
Under review as a conference paper at ICLR 2020

SLM LAB: A COMPREHENSIVE BENCHMARK AND
MODULAR SOFTWARE FRAMEWORK FOR REPRO-
DUCIBLE DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce SLM Lab, a software framework for reproducible reinforcement
learning (RL) research. SLM Lab implements a number of popular RL algo-
rithms, provides synchronous and asynchronous parallel experiment execution,
hyperparameter search, and result analysis. RL algorithms in SLM Lab are imple-
mented in a modular way such that differences in algorithm performance can be
confidently ascribed to differences between algorithms, not between implemen-
tations. In this work we present the design choices behind SLM Lab and use it
to produce a comprehensive single-codebase RL algorithm benchmark. In addi-
tion, as a consequence of SLM Lab’s modular design, we introduce and evaluate
a discrete-action variant of the Soft Actor-Critic algorithm (Haarnoja et al., 2018)
and a hybrid synchronous/asynchronous training method for RL agents.

1 INTRODUCTION

Progress in reinforcement learning (RL) research proceeds only as quickly as researchers can im-
plement new algorithms and publish reproducible empirical results. But it is no secret that modern
RL algorithms are hard to implement correctly (Tucker et al., 2018), and many empirical results are
challenging to reproduce (Henderson et al., 2017; Islam et al., 2017; Machado et al., 2017). Ad-
dressing these problems is aided by providing better software tools to the RL research community.

In this work we introduce SLM Lab,1 a software framework for reinforcement learning research
designed for reproducibility and extensibility. SLM Lab is the first open source library that includes
algorithm implementations, parallelization, hyperparameter search, and experiment analysis in one
framework.

After presenting the design and organization of SLM Lab, we demonstrate the correctness of its
implementations by producing a comprehensive performance benchmark of RL algorithms across 77
environments. To our knowledge this is the largest single-codebase RL algorithm comparison in the
literature. In addition, we leverage the modular design of SLM Lab to introduce a variant of the SAC
algorithm for use in discrete-action-space environments and a hybrid synchronous/asynchronous
training scheme for RL algorithms.

2 SLM LAB

2.1 LIBRARY ORGANIZATION

Modularity is the central design choice in SLM Lab, as depicted in Figure 1. Reinforcement learning
algorithms in SLM Lab are built around three base classes:

• Algorithm: Handles interaction with the environment, implements an action policy,
computes the algorithm-specific loss functions, and runs the training step.

• Net: Implements the deep networks that serve as the function approximators for an
Algorithm.

1https://github.com/kengz/SLM-Lab

1

https://github.com/kengz/SLM-Lab


Under review as a conference paper at ICLR 2020

• Memory: Provides the data storage and retrieval necessary for training.

The Net and Memory classes abstract data storage, data retrieval and network training details, sim-
plifying algorithm implementations. Furthermore, many Algorithm classes are natural extensions
of each other.

Figure 1: SLM Lab classes and their inheritance structure.

Modular code is critical for deep RL research because many RL algorithms are extensions of other
RL algorithms. If two RL algorithms differ in only a small way, but a researcher compares their
performance by running a standalone implementation of each algorithm, they cannot know whether
differences in algorithm performance are due to meaningful differences between the algorithms or
merely due to quirks in the two implementations. Henderson et al. (2017) showcase this, demonstrat-
ing significant performance differences between different implementations of the same algorithm.

Modular code is also important for research progress. It makes it as simple as possible for a re-
searcher to implement — and reliably evaluate — new RL algorithms. And for the student of RL,
modular code is easier to read and learn from due to its brevity and organization into digestible
components.

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a good example. When considered
as a stand alone algorithm, PPO has a number of different components. However, it differs from
the Actor-Critic algorithm only in how it computes the policy loss, runs the training loop, and by
needing to maintain an additional actor network during training. Figure 2 shows how this similarity
is reflected in the SLM Lab implementation of PPO.

The result is that the PPO class in SLM Lab has five overridden methods and contains only about 140
lines of code. Implementing it was straightforward once the ActorCritic class was implemented
and thoroughly tested. More importantly, we can be sure that the performance difference between
Actor-Critic and PPO observed in experiments using SLM Lab, shown below in Section 3, are due
to something in the 140 lines of code that differentiate ActorCritic and PPO, and not to other
implementation differences.

Another example of modularity in SLM Lab is that, thanks to the consistent API shared between
Algorithm, Net, and Memory subclasses, synchronous parallelization using vector environments
(Dhariwal et al., 2017) can be combined with asynchronous parallelization of an individual RL
agent’s learning algorithm. This multi-level parallelization is further discussed in Section 3.3, where
we demonstrate its performance benefits.

2



Under review as a conference paper at ICLR 2020

Figure 2: Reinforce, ActorCritic, and PPO class methods in SLM Lab. + indicates that a
method is added or overridden in the class.

2.2 EXPERIMENT ORGANIZATION

Reinforcement learning algorithms vary greatly in their performance across different environments,
hyperparameter settings, and even within a single environment due to inherent randomness. SLM
Lab is designed to easily allow users to study all these types of variability.

SLM Lab organizes experiments in the following hierarchy, shown in Figure 3:

(a) Session (b) Trial (c) Experiment

Figure 3: Experiment organization in SLM Lab. A Session is a single run of an algorithm on an
environment. A Trial is a collection of Sessions. An Experiment is a collection of Trials with
different algorithms and/or environments.

1. Session The lowest level of the SLM Lab experiment framework: a single training run of
a one agent on one environment with one set of hyperparameters, all with a fixed random
seed.

