Self-Supervised
Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary Environ-
ments. Technical Report FKI-126-90 (revised), Institut fiir Informatik, Technische Universitét
Miinchen, 11 1990.

Jirgen Schmidhuber. A Possibility for Implementing Curiosity and Boredom in Model-Building
Neural Controllers. In J A Meyer and S W Wilson (eds.), Proc. of the International Conference
on Simulation of Adaptive Behavior: From Animals to Animats, pp. 222-227. MIT Press/Bradford
Books, 1991.

Jiirgen Schmidhuber. A self-referential weight matrix. In Proceedings of the International Confer-
ence on Artificial Neural Networks, Amsterdam, pp. 446—451. Springer, 1993.

John Schulman, Sergey Levine, Philipp Moritz, Michael 1. Jordan, and Pieter Abbeel. Trust Region
Policy Optimization. In International conference on machine learning, pp. 1889—1897, 2015a.
doi: 10.1063/1.4927398.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In 31st International Conference on Machine Learning,
ICML 2014, volume 1, pp. 605-619, 1 2014. ISBN 9781634393973.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Théophane Weber, Sébastien Racaniere, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomeénech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
Razvan Pascanu, Peter Battaglia, David Silver, and Daan Wierstra. Imagination-Augmented
Agents for Deep Reinforcement Learning. In Advances in neural information processing sys-
tems, pp. 5690-5701, 2017.

Daan Wierstra, Tom Schaul, Jan Peters, and Jiirgen Schmidhuber. Natural Evolution Strategies.
In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational
Intelligence), pp. 3381-3387, 2008.

R J Williams. On the Use of Backpropagation in Associative Reinforcement Learning. In IEEE
International Conference on Neural Networks, San Diego, volume 2, pp. 263-270, 1988.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8:229-256, 1992.

Zhongwen Xu, Hado Van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in Neural Information Processing Systems, volume 2018-Decem, pp. 2396-2407, 5
2018.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian Model-Agnostic Meta-Learning. In Advances in Neural Information Processing Sys-
tems, pp. 73327342, 2018.

11

Under review as a conference paper at ICLR 2020

A ADDITIONAL RESULTS

A.1 ALL TRAINING AND TEST REGIMES

In the main text, we have shown several combinations of meta-training, and testing environments.
We will now show results for all combinations, including the final scores that were obtained in
comparison to human engineered baselines.

Testing on Hopper Testing on Hopper

3500 —— MetaGenRL (t Hopper) 3500 —— MetaGenRL (f Cheetah & Lunar)

MetaGenRL (t Cheetah & Hopper) MetaGenRL (f Lunar) A S~
~—— DDPG/TD3 DDPG / TD3
30001 ___ off.policy REINFORCE (with GAE) /‘/\/\/\/Vf\/\/"\""\l\ 3000 off-policy REINFORCE (with GAE) /\/\/\/\/\ffWV\N\/\
~—— on-policy REINFORCE (with GAE) - T on-policy REINFORCE (with GAE) -
25004 — PPO A\ Al 2500 PPO
EPG (t Cheetah & Hopper) A EPG (t Cheetah & Lunar)

—— RL? (f Cheetah & Lunar)

—— RL? (t Cheetah & Hopper)

N
=]
<1
3

2000

Mean return
Mean return

-
]
S
3

1500

1000 1000

500 Z 500 ///_,____,__/Jﬁw/\/\/\
W

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions
(a) Within distribution generalization. (b) Out of distribution generalization.

Figure 6: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Hopper. We consider within
distribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by t) for the meta-RL approaches. All runs are shown with mean and standard deviation
computed over six random seeds.

