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ABSTRACT

Knowledge graph embedding research has overlooked the problem of probabil-
ity calibration. We show popular embedding models are indeed uncalibrated.
That means probability estimates associated to predicted triples are unreliable.
We present a novel method to calibrate a model when ground truth negatives are
not available, which is the usual case in knowledge graphs. We propose to use
Platt scaling and isotonic regression alongside our method. Experiments on three
datasets with ground truth negatives show our contribution leads to well calibrated
models when compared to the gold standard of using negatives. We get signifi-
cantly better results than the uncalibrated models from all calibration methods.
We show isotonic regression offers the best the performance overall, not without
trade-offs. We also show that calibrated models reach state-of-the-art accuracy
without the need to define relation-specific decision thresholds.

1 INTRODUCTION

Knowledge graph embedding models are neural architectures that learn vector representations (i.e.
embeddings) of nodes and edges of a knowledge graph. Such knowledge graph embeddings have
applications in knowledge graph completion, knowledge discovery, entity resolution, and link-based
clustering, just to cite a few (Nickel et al., 2016).

Despite burgeoning research, the problem of calibrating such models has been overlooked, and
existing knowledge graph embedding models do not offer any guarantee on the probability estimates
they assign to predicted facts. Probability calibration is important whenever you need the predictions
to make probabilistic sense, i.e., if the model predicts a fact is true with 80% confidence, it should
to be correct 80% of the times. Prior art suggests to use a sigmoid layer to turn logits returned
by models into probabilities (Nickel et al., 2016) (also called the expit transform), but we show
that this provides poor calibration. Figure 1 shows reliability diagrams for off-the-shelf TransE and
ComplEx. The identity function represents perfect calibration. Both models are miscalibrated: all
TransE combinations in Figure 1a under-forecast the probabilities (i.e. probabilities are too small),
whereas ComplEx under-forecasts or over-forecasts according to which loss is used (Figure1b).

Calibration is crucial in high-stakes scenarios such as drug-target discovery from biological net-
works, where end-users need trustworthy and interpretable decisions. Moreover, since probabilities
are not calibrated, when classifying triples (i.e. facts) as true or false, users must define relation-
specific thresholds, which can be awkward for graphs with a great number of relation types.

To the best of our knowledge, this is the first work to focus on calibration for knowledge embed-
dings. Our contribution is two-fold: First, we use Platt Scaling and isotonic regression to calibrate
knowledge graph embedding models on datasets that include ground truth negatives. One peculiar
feature of knowledge graphs is that they usually rely on the open world assumption (i.e. facts not
present are not necessarily false, they are simply unknown). This makes calibration troublesome
because of the lack of ground truth negatives. For this reason, our second and main contribution is a
calibration heuristics that combines Platt-scaling or isotonic regression with synthetically generated
negatives.

Experimental results show that we obtain better-calibrated models and that it is possible to cali-
brate knowledge graph embedding models even when ground truth negatives are not present. We

1



Under review as a conference paper at ICLR 2020

Figure 1: Reliability diagrams of uncalibrated models. Probabilities are generated by a logistic
sigmoid layer. The larger the deviation from the diagonal, the more uncalibrated is the model. We
present four different common loss functions used to train knowledge graph embedding models. (a)
Uncalibrated TransE on WN11. (b) Uncalibrated ComplEx on FB13. Best viewed in colors.

also experiment with triple classification, and we show that calibrated models reach state-of-the-art
accuracy without the need to define relation-specific decision thresholds.

2 RELATED WORK

A comprehensive survey of knowledge graph embedding models is out of the scope of this work.
Works such as (Nickel et al., 2016) and (Cai et al., 2017) present a survey of recent work, although
they do not include the most recent models such as ConvE (Dettmers et al., 2018) or RotatE (Sun
et al., 2019). In this paper we limit our analysis to the three most established models: TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), and ComplEx (Trouillon et al., 2016). They do not address
the problem of assessing the reliability of predictions, leave aside calibrating probabilities.

Besides well-established techniques such as Platt scaling (Platt et al., 1999) and isotonic regres-
sion (Zadrozny & Elkan, 2002), recent interest in neural architectures calibration show that modern
neural architectures are poorly calibrated and that calibration can be improved with novel methods.
For example, (Guo et al., 2017) successfully proposes to use temperature scaling for calibrating
modern neural networks.