2. Trial A trial consists of multiple Sessions, with the Sessions varying only in the random
seed.

3. Experiment Generates different sets of hyperparameters (according to a spec file, see be-
low) and runs a Trial for each one. It can be thought of as a study, e.g. “What values of
gamma and learning rate provide the fastest, most stable solution, if the other variables are
held constant?”

SLM Lab automatically produces plots for Sessions, Trials, and Experiments for any combination of
environments and algorithms. It also logs and tracks metrics during training such as rewards, loss,
exploration and entropy variables, frames-per-second and wall-clock time. Hyperparameter search
results are automatically analyzed and presented hierarchically in increasingly granular detail.

3



Under review as a conference paper at ICLR 2020

2.3 REPRODUCIBILITY

The complexity of RL algorithms makes reproducing RL results challenging (Henderson et al., 2017;
Machado et al., 2017). Every RL researcher knows the difficulty of trying to reproduce an algorithm
from its description in a paper alone. Even if code is published along with RL research results, the
key algorithm design choices (or mistakes (Tucker et al., 2018)) are often buried in the algorithm
implementation and not exposed naturally to the user.

In SLM Lab, every configurable hyperparameter for an algorithm is specified in a spec file. The spec
file is a JSON file containing a git SHA and all the information required to reproduce a Session, Trial,
or Experiment as per Section 2.2. Reproducing the entirety of an RL experiment merely requires
checking out the code at the git SHA and running the saved spec file.

The main entries in a spec file are given below. Examples of spec files are given in full in Supple-
mentary Section A.4.

1. agent - A list (to allow for multi-agent environments), each element of which contains the
spec for a single agent. Each agent spec contains the details for its components as described
in Section 2.1:

(a) algorithm. The main parameters specific to the algorithm, such as the policy type,
algorithm coefficients, rate decays, and training schedules.

(b) memory. Specifies which memory to use as appropriate to the algorithm along with
any specific memory hyperparameters such as the batch size and the memory size.

(c) net. The type of neural network, its hidden layer architecture, activations, gradient
clipping, loss function, optimizer, rate decays, update method, and CUDA usage.

2. env - A list (to allow for multi-environment agents), each element of which specifies an
environment. Each environment spec includes an optional maximum time step per episode,
the total time steps (frames) in a Session, the state and reward preprocessing methods, and
the number of environments in a vector environment.

3. body - Specifies how (multi-)agents connect to (multi-)environments.

4. meta - The high-level configuration of how the experiment is to be run. It gives the number
of Trials and Sessions to run, the evaluation and logging frequency, and a toggle to activate
asynchronous training.

5. search - The hyperparameters to search over and the methods used to sample them. Any
variables in the spec file can be searched over, including environment variables.

3 RESULTS

Reporting benchmark results is essential for validating algorithm implementations. SLM Lab main-
tains a benchmark page and a public directory containing all of the experiment data, models, plots,
and spec files associated with the reported results.2 We welcome contributions to this benchmark
page via a pull request.

We tested the algorithms implemented in SLM Lab on 77 environments: 62 Atari games and 11
Roboschool environments available through OpenAI gym (Brockman et al., 2016) and 4 Unity en-
vironments (Juliani et al., 2018). These environments span discrete (Table 1) and continuous (Table
2) control problems with high- and low-dimensional state spaces.

The results we report in each of the tables are the score per episode at the end of training averaged
over the previous 100 training checkpoints. Agents were checkpointed every 10k (Atari) or 1k
(Roboschool, Unity) training frames. This measure is less sensitive to rapid increases or decreases
in performance, instead reflecting average performance over a substantial number of training frames.

To our knowledge, the results we present below are a more comprehensive performance comparison
than has been previously published for a single codebase. A full set of learning curves as well as a
full table of results for the Atari environments are provided in the supplementary materials.

2https://github.com/kengz/SLM-Lab/blob/master/BENCHMARK.md

4

https://github.com/kengz/SLM-Lab/blob/master/BENCHMARK.md


Under review as a conference paper at ICLR 2020

3.1 EXPERIMENT DETAILS

A complete set of spec files listing all hyperparameters for all algorithms and experiments are in-
cluded in the slm_lab/spec/benchmark directory of SLM Lab as well in the experiment data
released along with the results. Example spec files listing all of the hyperparameters for PPO and
DDQN + PER on the Atari and Roboschool environments are included in Supplementary Section
A.4.

For the Atari environments, agents were trained for 10M frames (40M accounting for skipped
frames). For the Roboschool environments, agents were trained for 2M frames except for
RoboschoolHumanoid (50M frames), RoboschoolHumanoidFlagrun (100M) and RoboschoolHu-
manoidFlagrunHarder (100M). For the Unity environments, agents were trained for 2M frames.
Training was parallelized either synchronously or with a hybrid of synchronous and asynchronous
methods.

Our results for PPO and A2C on Atari games are comparable the results published by Schulman et al.
(2017). The results on DQN and DDQN + PER on Atari games are mixed: at the same number of
training frames3 we sometimes match or exceed the reported results and sometimes perform worse.
This is likely due to three hyperparameter differences. We used a replay memory of size 200,000
compared to 1M in Mnih et al. (2015), van Hasselt et al. (2015), and Schaul et al. (2015). The final
output layer of the network is smaller fully-connected layer with 256 instead of 512 units. Finally,
our results for SAC confirm the strength of this algorithm compared to PPO. However the absolute
performance is typically worse than the published results from Haarnoja et al. (2018b). Due to
computational constraints, SAC was trained with a replay buffer of 0.2M elements and combined
experience replay (Zhang & Sutton, 2017) compared with 1M elements in Haarnoja et al. (2018b)
and this is potentially a significant difference.