Hopper On Hopper (Figure 6) we find that MetaGenRL works well, both in terms of general-
ization to previously seen environments, and to unseen environments. The PPO, REINFORCE,
RL?, and EPG baselines are outperformed significantly and multi-environment training appears to
be beneficial in both cases. Regarding RL? we observe that it is only able to obtain reward on pre-
viously seen environments. Regarding EPG evaluated on Hopper after being meta-trained Cheetah
and Hopper (Figure 6a) shows some learning progress in the beginning of test-time training, but
then drops back down quickly. In contrast, when evaluating on Hopper after training on Cheetah
and Lunar (Figure 6) no training progress is observed at all.

Testing on Cheetah Testing on Cheetah

—— MetaGenRL (t Cheetah & Lunar) ——— MetaGenRL (t Lunar)

8000 4 MetaGenRL (t Cheetah & Hopper) 8000 MetaGenRL (t Hopper & Lunar)
DDPG / TD3 DDPG / TD3

off-policy REINFORCE (with GAE) off-policy REINFORCE (with GAE)
on-policy REINFORCE (with GAE) on-policy REINFORCE (with GAE)

6000 PPO 6000 PPO
EPG (f Cheetah & Lunar)

—— EPG (f Cheetah & Hopper)

—— RL? (f Cheetah & Lunar)

2000 4

4000

Mean return
Mean return

2000

J

“‘W |
i

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions
(a) Within distribution generalization. (b) Out of distribution generalization.

Figure 7: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Cheetah. We consider within
distribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by t) for the meta-RL approaches. All runs are shown with mean and standard deviation
computed over six random seeds.

12

Under review as a conference paper at ICLR 2020

Cheetah Similar results are observed in Figure 7 for Cheetah. MetaGenRL outperforms PPO,
REINFORCE, and RL? significantly and multi-environment training is helpful. Here we note that
DDPG with TD3 tricks remains stronger compared to MetaGenRL and it will be interesting to
further study these differences in the future to improve the expressibility of our approach. Regarding
RL? and EPG only within distribution generalization results are available at this time. We find that
RL? performs similar to our earlier findings on Hopper, while EPG shows initially more promise on
within distribution generalization (Figure 7a) although in the end it ends up at a similar result.

Testing on Lunar Testing on Lunar
400 400

200 200

—— MetaGenRL (t Hopper)

Mean return
Mean return

—— MetaGenRL (f Cheetah & Lunar)
-200 MetaGenRL (Lunar) 200 MetaGenRL (1 Cheetah & HOPPEr) _arn s ™|
-~ DDPG/TD3 —— DDPG/TD3
—— off-policy REINFORCE (with GAE) —— off-policy REINFORCE (with GAE)
—— on-policy REINFORCE (with GAE) —— on-policy REINFORCE (with GAE)
-400 — PPO -400 — PPO
EPG (t Cheetah & Lunar) EPG (t Cheetah & Hopper)
—— RL? (t Cheetah & Lunar) —— RL2 (t Cheetah & Hopper)
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions Environment interactions
(a) Within distribution generalization. (b) Out of distribution generalization.

Figure 8: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Lunar. We consider within dis-
tribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by t) for the meta-RL approaches. All runs are shown with mean and standard deviation
computed over six random seeds.

Lunar On Lunar (Figure 8) we find that MetaGenRL struggles somewhat compared to the REIN-
FORCE and PPO baselines. Analyzing this result reveals that although many of the runs train rather
well, some get stuck during the early stages of training without recovering. These outliers lead to
a seemingly very large variance for MetaGenRL as can be observed in the plot. We will provide a
more detailed analysis of this result in Section A.2, where we will also present results in the absence
of these outliers (Figure 10). Nonetheless, we observe that the objective function trained on Hopper
generalizes worse to Lunar, despite our earlier result that objective functions trained on Lunar do in
fact generalize to Hopper. MetaGenRL is still able to outperform both RL.? and EPG in terms of out
of distribution generalization. We do note that EPG is able to meta-learn objective functions that are
able to improve to an extent during test time.

Table 2: Agent mean return across seeds for meta-test training on previously seen environments
(cyan) and on unseen (different) environments (brown) compared to human engineered baselines.