The Knowledge Vault pipeline in (Dong et al., 2014) extracts triples from unstructured knowledge
and is equipped with Platt scaling calibration, but this is not applied to knowledge graph embedding
models. To the best of our knowledge, the only work that adopts probability calibration to knowledge
graph embedding models is Krompaß & Tresp (2015). The authors propose to use ensembles in
order to improve the results of knowledge graph embedding tasks. For that, they propose to calibrate
the models with Platt scaling, so they operate on the same scale. No further details on the calibration
procedure are provided. Besides, there is no explanation on how to handle the lack of negatives.

3 PRELIMINARIES

Knowledge Graph. Formally, a knowledge graph G = {(s, p, o)} ⊆ E × R × E is a set of triples
t = (s, p, o) , each including a subject s ∈ E , a predicate p ∈ R, and an object o ∈ E . E and R are
the sets of all entities and relation types of G.

Triple Classification. Binary classification task where G (which includes only positive triples) is
used as training set, and T = {(s, p, o)} ⊆ E × R × E is a disjoint test set of labeled triples
to classify. Note T includes positives and negatives. Since the learned models are not calibrated,
multiple decision thresholds τi must be picked, where 0 < i < |R|, i.e. one for each relation type.
This is done using a validation set (Bordes et al., 2013). Classification metrics apply (e.g. accuracy).

Link Prediction. Given a training set G that includes only positive triples, the goal is assigning a
score f(t) ∈ R proportional to the likelihood that each unlabeled triple t included in a held-out set

2



Under review as a conference paper at ICLR 2020

WN11 FB13 YAGO39K FB15K-237 WN18RR

Training 112,581 316,232 354,996 272,115 86,835
Validation 5,218 11,816 18,682 17,535 3,034
Test 21,088 47,466 18,728 20,466 3,134
Entities 38,696 75,043 39,374 14,541 40,943
Relations 11 13 39 237 11

(a)

Model Scoring Function fm
TransE −||es + rp − eo||n
DistMult 〈es, rp, eo〉
ComplEx Re(〈es, rp, eo〉)

(b)

Table 1: (a) Triple classification datasets used in experiments (left); link prediction datasets used for
positive base rate experiments (right); (b) Scoring functions of models used in experiments.

S is true. Note S does not have ground truth positives or negatives. This task is cast as a learning to
rank problem, and uses metrics such as mean rank (MR), mean reciprocal rank (MRR) or Hits@N.

Knowledge Graph Embeddings. Knowledge graph embedding models are neural architectures
that encode concepts from a knowledge graph G (i.e. entities E and relation types R) into low-
dimensional, continuous vectors ∈ Rk (i.e, the embeddings). Embeddings are learned by training a
neural architecture over G. Although such architectures vary, the training phase always consists in
minimizing a loss function L that includes a scoring function fm(t), i.e. a model-specific function
that assigns a score to a triple t = (s, p, o) (more precisely, the input of fm are the embeddings of the
subject es, the predicate rp, and the object eo). The goal of the optimization procedure is learning
optimal embeddings, such that the scoring function fm assigns high scores to positive triples t+ and
low scores to triples unlikely to be true t−. Existing models propose scoring functions that combine
the embeddings es, rp, eo ∈ Rk using different intuitions. Table 1b lists the scoring functions of the
most common models. For example, the scoring function of TransE computes a similarity between
the embedding of the subject es translated by the embedding of the predicate ep and the embedding
of the object eo, using the L1 or L2 norm || · ||. Such scoring function is then used on positive and
negative triples t+ ∈ G, t− ∈ N in the loss function. This is usually a pairwise margin-based loss
(Bordes et al., 2013), negative log-likelihood, or multi-class log-likelihood (Lacroix et al., 2018).
Since the training set usually includes positive statements, we generate synthetic negatives t− ∈ N
required for training. We do so by corrupting one side of the triple at a time (i.e. either the subject
or the object), following the protocol proposed by (Bordes et al., 2013).

Calibration. Given a knowledge graph embedding model identified by its scoring function fm, with
fm(t) = p̂, where p̂ is the estimated confidence level that a triple t = (s, p, o) is true, we define fm
to be calibrated if p̂ represents a true probability. For example, if fm(·) predicts 100 triples all with
confidence p̂ = 0.7, we expect exactly 70 to be actually true. Calibrating a model requires reliable
metrics to detect miscalibration, and effective techniques to fix such distortion.