Table 1: Episode score at the end of training attained by SLM Lab implementations on discrete-
action control problems. Reported episode scores are the average over the last 100 checkpoints,
and then averaged over 4 Sessions. Results marked with ‘*’ were trained using the hybrid syn-
chronous/asynchronous version of SAC to parallelize and speed up training time.

Environment Algorithm
DQN DDQN+PER A2C (GAE) A2C (n-step) PPO SAC

Breakout 80.88 182 377 398 443 -
Pong 18.48 20.5 19.31 19.56 20.58 19.87*

Seaquest 1185 4405 1070 1684 1715 -
Qbert 5494 11426 12405 13590 13460 214*

LunarLander 192 233 25.21 68.23 214 276
UnityHallway -0.32 0.27 0.08 -0.96 0.73 -

UnityPushBlock 4.88 4.93 4.68 4.93 4.97 -

3.2 SOFT ACTOR-CRITIC FOR DISCRETE ENVIRONMENTS

All published results for the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018a;b) are for
continuous control environments. However, nothing in its algorithmic description makes it unsuit-
able in principle for use in discrete action-space environments. As a consequence of the modular
structure of SLM Lab, it was straightforward to design and implement a discrete variant of SAC.
We did so by using policy Nets that produced parameters of a Gumbel-Softmax distribution (Jang
et al., 2016; Maddison et al., 2016) from which discrete actions were sampled. The results of this
discrete variant of SAC are in Table 1.

However, even though SAC trained successfully on Pong and Lunar Lander, we were not able to
successfully train it on all Atari environments. We also note that while SAC is sample efficient, it
is more computationally expensive than other algorithms, which presents an obstacle for extensive
performance tuning.

3Estimated using the training curves provided in Figure 7 of Schaul et al. (2015)

5



Under review as a conference paper at ICLR 2020

Table 2: Episode score at the end of training attained by SLM Lab implementations on continuous
control problems. Reported episode scores are the average over the last 100 checkpoints, and then
averaged over 4 Sessions. Results marked with ‘*’ require 50M-100M frames, so we use the hybrid
synchronous/asynchronous version of SAC to parallelize and speed up training time.

Environment Algorithm
A2C (GAE) A2C (n-step) PPO SAC

RoboschoolAnt 787 1396 1843 2915
RoboschoolAtlasForwardWalk 59.87 88.04 172 800

RoboschoolHalfCheetah 712 439 1960 2497
RoboschoolHopper 710 285 2042 2045

RoboschoolInvertedDoublePendulum 996 4410 8076 8085
RoboschoolInvertedPendulum 995 978 986 941

RoboschoolReacher 12.9 10.16 19.51 19.99
RoboschoolWalker2d 280 220 1660 1894

RoboschoolHumanoid 99.31 54.58 2388 2621*
RoboschoolHumanoidFlagrun 73.57 178 2014 2056*

RoboschoolHumanoidFlagrunHarder -429 253 680 280*
Unity3DBall 33.48 53.46 78.24 98.44

Unity3DBallHard 62.92 71.92 91.41 97.06

3.3 HYBRID SYNCHRONOUS AND ASYNCHRONOUS TRAINING

Synchronous and asynchronous parallelization can be combined in SLM Lab to accelerate training,
as shown in Figure 4. SLM Lab implements synchronous parallelization within Sessions (Section
2.2) using vector environments (Dhariwal et al., 2017) and asynchronous parallelization within Tri-
als (Section 2.2) using multiple workers, one per Session. There are two available methods for
Trial level parallelization; Hogwild! (Recht et al., 2011) or a server-worker model in which workers
periodically push gradients to a central network and pull copies of the updated parameters.

If training is constrained by data sampling from the environment, then increasing the number of
vector environments (synchronous parallelization) speeds up training. But this speed-up saturates
as the training step becomes a bottleneck and the environment waits for the agent to train. In the
example shown in Figure 4 the frames per seconds (fps) increases from around 200 for a single
worker and 1 environment to around 360 for 1 worker and 16 environments, and saturates thereafter.
Once fps becomes constrained by the training step, it is beneficial to add workers (asynchronous
parallelization) to effectively parallelize the parameter updates. A hybrid of 16 workers each with 4
environments resulted in the maximum fps of around 3800.

4 RELATED WORK

4.1 REPRODUCIBILITY IN REINFORCEMENT LEARNING

The instability of RL algorithms (Haarnoja et al., 2018a), randomness in agent policies and the
environment (Henderson et al., 2017; Islam et al., 2017), as well as differences in hyperparameter
tuning (Islam et al., 2017) and implementations (Henderson et al., 2017; Tucker et al., 2018) all
contribute to the challenge of reproducing RL results.

Consequently, the importance of comprehensively documenting all hyperparameters along with pub-
lished results and software is well recognized within the research community (Machado et al., 2017;
Castro et al., 2018).

4.2 SOFTWARE FOR REINFORCEMENT LEARNING

To date more than twenty reinforcement-learning-themed open source software libraries have been
released. They can be organized into two categories: those implementing RL algorithms and those

6



Under review as a conference paper at ICLR 2020

Figure 4: Average frames per second as number of vector environments and Hogwild! workers are
varied. Each setting was trained using PPO with the same hyperparameters on the RoboschoolAnt
environment.

implement RL environments.4 SLM Lab is an algorithm-focused library with built-in integration
with the OpenAI gym (Brockman et al., 2016), OpenAI Roboschool, VizDoom (Kempka et al.,
2016), and Unity ML-Agents (Juliani et al., 2018) environment libraries.