Training (below) / Test (right) Cheetah Hopper Lunar

MetaGenRL Cheetah & Hopper 2963 2896 25
Cheetah & Lunar 3132 3308 175
Hopper & Lunar 4843 3012 254
Hopper 3393 2596 -204
Lunar 2701 2793 233
PPO - 1455 1894 187
DDPG / TD3 - 8315 2718 288
off-policy REINFORCE - -88 1804 168
on-policy REINFORCE - 38 565 120

Comparing final scores An overview of the final scores that were obtained for MetaGenRL in
comparison to the human engineered baselines is shown in Table 2. It can be seen that MetaGenRL
outperforms PPO and off-/on-policy REINFORCE in most configurations while DDPG with TD3
tricks remains stronger on two of the three environments.

13

Under review as a conference paper at ICLR 2020

A.2 STABILITY OF LEARNED OBJECTIVE FUNCTIONS

Testing, after 55K steps Testing, after 155K steps Testing, after 454K steps Testing, after 654K steps

Mean return
Mean return

)

Mean return of agents

|
~N
S
5

—— Meta-Training with 20 Agents on Lunar

200K 400K 600K 800K 1000K
Environment interactions per agent in the training population

Figure 9: Meta-training with 20 agents on LunarLander. We meta-test the objective function at
different stages in training on the same environment.

In the results presented in Figure 8 on Lunar we observed a seemingly large variance for Meta-
GenRL that was due to outliers. Indeed, when analyzing the individual runs we found that that two
of the runs converge to a local optimum early on during training and were unable to recover from
this afterwards. On the other hand, we also observed that runs can be ‘stuck’ for a long time to
then make very fast learning progress. It suggests that the objective function may sometimes expe-
rience difficulties in providing meaningful updates to the policy parameters during the early stages
of training.

We have further analyzed this issue by evaluating the objective function at regular intervals through-
out meta-training in Figure 9. From the meta-training curve (bottom) it can be seen find that meta-
training in Lunar converges very early. This leads to later updates to the objective function being
based on already converged policies. As the test-time plots show, these additional updates appear
to negatively affect test-time performance. We hypothesize that the objective function essentially
‘forgets’ about the early stages of training a randomly initialized agent, by only incorporating infor-
mation about good performing agents. A possible solution to this problem would be to keep older
policies in the meta-training agent population or use early stopping.

Finally, if we exclude the two random seeds that were outliers, we indeed find a significant reduction
in the variance (and increase in the mean) of the results observed for MetaGenRL (see Figure 10).

Testing on Lunar Testing on Lunar
400 400
—— MetaGenRL (t Cheetah & Lunar)
MetaGenRL (f Hopper)
300 —— MetaGenRL (f Lunar) 300
—— MetaGenRL (t Cheetah & Hopper)
200 200
c c
S 100 S 100
® e
c c
] g o
2 0 =
-100 -100
—— MetaGenRL (t Cheetah & Lunar)
_200 _200 MetaGenRL (f Hopper)
—— MetaGenRL (f Lunar)
—— MetaGenRL (t Cheetah & Hopper)
-300 T T T T -300 + T T ; T
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M 0.0M 0.2M 0.4M 0.6M 0.8M 1.0M

Environment interactions Environment interactions

Figure 10: The left plot shows all six random seeds on the meta-test environment Lunar while the
right has the two worst random seeds removed. The variance is now reduced significantly.

14

Under review as a conference paper at ICLR 2020

B EXPERIMENT DETAILS

An overview of the full algorithm can be found in Algorithm 1. In the following we describe all
experimental details regarding the architectures used, meta-training, hyperparameters, and baselines.

Algorithm 1 A population of agents jointly meta-learn an objective function L,,.