Reliability Diagram (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005). Also known
as calibration plot, this diagram is a visual depiction of the calibration of a model (see Figure 1 for
an example). It shows the expected sample accuracy as a function of the estimated confidence. A
hypothetical perfectly calibrated model is represented by the diagonal line (i.e. the identity function).
Divergence from such diagonal indicates calibration issues (Guo et al., 2017).

Brier Score (Brier, 1950). It is a popular metric used to measure how well a binary classifier
is calibrated. It is defined as the mean squared error between n probability estimates p̂ and the
corresponding actual outcomes y ∈ 0, 1. The smaller the Brier score, the better calibrated is the
model. Note that the Brier score B ∈ [0, 1].

B =
1

n

n∑
i=1

(yi − p̂i)2 (1)

Log Loss is another effective and popular metric to measure the reliability of the probabilities re-
turned by a classifier. The logarithmic loss measures the relative uncertainty between the probability
estimates produced by the model and the corresponding true labels.

Llog = −(y · log(p̂) + (1− y) · log(1− p̂)) (2)

Platt Scaling. Proposed by (Platt et al., 1999) for support vector machines, Platt scaling is a popular
parametric calibration techniques for binary classifiers. The method consists in fitting a logistic
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regression model to the scores returned by a binary classifier, such that q̂ = σ(ap̂ + b), where
p̂ ∈ R is the uncalibrated score of the classifier, a, b ∈ R are trained scalar weights. and q̂ is the
calibrated probability returned as output. Such model can be trained be trained by optimizing the
NLL loss with non-binary targets derived by the Bayes rule under an uninformative prior, resulting
in an Maximum a Posteriori estimate.

Isotonic Regression (Zadrozny & Elkan, 2002). This popular non-parametric calibration techniques
consists in fitting a non-decreasing piecewise constant function to the output of an uncalibrated
classifier. As for Platt scaling, the goal is learning a function q̂ = g(p̂), such that q̂ is a calibrated
probability. Isotonic regression learns g by minimizing the square loss

∑n
i=1(q̂i − yi)2 under the

constraint that g must be piecewise constant (Guo et al., 2017).

4 CALIBRATING KNOWLEDGE GRAPH EMBEDDING MODELS PREDICTIONS

We propose two scenario-dependent calibration techniques: we first address the case with ground
truth negatives t− ∈ N . The second deals with the absence of ground truth negatives.

Calibration with Ground Truth Negatives. We propose to use off-the-shelf Platt scaling and iso-
tonic regression, techniques proved to be effective in literature. It is worth reiterating that to calibrate
a model negative triples N are required from a held-out dataset (which could be the validation set).
Such negatives are usually available in triple classification datasets (FB13, WN11, YAGO39K) 1.

Calibration with Synthetic Negatives. Our main contribution is for the case where no ground truth
negatives are provided at all, which is in fact the usual scenario for link prediction tasks.

We propose to adopt Platt scaling or isotonic regression and to synthetically generate corrupted
triples as negatives, while using sample weights to guarantee that the frequencies adhere to the base
rate of the population (which is problem-dependent and must be user-specified). It is worth noting
that it is not possible to calibrate a model without implicit or explicit base rate. If it is not implicit
on the dataset (the ratio of positives to totals), it must be explicitly provided.

We generate synthetic negatives N following the standard protocol proposed by (Bordes et al.,
2013): for every positive triple t = (s, p, o), we corrupt one side of the triple at a time (i.e. either
the subject s or the object o) by replacing it with other entities in E . The number of corruptions
generated per positive is defined by the user-defined corruption rate η ∈ N. Since the number of
negatives N = |N | can be much greater than the number of positive triples P = |G|, when dealing
with calibration with synthetically generated corruptions, we weigh the positive and negative triples
to make the calibrated model match the population base rate α = P/(P + N) ∈ [0, 1], otherwise
the base rate would depend on the arbitrary choice of η.

Given a positive base rate α, we propose the following weighting scheme:

ω+ = η for positive triples G

ω− =
1

α
− 1 for negative triples N

(3)

where ω+ ∈ R is the weight associated to the positive triples and ω− ∈ R to the negatives. The ω+

weight removes the imbalance determined by having a higher number of corruptions than positive
triples in each batch. The ω− weight guarantees that the given positive base rate α is respected.