Table 3 summarizes the algorithm-focused reinforcement learning software libraries.

Libraries such as ChainerRL (chainer, 2017; Tokui & Oono, 2015), coach (Caspi et al., 2017),
DeepRL (Zhang, 2017), OpenAI baselines (Dhariwal et al., 2017), RLgraph (Schaarschmidt et al.,
2019), RLkit (Pong, 2018), rlpyt (Stooke & Abbeel, 2019), RLLib (Liang et al., 2017), Stable Base-
lines (Hill et al., 2018), TensorForce (Kuhnle et al., 2017), TF-Agents (Guadarrama et al., 2018),
and vel (Tworek, 2018) implement a wide variety of algorithms and are intended to be applied to a
variety of RL problems. Most of these libraries also provide some benchmark results for the imple-
mented algorithms to validate their performance. These can be thought of as generalist RL libraries
and are the most closely related to SLM Lab.

Other libraries focus on specific algorithms (Dopamine (Castro et al., 2018), Softlearning (Haarnoja
et al., 2018c), a2c-ppo-acktr-gail (Kostrikov, 2018), Keras-RL (Plappert, 2016)), problems (Open-
Spiel (Lanctot et al., 2019), ELF (Tian et al., 2019), MAgent (Zheng et al., 2017), reaver (Ring,
2018)) or components such as loss functions (TRFL (DeepMind, 2018) or scaling training (Horizon
(Gauci et al., 2018)).

The use of configuration files to specify hyperparameters varies. coach, DeepRL, Dopamine, Hori-
zon, reaver, Softlearning, RLgraph, RLLib, and vel use configuration files and provide a number
of configured examples. In most cases the network architecture is excluded from the main config-
uration file and specified elsewhere. Horizon and RLgraph include all hyperparameters in a single
configuration file and are the most similar to SLM Lab. However, RLgraph does not include envi-
ronment information, and neither use the same file for configuring hyperparameter search.

Almost all libraries include some methods for parallelizing agent training, especially for on-policy
methods. However most do not include hyperparameter optimization as a feature. The two excep-
tions are Stable Baselines (Hill et al., 2018) and Tensorforce (Kuhnle et al., 2017).

4A few libraries such as OpenSpiel(Lanctot et al., 2019) and ELF(Tian et al., 2019) implement both.

7



Under review as a conference paper at ICLR 2020

Table 3: Comparison of RL software libraries. Algorithm acronyms are explained in Supplementary
Section A.1. REINFORCE is excluded as are less well-known algorithms. “Benchmark” indicates
whether the library reports the performance of their implementations. “Config” indicates whether
hyperparameters are specified separately from the implementation and run scripts; “split” indicates
that the configuration is divided across multiple files, “partial” indicates that some but not all hyper-
parameters are included. “Parallel” denotes whether training for any algorithms can be parallelized.
“HPO” is a hyperparameter optimization feature. “Plot” denotes whether the library provides any
methods for visualizing results.

Library Algorithms Benchmark Config Parallel HPO Plot
a2c-ppo-acktr-gail A2C, ACKTR, GAIL, PPO 3 7 3 7 3

Baselines A2C, ACER, ACKTR, DDPG,
DQN, GAIL, HER, PPO, TRPO

3 7 3 7 3

ChainerRL A3C, ACER, C51, DDPG,
DQN+, IQN, NSQ, PPO,
Rainbow, TRPO, TD3, SAC

3 7 3 7 3

coach A3C, ACER, C51, DDPG,
DQN+, QR-DQN, NAF, NEC,
NSQ, PPO, Rainbow, SAC,
TD3

3 split 3 7 3

DeepRL A2C, C51, DDPG, DQN+,
NSQ, OC, PPO, QR-DQN, TD3

3 split 7 7 3

Dopamine DQN, C51, Rainbow 3 split 3 7 3
ELF A3C, DQN, MCTS, TRPO 3 7 3 7 7

Keras-RL DDPG, DQN+, NAF, CEM,
SARSA

7 7 3 7 3

Horizon C51, DQN+, SAC, TD3 7 3 3 7 3
MAgent A2C, DQN 7 7 3 7 3

OpenSpiel A2C, DQN, MCTS 7 7 7 7 7
pytorch-rl A2C, DDPG, DQN+, HER 7 7 7 7 7

reaver A2C, PPO 3 split 3 7 3
RLgraph A2C, Ape-X, DQN+, DQFD,

IMPALA, PPO, SAC
3 3 3 7 7

RLkit DQN+, HER, SAC, TDM, TD3 7 7 7 7 3
RLLib A3C, Ape-X, ARS, DDPG,

DQN, ES, IMPALA, PPO, SAC
3 partial 3 7 7

rlpyt A2C, DDPG, DQN+, CAT-
DQN, PPO, TD3, SAC

3 7 3 7 7

Softlearning SAC 7 3 3 7 7
Stable Baselines A2C, ACER, ACKTR, DDPG,

DQN, GAIL, HER, PPO, SAC,
TD3, TRPO

3 7 3 3 3

TensorForce A3C, DQN+, DQFD, NAF,
PPO, TRPO

7 7 3 3 7

TF-Agents DDPG, DQN+, PPO, SAC, TD3 7 7 7 7 3
TRFL - 7 7 7 7 7

vel A2C, ACER, DDPG, DQN+,
Rainbow, PPO, TRPO

3 split 3 7 7

SLM Lab A2C, A3C, CER, DQN+, PPO,
SAC

3 3 3 3 3

Finally, many libraries include some tools for visualizing and plotting results. Notably coach (Caspi
et al., 2017) provides an interactive dashboard for exploring a variety of metrics which are automat-
ically tracked during training.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach, Decem-
ber 2017. URL https://doi.org/10.5281/zenodo.1134899.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

chainer. Chainerrl. https://github.com/chainer/chainerrl, 2017.