Require: p(e) a distribution of environments
P < {(e; ~ple),$1,01,B1 + 2),...} > Randomly initialize population of agents
Randomly initialize objective function L,
while L, has not converged do
for e, ¢,0, B € P do > For each agent 4 in parallel
if extend replay buffer B then
Extend B using 7y in e

Sample trajectories from B

Update critic (9 using TD-error

Update policy by following V4 L,

Compute objective function gradient A; for agent 7 according to Equation 6
Sum gradients ; A; to update L,

B.1 NEURAL OBJECTIVE FUNCTION ARCHITECTURE

Neural Architecture In this work we use an LSTM to implement the objective function (Figure 1).
The LSTM runs backwards in time over the state, action, and reward tuples that were encountered
during the trajectory 7 under consideration. At each step ¢ the LSTM receives as input the reward
r¢, value estimates of the current and previous state V;, V1, the current timestep ¢ and finally the
action that was taken at the current timestep a; in addition to the action as determined by the current
policy my(s;). The actions are first processed by one dimensional convolutional layers striding over
the action dimension followed by a reduction to the mean. This allows for different action sizes
between environments. Let A(®) € R'*P be the action from the replay buffer, A(™) € R'*P be
the action predicted by the policy, and W € R2*Y a learnable matrix corresponding to N outgoing
units, then the actions are transformed by

1 D
5 2 (AP AW, ()
i=1

where [a, b] is a concatenation of a and b along the first axis. This corresponds to a convolution with
kernel size 1 and stride 1. Further transformations with non-linearities can be added after applying
W, if necessary. We found it helpful (but not strictly necessary) to use ReLLU activations for half of
the units and square activations for the other half.

At each time-step the LSTM outputs a scalar value /;, which are summed to obtain the value of
the neural objective function. Differentiating this value with respect to the policy parameters ¢
then yields gradients that can be used to improve 74. We only allow gradients to flow backwards
through 74 (s¢) to ¢. This implementation is closely related to the functional form of a REIN-
FORCE (Williams, 1992) estimator using the generalized advantage estimation (Schulman et al.,
2015b).

All feed-forward networks (critic and policy) use ReLLU activations and layer normalization (Ba
et al., 2016). The LSTM uses tanh activations for cell and hidden state transformations, sigmoid
activations for the gates. Any other hyper-parameters can be seen in Table 3.

Extensibility The expressability of the objective function can be further increased through several
means. One possibility is to add the entire sequence of state observations o;.7 to its inputs, or by
introducing a bi-directional LSTM. Secondly, additional information about the policy (such as the
hidden state of a recurrent policy) can be provided to L. Although not explored in this work, this
would in principle allow one to learn an objective that encourages certain representations to emerge,
e.g. a predictive representation about future observations, akin to a world model (Schmidhuber,
1990; Ha & Schmidhuber, 2018; Weber et al., 2017). In turn, these could create pressure to adapt

15

Under review as a conference paper at ICLR 2020

the policy’s actions to explore unknown dynamics in the environment (Schmidhuber, 1991; 1990;
Houthooft et al., 2016; Pathak et al., 2017).

B.2 META-TRAINING

Annealing with DDPG At the beginning of meta-training (learning L), the objective function
is randomly initialized and thus does not make sensible updates to the policies. This can lead to
irreversibly breaking the policies early during training. Our current implementation circumvents
this issue by linearly annealing VL, the first 10k timesteps (1% of all timesteps) with DDPG
VQo (s, ms(s¢)). Early experiments suggest that an exponential learning rate schedule on the
gradient of V4L, for the first 10k steps can replace the annealing with DDPG. The learning rate
anneals exponentially between a learning rate of zero and le-3. In some rare cases, this may still
lead to unsuccessful training runs, thus we have omitted this approach from the present work.

Standard training During training, the critic is updated twice as many times as the policy and
objective function, similar to TD3 (Fujimoto et al., 2018). One gradient update with data sampled
from the replay buffer is applied for every timestep collected from the environment. The gradient
with respect to ¢ in Equation 6 is combined with ¢ using a fixed learning rate in the standard way,
all other parameter updates use Adam (Kingma & Ba, 2014) with the default parameters. Any other
hyper-parameters can be seen in Table 3 and Table 4.