The above can be verified as follows. For the unweighted problem, the positive base rate is simply
the ratio of positive examples to the total number of examples:

α =
P

P +N
(4)

If we add uniform weights to each class, we have:

α =
ω+P

ω−N + ω+P
(5)

1Negatives required to train the model are either provided or synthetically generated as described by (Bordes
et al., 2013)
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By defining ω+ = η, i.e. adopting the ratio of negatives to positives (corruption rate), we then have:

α =
P N

P

Nω− + P N
P

=
N

ω−N + PN
=

1

ω− + 1
(6)

Thus, the negative weights is:

ω− =
1

α
− 1 (7)

5 RESULTS

We compute the calibration quality of our heuristics, showing that we achieve calibrated predictions
even when ground truth negative triples are not available. We then show the impact of calibrated
predictions on the task of triple classification.

Datasets. We run experiments on triple classification datasets that include ground truth negatives
(Table 1). We train on the training set, calibrate on the validation set, and evaluate on the test set.

• WN11 (Socher et al., 2013). A subset of Wordnet (Miller, 1995), it includes a large number
of hyponym and hypernym relations thus including hierarchical structures.

• FB13 (Socher et al., 2013). A subset of Freebase (Bollacker et al., 2008), it includes facts
on famous people (place of birth and/or death, profession, nationality, etc).

• YAGO39K (Lv et al., 2018). This recently released dataset has been carved out of
YAGO3 (Mahdisoltani et al., 2013), and includes a mixture of facts about famous people,
events, places, and sports teams.

We also use two standard link prediction benchmark datasets, WN18RR (Dettmers et al., 2018) (a
subset of Wordnet) and FB15K-237 (Toutanova et al., 2015) (a subset of Freebase). Their test sets
do not include ground truth negatives.

Implementation Details. The knowledge graph embedding models are implemented with the
AmpliGraph library (Costabello et al., 2019) version 1.1, using TensorFlow 1.13 (Abadi et al., 2016)
and Python 3.6 on the backend2. All experiments were run under Ubuntu 16.04 on an Intel Xeon
Gold 6142, 64 GB, equipped with a Tesla V100 16GB.

Hyperparameter Tuning. For each dataset in Table 1a, we train a TransE, DistMult, and a ComplEx
knowledge graph embedding model. We rely on typical hyperparameter values: we train the embed-
dings with dimensionality k = 100, Adam optimizer, initial learning rate α0 = 1e-4, negatives per
positive ratio η = 20, epochs = 1000. We train all models on four different loss functions: Self-
adversarial (Sun et al., 2019), pairwise (Bordes et al., 2013), NLL, and Multiclass-NLL (Lacroix
et al., 2018). Different losses are used in different experiments.

5.1 CALIBRATION RESULTS

Calibration Success. Table 2 reports Brier scores and log losses for all our calibration methods,
grouped by the type of negative triples they deal with (ground truth or synthetic). All calibration
methods show better-calibrated results than the uncalibrated case, by a considerable margin and for
all datasets. In particular, to put the results of the synthetic strategy in perspective, if we suppose
to predict the positive base rate as a baseline, for each of the cases in Table 2 (the three datasets
share the same positive base rate α = 0.5), we would get Brier score B = 0.25 and log loss
Llog = 0.69, results that are always worse than our methods. There is considerable variance of
results between models given a dataset, which also happens when varying losses given a particular
combination of model and dataset (Table 3). TransE provides the best results for WN11 and FB13,
while DistMult works best for YAGO39K. We later propose that this variance comes from the quality
of the embeddings themselves, that is, better embeddings allow for better calibration.

In Figure 2, we also evaluate just the frequencies themselves, ignoring sharpness (i.e. whether prob-
abilities are close to 0 or 1), using reliability diagrams for a single model-loss combination, for all

2We will open source our probability calibration in the camera-ready, should the paper be accepted.
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Figure 2: Calibration plots for the best calibrated model-loss combinations. Isotonic regression
delivers the best results, getting very close to the perfectly calibrated line, both when used with the
ground truth method or our proposed synthetic method. Best viewed in colors.

datasets (ComplEx+NLL). Calibration plots show a remarkable difference between the uncalibrated
baseline (s-shaped blue line on the left-hand side) and all calibrated models (curves closer to the
identity function are better). A visual comparison of uncalibrated curves in Figure 1 with those in
Figure 2 also gives a sense of the effectiveness of calibration.