DeepMind. trfl. https://github.com/deepmind/trfl, 2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengxing Chen, Yuchen He, Zachary
Kaden, Vivek Narayanan, and Xiaohui Ye. Horizon: Facebook’s open source applied reinforce-
ment learning platform. arXiv preprint arXiv:1811.00260, 2018.

Sergio Guadarrama, Oscar Ramirez Anoop Korattikara, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Neal Wu, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo.
TF-Agents: A library for reinforcement learning in tensorflow. https://github.com/
tensorflow/agents, 2018. URL https://github.com/tensorflow/agents.
[Online; accessed 25-June-2019].

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018a. URL http://arxiv.org/abs/1801.01290.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. CoRR, abs/1812.05905, 2018b. URL http://arxiv.org/abs/
1812.05905.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. Technical report, 2018c.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. ArXiv, abs/1709.06560, 2017.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore, Prafulla Dhariwal,
Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schul-
man, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/
stable-baselines, 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. ICML Workshop on Repro-
ducibility in Machine Learning., 2017. URL http://arxiv.org/abs/1708.04133.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2016.
URL http://arxiv.org/abs/1611.01144. cite arxiv:1611.01144.

Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. Unity: A general platform for intelligent agents. CoRR, abs/1809.02627, 2018.
URL http://arxiv.org/abs/1809.02627.

9

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.5281/zenodo.1134899
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://github.com/chainer/chainerrl
https://github.com/deepmind/trfl
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1708.04133
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1809.02627


Under review as a conference paper at ICLR 2020

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. ViZ-
Doom: A Doom-based AI research platform for visual reinforcement learning. In IEEE Confer-
ence on Computational Intelligence and Games, pp. 341–348, Santorini, Greece, Sep 2016. IEEE.
URL http://arxiv.org/abs/1605.02097. The best paper award.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a tensorflow library
for applied reinforcement learning. Web page, 2017. URL https://github.com/
tensorforce/tensorforce.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Prolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Jnos Kramr, Bart De Vylder,
Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrit-
twieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Openspiel: A
framework for reinforcement learning in games, 2019.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken Gold-
berg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning library. CoRR,
abs/1712.09381, 2017. URL http://arxiv.org/abs/1712.09381.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. CoRR, abs/1709.06009, 2017. URL http://arxiv.org/abs/
1709.06009.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. CoRR, abs/1611.00712, 2016. URL http://arxiv.
org/abs/1611.00712.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl, 2016.

Vitchyr Pong. rlkit. https://github.com/vitchyr/rlkit, 2018.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
24, pp. 693–701. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.
pdf.

Roman Ring. Reaver: Modular deep reinforcement learning framework. https://github.
com/inoryy/reaver, 2018.

Michael Schaarschmidt, Sven Mika, Kai Fricke, and Eiko Yoneki. RLgraph: Modular Computation
Graphs for Deep Reinforcement Learning. In Proceedings of the 2nd Conference on Systems and
Machine Learning (SysML), April 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

10

http://arxiv.org/abs/1605.02097
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1709.06009
http://arxiv.org/abs/1709.06009
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
http://dx.doi.org/10.1038/nature14236
https://github.com/keras-rl/keras-rl
https://github.com/vitchyr/rlkit
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://github.com/inoryy/reaver
https://github.com/inoryy/reaver
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347


Under review as a conference paper at ICLR 2020

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. 2019.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and
Larry Zitnick. ELF opengo: an analysis and open reimplementation of alphazero. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, pp. 6244–6253, 2019. URL http://proceedings.mlr.press/
v97/tian19a.html.

Seiya Tokui and Kenta Oono. Chainer : a next-generation open source framework for deep learning.
2015.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning, 2018. URL
https://openreview.net/forum?id=HyL0IKJwM.

Jerry Tworek. vel. https://github.com/MillionIntegrals/vel, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.

Shangtong Zhang. Deeprl. https://github.com/ShangtongZhang/DeepRL, 2017.

Shangtong Zhang and Richard S. Sutton. A deeper look at experience replay. CoRR,
abs/1712.01275, 2017. URL http://arxiv.org/abs/1712.01275.

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Magent:
A many-agent reinforcement learning platform for artificial collective intelligence. CoRR,
abs/1712.00600, 2017. URL http://arxiv.org/abs/1712.00600.