Using additional gradient steps In our experiments (Section 5.2.3) we analyzed the effect of
applying multiple gradient updates to the policy using L, before applying the critic to compute
second-order gradients with respect to the objective function parameters. For two updates, this gives

VaQo(st, myi (s1)) with @' = ¢’ — Vs La (71, 2(¢/), V)
and ¢’ = ¢ — VyLa(r2,2(9), V)
and can be extended to more than two correspondingly. Additionally, we use disjoint mini batches

of data 7: 71, 72. When updating the policy using V4L, we continue to use only a single gradient
step.

(®)

B.3 BASELINES

RL? The implementation for RL? mimics the paper by Duan et al. (Duan et al., 2016). How-
ever, we were unable to achieve good results with TRPO (Schulman et al., 2015a) on the MuJoCo
environments and thus used PPO (Schulman et al., 2017) instead. The PPO hyperparameters and
implementation are taken from rllib (Liang et al., 2017). Our implementation uses an LSTM with
64 units and does not reset the state of the LSTM for two episodes in sequence. Resetting after
additional episodes were given did not improve training results.

EPG We use the official EPG code base https://github.com/openai/EPG from the orig-
inal paper (Houthooft et al., 2018). The hyperparameters are taken from the paper, V = 64 noise
vectors, an update frequency of M = 64, and 128 updates for every inner loop, resulting in an inner
loop length of 8196 steps. During meta-test training, we run with the same update frequency for a
total of 1 million steps.

PPO & On-Policy REINFORCE with GAE We use the tuned implementations from https:
//spinningup.openai.com/en/latest/spinningup/bench.html which include a
GAE (Schulman et al., 2015b) baseline.

Off-Policy Reinforce with GAE The implementation is equivalent to MetaGenRL except that the
objective function is fixed to be the REINFORCE estimator with a GAE (Schulman et al., 2015b)
baseline. Thus, experience is sampled from a replay buffer. We have also experimented with an
importance weighted unbiased estimator but this resulted in poor performance.

DDPG Our implementation is based on https://spinningup.openai.com/en/
latest/spinningup/bench.html and uses the same TD?3 tricks (Fujimoto et al., 2018) and
hyperparameters (where applicable) that MetaGenRL uses.

16

https://github.com/openai/EPG
https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html
https://spinningup.openai.com/en/latest/spinningup/bench.html

Under review as a conference paper at ICLR 2020

Table 4: Training hyperparameters

Parameter | Value

Table 3: Architecture hyperparameters Truncated episode length 20

Global norm gradient clipping 1.0

Parameter | Value Critic learning rate \; le-3

Critic number of layers 3 Policy learning rate A, le-3

o . Second order learning rate A3 le-3
Critic number of units 350 . .

. Obj. func. learning rate Ay le-3
Policy number of layers 3 o .

. : Critic noise 0.2
Policy number of units 350 Criti ise cli 05
Objective function LSTM units 256 rtic nose ciip '

. . . Target network update speed 0.005
Objective function action conv layers 3 .

o . . Discount factor 0.99
Objective function action conv filters 32 .

Batch size 100
Random exploration timesteps | 10000
Policy gaussian noise std 0.1
Timesteps per agent M

17

	Introduction
	Preliminaries
	Meta-Learning Neural Objectives
	From DDPG to Gradient-Based Meta-Reinforcement Learning
	Parametrizing the Objective Function
	Generality and Efficiency of MetaGenRL

	Related work
	Experiments
	Comparison to Prior Work
	Analysis
	Meta-Training Progression of Objective Functions
	Ablation study
	Multiple gradient steps

	Conclusion
	Additional Results
	All Training and Test Regimes
	Stability of Learned Objective Functions

	Experiment Details
	Neural Objective Function Architecture
	Meta-Training
	Baselines