Ground Truth vs Synthetic. As expected, the ground truth method generally performs better than
the synthetic calibration, since it has more data in both quantity (twice as much) and quality (two
classes instead of one). Even so, the synthetic method is much closer to the ground truth than to
the uncalibrated scores, as highlighted by the calibration plots in Figure 2. For WN11, it is actually
as good as the calibration with the ground truth. This shows that our proposed method works as
intended and could be used in situations where we do not have access to the ground truth, as is the
case for most knowledge graph datasets.

Isotonic vs Platt. Isotonic regression performs better than Platt scaling in general, but in practice
Isotonic regression has the disadvantage of not being a convex or differentiable algorithm Zadrozny
& Elkan (2002). This is particularly problematic for the synthetic calibration, as it requires the
generation of the synthetic corruptions, which can only be made to scale via a mini-batch based
optimization procedure. Platt scaling, given that it is a convex and differentiable loss, can be made
part of a computational graph and optimized with mini-batches, thus it can rely on the modern
computational infrastructure designed to train deep neural networks.

Influence of Loss Function. We experiment with different losses, to assess how calibration affects
each of them (Table 3). We choose to work with WN11 with TransE which is reported as a strong
baseline in (Hamaguchi et al., 2017). Experiments show the choice of the loss has a big impact,
greater than the choice of calibration method or embedding model. We believe such variability is
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Brier Score Log Loss
Ground Truth Synthetic Ground Truth Synthetic

Uncalib Platt Iso Platt Iso Uncalib Platt Iso Platt Iso

WN11
TransE .443 .089 .087 .092 .088 1.959 .302 .295 .311 .296
DistMult .488 .213 .208 .214 .208 5.625 .618 .604 .618 .601
ComplEx .490 .240 .227 .240 .228 6.061 .674 .651 .674 .650

FB13
TransE .446 .124 .124 .148 .141 1.534 .390 .391 .459 .442
DistMult .473 .178 .170 .185 .192 2.177 .533 .518 .549 .567
ComplEx .481 .177 .170 .182 .189 2.393 .534 .516 .544 .565

YAGO
39K

TransE .363 .095 .093 .106 .110 1.062 .319 .309 .370 .376
DistMult .284 .081 .079 .093 .089 1.043 .279 .266 .311 .308
ComplEx .264 .089 .084 .097 .095 1.199 .305 .278 .323 .313

Table 2: Calibration test results on different datasets. The lower score, the better. Best results in
bold for each combination of dataset and metric. We present the results using the self-adversarial
loss (Sun et al., 2019) on all datasets.

Brier Score Log Loss MRR
(filtered)Ground Truth Synthetic Ground Truth Synthetic

L Platt Iso Platt Iso Platt Iso Platt Iso
Pairwise .202 .198 .209 .200 .591 .585 .606 .589 .06
NLL .093 .088 .094 .088 .342 .299 .344 .301 .13
Multiclass-NLL .204 .189 .204 .189 .599 .550 .599 .551 .11
Self-adversarial .089 .087 .092 .088 .302 .295 .311 .296 .16

Table 3: Calibration test results using different losses L on WN11. Model used was TransE, as
it provides a strong baseline on WN11 (Hamaguchi et al., 2017). For the calibration losses, the
lower score, the better. The MRR is a ranking metric typically used to evaluate knowledge graph
embeddings. We apply MRR only to the positive test triples. For MRR, the higher the better. The
MRR results show a clear correlation between embedding quality and calibration performance. Best
results in bold for each metric.

determined by the quality of the embeddings: the better the embeddings, the sharper the calibration.
To support such claim, we report the mean reciprocal rank (MRR), which, for each true test triple,
computes the (inverse) rank of the triple against synthetic corruptions, then averages the inverse
rank (Table 3). We notice a clear correlation between the calibration results and the MRR. For all
calibration methods, the best MRR (self-adversarial) leads to the best calibration results, while for
all calibration methods but two exceptions, the worst MRR (obtained with pairwise loss) leads to
the worst calibration results.