A SUPPLEMENTARY MATERIALS

A.1 ALGORITHM ACRONYMS

The expanded acronymns for all of the algorithms listed in Table 3 are given below:

• A2C: Advantage Actor-Critic

• ACER: Actor-Critic with Experience Replay

• ACKTR: Actor-Critic using Kronecker-Factored Trust Region

• Ape-X: Distributed Prioritized Experience Replay

• ARS: Augmented Random Search

• C51: Categorical DQN

• CAT-DQN: Categorical DQN

• CEM: Cross Entropy Method

• CER: Combined Experience Replay

• DDPG: Deep Deterministic Policy Gradients

• DQN: Deep Q Networks

• DQN+: Deep Q Network modifications, including some or all of the following: Double
DQN, Dueling DQN, Prioritized Experience Replay

• DQFD: Deep Q-Learning from Demonstrations

• ES: Evolutionary Strategies

• GAIL: Generative Adversarial Imitation learning

• HER: Hindsight Experience Replay

• IMPALA: Importance Weighted Actor-Learner Architecture

11

http://proceedings.mlr.press/v97/tian19a.html
http://proceedings.mlr.press/v97/tian19a.html
https://openreview.net/forum?id=HyL0IKJwM
https://github.com/MillionIntegrals/vel
http://arxiv.org/abs/1509.06461
https://github.com/ShangtongZhang/DeepRL
http://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1712.00600


Under review as a conference paper at ICLR 2020

• IQN: Implicit Quantile Networks
• MCTS: Monte Carlo Tree Search
• NAF: Normalized Advantage Functions
• NEC: Neural Episodic Control
• NSQ: n-step Q-learning
• OC: Option-Critic
• PPO: Proximal Policy Optimization
• QR-DQN: Quantile Regression DQN
• Rainbow:
• TD3: Twin Delayed Deep Deterministic Policy Gradient
• TRPO: Trust Region Policy Optimization
• SAC: Soft Actor-Critic

A.2 ATARI RESULTS

The table below presents results for 62 Atari games. All agents were trained for 10M frames (40M
including skipped frames). Reported results are the episode score at the end of training, averaged
over the previous 100 evaluation checkpoints with each checkpoint averaged over 4 Sessions. Agents
were checkpointed every 10k training frames.

Environment Algorithm
(Atari, Discrete) DQN DDQN+PER A2C (GAE) A2C (n-step) PPO

Adventure -0.94 -0.92 -0.77 -0.85 -0.3
Adventure -0.94 -0.92 -0.77 -0.85 -0.3

AirRaid 1876 3974 4202 3557 4028
Alien 822 1574 1519 1627 1413

Amidar 90.95 431 577 418 795
Assault 1392 2567 3366 3312 3619
Asterix 1253 6866 5559 5223 6132

Asteroids 439 426 2951 2147 2186
Atlantis 68679 644810 2747371 2259733 2148077

BankHeist 131 623 855 1170 1183
BattleZone 6564 6395 4336 4533 13649
BeamRider 2799 5870 2659 4139 4299

Berzerk 319 401 1073 763 860
Bowling 30.29 39.5 24.51 23.75 31.64
Boxing 72.11 90.98 1.57 1.26 96.53

Breakout 80.88 182 377 398 443
Carnival 4280 4773 2473 1827 4566

Centipede 1899 2153 3909 4202 5003
ChopperCommand 1083 4020 3043 1280 3357

CrazyClimber 46984 88814 106256 109998 116820
Defender 281999 313018 665609 657823 534639

DemonAttack 1705 19856 23779 19615 121172
DoubleDunk -21.44 -22.38 -5.15 -13.3 -6.01

ElevatorAction 32.62 17.91 9966 8818 6471
Enduro 437 959 787 0.0 1926

FishingDerby -88.14 -1.7 16.54 1.65 36.03
Freeway 24.46 30.49 30.97 0.0 32.11
Frostbite 98.8 2497 277 261 1062

Gopher 1095 7562 929 1545 2933
Gravitar 87.34 258 313 433 223

Hero 1051 12579 16502 19322 17412
IceHockey -14.96 -14.24 -5.79 -6.06 -6.43

12



Under review as a conference paper at ICLR 2020

Jamesbond 44.87 702 521 453 561
JourneyEscape -4818 -2003 -921 -2032 -1094

Kangaroo 1965 8897 67.62 554 4989
Krull 5522 6650 7785 6642 8477

KungFuMaster 2288 16547 31199 25554 34523
MontezumaRevenge 0.0 0.02 0.08 0.19 1.08

MsPacman 1175 2215 1965 2158 2350
NameThisGame 3915 4474 5178 5795 6386

Phoenix 2909 8179 16345 13586 30504
Pitfall -68.83 -73.65 -101 -31.13 -35.93
Pong 18.48 20.5 19.31 19.56 20.58

Pooyan 1958 2741 2862 2531 6799
PrivateEye 784 303 93.22 78.07 50.12

Qbert 5494 11426 12405 13590 13460
Riverraid 953 10492 8308 7565 9636

RoadRunner 15237 29047 30152 31030 32956
Robotank 3.43 9.05 2.98 2.27 2.27
Seaquest 1185 4405 1070 1684 1715

Skiing -14094 -12883 -19481 -14234 -24713
Solaris 612 1396 2115 2236 1892

SpaceInvaders 451 670 733 750 797
StarGunner 3565 38238 44816 48410 60579

Tennis -23.78 -10.33 -22.42 -19.06 -11.52
TimePilot 2819 1884 3331 3440 4398

Tutankham 35.03 159 161 175 211
UpNDown 2043 11632 89769 18878 262208

Venture 4.56 9.61 0.0 0.0 11.84
VideoPinball 8056 79730 35371 40423 58096

WizardOfWor 869 328 1516 1247 4283
YarsRevenge 5816 15698 27097 11742 10114

Zaxxon 442 54.28 64.72 24.7 641

A.3 LEARNING CURVES FOR ALL ALGORITHMS AND ENVIRONMENTS

Each learning curve depicts the episode score, averaged over the previous 100 evaluation check-
points, with each checkpoint averaged over 4 Sessions. The shaded area depicts +/- one standard
deviation calculated over 4 Sessions.

13



Under review as a conference paper at ICLR 2020

14



Under review as a conference paper at ICLR 2020

15



Under review as a conference paper at ICLR 2020

16



Under review as a conference paper at ICLR 2020

A.4 EXAMPLE SPEC FILES

1 {
2 "ddqn_per_atari": {
3 "agent": [{
4 "name": "DoubleDQN",
5 "algorithm": {
6 "name": "DoubleDQN",
7 "action_pdtype": "Argmax",
8 "action_policy": "epsilon_greedy",
9 "explore_var_spec": {

10 "name": "linear_decay",
11 "start_val": 1.0,
12 "end_val": 0.01,
13 "start_step": 10000,
14 "end_step": 1000000
15 },
16 "gamma": 0.99,
17 "training_batch_iter": 1,
18 "training_iter": 4,
19 "training_frequency": 4,
20 "training_start_step": 10000
21 },
22 "memory": {
23 "name": "PrioritizedReplay",
24 "alpha": 0.6,
25 "epsilon": 0.0001,
26 "batch_size": 32,
27 "max_size": 200000,
28 "use_cer": false,
29 },
30 "net": {
31 "type": "ConvNet",
32 "conv_hid_layers": [
33 [32, 8, 4, 0, 1],
34 [64, 4, 2, 0, 1],
35 [64, 3, 1, 0, 1]
36 ],
37 "fc_hid_layers": [256],
38 "hid_layers_activation": "relu",
39 "init_fn": null,
40 "batch_norm": false,
41 "clip_grad_val": 10.0,
42 "loss_spec": {
43 "name": "SmoothL1Loss"
44 },
45 "optim_spec": {
46 "name": "Adam",
47 "lr": 2.5e-5,
48 },
49 "lr_scheduler_spec": null,
50 "update_type": "replace",
51 "update_frequency": 1000,
52 "gpu": true
53 }
54 }],
55 "env": [{
56 "name": "${env}",
57 "frame_op": "concat",
58 "frame_op_len": 4,
59 "reward_scale": "sign",
60 "num_envs": 16,
61 "max_t": null,
62 "max_frame": 1e7
63 }],

17



Under review as a conference paper at ICLR 2020

64 "body": {
65 "product": "outer",
66 "num": 1
67 },
68 "meta": {
69 "distributed": false,
70 "eval_frequency": 10000,
71 "log_frequency": 10000,
72 "rigorous_eval": 0,
73 "max_session": 4,
74 "max_trial": 1
75 },
76 "spec_params": {
77 "env": [
78 "BreakoutNoFrameskip-v4", "PongNoFrameskip-v4", "QbertNoFrameskip

-v4", "SeaquestNoFrameskip-v4"
79 ]
80 }
81 },
82 }

Listing 1: The Double DQN + PER spec file for Atari games

1 {
2 "ppo_atari": {
3 "agent": [{
4 "name": "PPO",
5 "algorithm": {
6 "name": "PPO",
7 "action_pdtype": "default",
8 "action_policy": "default",
9 "explore_var_spec": null,

10 "gamma": 0.99,
11 "lam": 0.70,
12 "clip_eps_spec": {
13 "name": "no_decay",
14 "start_val": 0.10,
15 "end_val": 0.10,
16 "start_step": 0,
17 "end_step": 0
18 },
19 "entropy_coef_spec": {
20 "name": "no_decay",
21 "start_val": 0.01,
22 "end_val": 0.01,
23 "start_step": 0,
24 "end_step": 0
25 },
26 "val_loss_coef": 0.5,
27 "time_horizon": 128,
28 "minibatch_size": 256,
29 "training_epoch": 4
30 },
31 "memory": {
32 "name": "OnPolicyBatchReplay",
33 },
34 "net": {
35 "type": "ConvNet",
36 "shared": true,
37 "conv_hid_layers": [
38 [32, 8, 4, 0, 1],
39 [64, 4, 2, 0, 1],
40 [32, 3, 1, 0, 1]
41 ],
42 "fc_hid_layers": [512],

18



Under review as a conference paper at ICLR 2020

43 "hid_layers_activation": "relu",
44 "init_fn": "orthogonal_",
45 "normalize": true,
46 "batch_norm": false,
47 "clip_grad_val": 0.5,
48 "use_same_optim": false,
49 "loss_spec": {
50 "name": "MSELoss"
51 },
52 "actor_optim_spec": {
53 "name": "Adam",
54 "lr": 2.5e-4,
55 },
56 "critic_optim_spec": {
57 "name": "Adam",
58 "lr": 2.5e-4,
59 },
60 "lr_scheduler_spec": {
61 "name": "LinearToZero",
62 "frame": 1e7
63 },
64 "gpu": true
65 }
66 }],
67 "env": [{
68 "name": "${env}",
69 "frame_op": "concat",
70 "frame_op_len": 4,
71 "reward_scale": "sign",
72 "num_envs": 16,
73 "max_t": null,
74 "max_frame": 1e7
75 }],
76 "body": {
77 "product": "outer",
78 "num": 1
79 },
80 "meta": {
81 "distributed": false,
82 "eval_frequency": 10000,
83 "log_frequency": 10000,
84 "rigorous_eval": 0,
85 "max_session": 4,
86 "max_trial": 1
87 },
88 "spec_params": {
89 "env": [
90 "BreakoutNoFrameskip-v4", "PongNoFrameskip-v4", "QbertNoFrameskip