Positive Base Rate. We apply our synthetic calibration method to two link prediction benchmark
datasets, FB15K-237 and WN18RR. As they only provide positive examples, we apply our method
with varying base rates αi, linearly spaced from 0.05 to 0.95. We evaluate results relying on the
closed-world assumption, i.e. triples not present in training, validation or test sets are considered
negative. For each αi we calibrate the model using the synthetic method with both isotonic regres-
sion and Platt scaling. We sample negatives from the negative set under the implied negative rate,
and calculate a baseline which is simply having all probability predictions equal to αi. Figure 3
shows that isotonic regression and Platt scaling perform similarly and always considerably below
the baseline. As expected from the previous results, the uncalibrated scores perform poorly, only
reaching acceptable levels around some particular base rates.

Triple Classification and Decision Threshold. To overcome the need to learn |R| decision thresh-
olds τi from the validation set, we propose to rely on calibrated probabilities, and use the natural
threshold of τ = 0.5. Table 4 shows how calibration affects the triple classification task, comparing
with the literature standard of per-relation thresholds (last column). For simplicity, note we use the
same self-adversarial loss in Table 2 and Table 4. We learn thresholds τi on validation sets, resulting
in 11, 7, and 33 thresholds for WN11, FB13 and YAGO39K respectively.

Using a single τ = 0.5 and calibration provides competitive results compared to multiple learned
thresholds (note uncalibrated results with τ = 0.5 are poor, as expected). It is worth mentioning that
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Figure 3: Synthetic calibration on FB15K-237 and WN18RR, with varying positive base rates. The
baseline stands for using the positive base rate as the probability prediction. The results are evaluated
under a closed-world assumption using the same positive base rate as was used to calibrate the
models. Best viewed in colors.

Ground Truth Synthetic Uncalib.
(τ = 0.5)

Uncalib. (Per-Relation τ )
Platt Iso Platt Iso Reproduced Literature

WN11
TransE 88.8 88.9 88.8 88.9 50.7 88.2

88.9∗DistMult 66.5 67.2 66.1 67.1 50.8 67.2
ComplEx 60.6 62.4 59.8 62.4 50.8 59.6

FB13
TransE 82.4 82.3 79.3 80.3 50.0 82.0

89.1?DistMult 72.5 73.2 72.3 70.2 50.1 80.8
ComplEx 73.8 74.2 74.2 72.4 50.1 83.6

YAGO39K
TransE 87.1 87.8 86.6 84.9 50.2 88.8

93.8†DistMult 88.9 89.3 87.7 88.5 56.7 90.2
ComplEx 87.3 88.2 86.6 87.2 61.1 89.4

Table 4: Effect of calibration on triple classification accuracy. For all calibration methods there is
one single threshold, τ = 0.5. For the per-relation τ , we have 11, 7, and 33 thresholds for WN11,
FB13 and YAGO39K respectively, all learned from a validation set. Best results in bold for each
dataset. Note that isotonic regression reaches state-of-the-art results for WN11. Results of ∗ from
(Zhang et al., 2018); ? from (Ji et al., 2016); † from (Lv et al., 2018).

we are at par with state-of-the-art results for WN11. Isotonic regression is again the best method,
but there is more variance in the model choice. Our proposed calibration method with synthetic neg-
atives performs well overall, even though calibration is performed only using half of the validation
set (negatives examples are replaced by synthetic negatives).

6 CONCLUSION

We propose a method to calibrate knowledge graph embedding models. Our contribution addresses
datasets with and without ground truth negatives. We Experiments on triple classification datasets
and apply Platt scaling and isotonic regression with and without synthetic negatives controlled by
our heuristics. All calibration methods perform significantly better than uncalibrated scores. We
show that isotonic regression is the best choice in terms of calibration performance, with the trade-
off of being more computationally expensive. Additional experiments on triple classification shows
that calibration allows to use a single decision threshold, reaching state-of-the-art results without the
need to learn per-relation thresholds.

Future work will evaluate additional calibration algorithms, such as beta calibration (Kull et al.,
2017) or Bayesian binning (Naeini et al., 2015). We will also experiment on ensembling of knowl-
edge graph embedding models, inspired by(Krompaß & Tresp, 2015). The rationale is that different
models operate on different scales, but calibrating brings them all to the same probability scale, so
their output can be easily combined.
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