-v4", "SeaquestNoFrameskip-v4"
91 ]
92 }
93 },
94 }

Listing 2: The PPO spec file for Atari games

1 {
2 "ppo_roboschool": {
3 "agent": [{
4 "name": "PPO",
5 "algorithm": {
6 "name": "PPO",
7 "action_pdtype": "default",
8 "action_policy": "default",
9 "explore_var_spec": null,

19



Under review as a conference paper at ICLR 2020

10 "gamma": 0.99,
11 "lam": 0.95,
12 "clip_eps_spec": {
13 "name": "no_decay",
14 "start_val": 0.20,
15 "end_val": 0.20,
16 "start_step": 0,
17 "end_step": 0
18 },
19 "entropy_coef_spec": {
20 "name": "no_decay",
21 "start_val": 0.0,
22 "end_val": 0.0,
23 "start_step": 0,
24 "end_step": 0
25 },
26 "val_loss_coef": 1.0,
27 "time_horizon": 2048,
28 "minibatch_size": 128,
29 "training_epoch": 10
30 },
31 "memory": {
32 "name": "OnPolicyBatchReplay",
33 },
34 "net": {
35 "type": "MLPNet",
36 "shared": false,
37 "hid_layers": [256, 256],
38 "hid_layers_activation": "relu",
39 "init_fn": "orthogonal_",
40 "clip_grad_val": 0.5,
41 "use_same_optim": false,
42 "loss_spec": {
43 "name": "MSELoss"
44 },
45 "actor_optim_spec": {
46 "name": "Adam",
47 "lr": 3e-4,
48 },
49 "critic_optim_spec": {
50 "name": "Adam",
51 "lr": 3e-4,
52 },
53 "lr_scheduler_spec": null,
54 "gpu": false
55 }
56 }],
57 "env": [{
58 "name": "${env}",
59 "num_envs": 8,
60 "max_t": null,
61 "max_frame": 2e6
62 }],
63 "body": {
64 "product": "outer",
65 "num": 1
66 },
67 "meta": {
68 "distributed": false,
69 "log_frequency": 1000,
70 "eval_frequency": 1000,
71 "rigorous_eval": 0,
72 "max_session": 4,
73 "max_trial": 1
74 },

20



Under review as a conference paper at ICLR 2020

75 "spec_params": {
76 "env": [
77 "RoboschoolAnt-v1", "RoboschoolAtlasForwardWalk-v1", "

RoboschoolHalfCheetah-v1", "RoboschoolHopper-v1", "
RoboschoolInvertedDoublePendulum-v1", "RoboschoolInvertedPendulum-v1
", "RoboschoolInvertedPendulumSwingup-v1", "RoboschoolReacher-v1", "
RoboschoolWalker2d-v1"

78 ]
79 }
80 },
81 }

Listing 3: The PPO spec file for Roboschool environments (excluding Humanoid)

A.5 KEY IMPLEMENTATION LESSONS

Implementing a number of well-known deep reinforcement learning algorithms taught us many im-
portant lessons. Such lessons are typically relegated to blog posts and personal conversations, but
we feel it is worth sharing such knowledge in the research literature.

• Put everything that varies into the spec file. e.g. when implementing A2C we hardcoded
state normalization in some places but not others. This extended the debugging process by
days.

• Log policy entropy, Q or V function outputs and check that they change. Looking at Q
function values for a random agent helped us to track down an error due to state mutation.

• As with all Python code, watch out for mutation. - e.g. We noticed that the state returned
from OpenAI baselines vector environment was mutated by preprocessing for the next time
steps. This was because the state was tracked as internal variables as returned directly. To
remedy this, the state must be returned as a copy.

• Start simple - implement parent algorithms first. e.g. REINFORCE, then A2C, then PPO
or SAC, and ensure that each of these work in turn. PPO and SAC were straightforward to
debug once A2C was working.

• Write tests: Tests have been invaluable in debugging and growing SLM Lab. Especially
useful are tests for tricky functions. For example, a test for the GAE calculation was es-
sential for debugging A2C. Additionally, use Continuous Integration to automatically build
and test every new code changes in a Pull Request, as is done in SLM Lab.

• Check input and output tensor shapes for important calculations. e.g. predicted and tar-
get values for Q or V. Broadcasting errors may lead to incorrect tensor shapes which fail
silently.

• Check the size of the loss at the beginning of training. Is this comparable to other imple-
mentations? Tracking this value was essential when debugging DQN. It led us to a bug in
the image permutation and we also stopped normalizing the image values as a result.

• Check that the main components of the computation graph are connected as expected. This
can be implemented as a decorator around the training step and run when debugging. Con-
versely, be careful to detach target values.

• Visualize trained agents. We forgot to evaluate agents with reward clipping turned off,
which led to very significant underestimation of performance for all environments except
Pong. We finally realized training was working only after deciding to look at some policies
playing the game.

21


	Introduction
	SLM Lab
	Library Organization
	Experiment Organization
	Reproducibility

	Results
	Experiment details
	Soft Actor-Critic for discrete environments
	Hybrid synchronous and asynchronous training

	Related Work
	Reproducibility in Reinforcement Learning
	Software for Reinforcement Learning

	Supplementary Materials
	Algorithm acronyms
	Atari results
	Learning curves for all algorithms and environments
	Example Spec files
	Key Implementation Lessons


